eli barkai, bar-ilan univ.barkaie/stpet1.pdf · stochasticity in the cell cycle. eli barkai, ......

42
Eli Barkai, Bar-Ilan Univ.

Upload: vodung

Post on 10-Jul-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Eli Barkai, Bar-Ilan Univ.

Page 2: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

SummerSchool

on Stochastic Processes with Applications to Physics and

Biophysics

September 25-28, 2017 In Acre

The school is open for theoreticians and experimentalists.

Deadline for submitting applications: 1 May 2017 Participation fee of 650 NIS

Visit our website: http://binaschools.ph.biu.ac.il

Contact us: [email protected]

The Bar-Ilan Institute for Nano-technology and Advanced Materials is proud to present:The summer school on normal and anomalous stochastic processes in Physics. The program includes: basic introduction to the field, specific applications from the fields of single molecule tracking in the environment of the cell and stochasticity in the cell cycle.

Eli Barkai, Bar-Ilan Univ.

Page 3: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Fluctuations of Single-Particle Diffusivity inRandom Environments

Eli Barkai

Bar-Ilan University

He, Burov, Metzler, EB PRL 2008. Akimoto, EB, Saito PRL 2016.

2017

Eli Barkai, Bar-Ilan Univ.

Page 4: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Outline

• Disorder greatly affects diffusion.

• Time averages and ensemble averages are non-equivalent.

• Experiments: anomalous diffusion of single molecules in the cell.

• Random time scale invariant diffusion and transport coefficients.

• Quenched environment gives by far larger fluctuations of the diffusivity(compared with the annealed model).

Eli Barkai, Bar-Ilan Univ.

Page 5: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Brownian Motion

δ2 (∆, t) =

∫ t−∆

0[x(t′ + ∆)− x(t′)]

2dt′

t−∆→ 2D∆

Eli Barkai, Bar-Ilan Univ.

Page 6: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Ergodicity for Brownian particles

• Time averages are reproducible.

• Two measurements of δ2 yield the same result.

• The time and ensemble averages coincide (ergodicity).

δ2 = 〈x2〉.

• Diffusion is normal δ2 ∼ ∆.

• Measure between (0, t) and (t, 2t) yield same results (stationary).

• These properties are broken in single molecule experiments in cells.

Eli Barkai, Bar-Ilan Univ.

Page 7: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

mRNA diffusing in a cell Golding and Cox

Eli Barkai, Bar-Ilan Univ.

Page 8: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

• Bronstien, .... Barkai, Garini PRL (2009). Anomalous diffusion and randomness of time averages is common.

Eli Barkai, Bar-Ilan Univ.

Page 9: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Continuous Time Random Walk (CTRW)

Dispersive Transport in Amorphous Material Scher-Montroll (1975).

Bead Diffusing in Polymer Network Weitz (2004).

Eli Barkai, Bar-Ilan Univ.

Page 10: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Average Waiting Time is ∞. Diffusion is anomalous 〈r2〉 ∼ tα.

Eli Barkai, Bar-Ilan Univ.

Page 11: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

CTRW: power law waiting times ψ(t) ∼ t−(α+1)

Eli Barkai, Bar-Ilan Univ.

Page 12: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0- 1 0

- 8

- 6

- 4

- 2

0

2

4

6

8

x

t i m e

α = 0 . 7 5

• Random walk on lattice with jumps to nearest neighbours only.

• ψ(t) ∼ t−1−α with 0 < α < 1 gives 〈r2〉 ∼ tα

Eli Barkai, Bar-Ilan Univ.

Page 13: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

CTRW and ergodicity breaking

• Einstein D = 〈δx2〉2〈τ〉 .

• Boltzmann-Gibbs: If measurement time t >> 〈τ〉 expect ergodicity.

• Scher-Montroll: If 〈τ〉 → ∞, D → 0 and the process is sub-diffusive.

• Bouchaud: If 〈τ〉 → ∞ expect weak ergodicity breaking.

Eli Barkai, Bar-Ilan Univ.

Page 14: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Random Time-Scale Invariant Diffusion Constant

104 10510−1

100

101

102

103

δ2 (

∆ )

2 × 103

δ2 (∆, t) =

∫ t−∆

0[x(t′ + ∆)− x(t′)]

2dt′

t−∆• He Burov Metzler Barkai PRL (2008), Lubelski, Sokolov, Klafter (ibid).

Eli Barkai, Bar-Ilan Univ.

Page 15: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Anomalous Seems Normal

〈δ2〉 ∼ 2Dα

Γ(1 + α)

t1−α

• Normal diffusion 〈δ2〉 = 2D∆.

• For anomalous diffusion D(t) ∼ d〈x2〉dt ∼ t

α−1.

• Aging effect 〈δ2〉 decreases when measurement time increases.

Eli Barkai, Bar-Ilan Univ.

Page 16: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Fluctuations of the time average δ2

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0

0

1 0x ( t )

T I M E

α = 0 . 7 5

0

2

4

[ x ( t + ∆) - x ( t ) ] 2

∆= 3

δ2 ∼ st number of jumps in (0, t) is s.

Most of measurement time [x(t′+ ∆)− x(t′)]2 = 0 due to long trapping.

Eli Barkai, Bar-Ilan Univ.

Page 17: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Distribution of δ2

ξ =s

〈s〉=

δ2

〈δ2〉, lim

t→∞φα (ξ) =

Γ1/α (1 + α)

αξ1+1/αlα

[Γ1/α (1 + α)

ξ1/α

].

0 1 2 3 4 50

0.5

1

0 1 2 3 4 50

0.5

1

ξ

φ α ( ξ

)α = 0.5

α = 0.75

Eli Barkai, Bar-Ilan Univ.

Page 18: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Finite size effect is important: Anomalous again

〈δ2〉 =

∫ t−∆

0

[〈x2(t′ + ∆)〉+ 〈x2(t′)〉 − 2〈x(t′ + ∆)x(t′)〉

]dt

t−∆.

• We consider the fractional Fokker-Planck dynamics in a binding field V (x)

• If 〈x〉B = 0 namely V (x) = V (−x).

〈x(t1)x(t2)〉 ∼ 〈x2〉BB(t1/t2, α, 1− α)

Γ(α)Γ(1− α).

〈δ2〉 ∼ 〈x2〉B 2 sin(απ)(1−α)απ

(∆t

)1−α

• Neusius,Sokolov, Smith (PRE) 2009. Burov, Metzler, Barkai (PNAS) 2010.

Eli Barkai, Bar-Ilan Univ.

Page 19: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Aging effect (Diego Krpaf’s experiment)

5000

10000

20000

30000

1 10 100

Tim

e a

ve

rag

ed

me

an

sq

ua

red

dis

pla

ce

me

nt

Measurement time t [sec]

111 ms222 ms333 ms444 ms

• The older you get the slower you are

• Channel protein molecules on a membrane.

• Weigel · · · Krapf PNAS (2011).

Eli Barkai, Bar-Ilan Univ.

Page 20: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Three more experiments showing aging MSD

• Receptor Motion in Living Cells Manzo... Garcia Parajo PRX (2015).

• Insulin granule in pancreatic cell Tabei ... Scherer PNAS (2013).

• Myosin motors in filament system Burov ... Dinner PNAS (2013).

Eli Barkai, Bar-Ilan Univ.

Page 21: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Quenched trap model

τi = exp(Ex/kBT ) and Ex IID RV.

Exponential density of states ρ(E) = exp(−E/Tg)/Tg

Sojourn time PDF ψ(τ) ∼ τ−(1+T/Tg)

Eli Barkai, Bar-Ilan Univ.

Page 22: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Ergodic properties of the quenched trap model

• For a finite system of size L the largest waiting time is finite.It is determined by the deepest trap.

• Quenched trap model is ergodic when we take t→∞ before L→∞.

• Quenched model exhibits non self averaging.

Eli Barkai, Bar-Ilan Univ.

Page 23: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Non ergodicity mimics inhomogeneity (SOKOLOV)

How to quantify the fluctuations of the quenched model?

Annealed versus quenched models. Where are fluctuations larger?

Is Mittag-Leffler statistics universal?

Role of initial conditions? equilibrium versus non equilibrium initialstate.

Role of dimension d = 2 is critical.

Eli Barkai, Bar-Ilan Univ.

Page 24: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Distribution of diffusion constant

• The size of the system is crucial

〈δ2〉dis = 2Γ(α−1)

αΓ (1− α)1/α

L1/α−1∆.

• Starting from thermal initial conditions, periodic boundary conditions, theensemble average MSD is

〈r2〉eq =t∑

i τi/L.

• The SA parameter

SA =〈O2〉dis − 〈O〉2dis

〈O〉2dis.

• The EB parameter

EB =〈O2〉 − 〈O〉2

〈O〉2.

Eli Barkai, Bar-Ilan Univ.

Page 25: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

SA versus EB parameters

10-2

10-1

100

101

102

103

104

0

SA

0.2 0.4 0.6 0.8 1α

Eli Barkai, Bar-Ilan Univ.

Page 26: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Distribution of diffusivities α = 2/3, 〈D〉 = 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P(D

)

D

Eli Barkai, Bar-Ilan Univ.

Page 27: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Local and Global Measurements

• Brownian motion: Local = global measurements, when ∆ << L2/D.

• CTRW: Local 6= global measurements.Both age and exhibit ergodicity breaking.

• Quenched model: Local measurements age (like annealed case).Global measurement exhibit a diffusivity decreasing with system, super largefluctuations, and non self averaging.

Eli Barkai, Bar-Ilan Univ.

Page 28: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Open problems and some further subtle points

• Population splitting.

• Aging initial conditions in CTRW.

• Noise and EB.

Eli Barkai, Bar-Ilan Univ.

Page 29: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Age and noise matter

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0

0

1 0x ( t )

T I M E

α = 0 . 7 5

0

2

4

[ x ( t + ∆) - x ( t ) ] 2

∆= 3

• start at time ta? Observe population splitting T << ta.

• Add noise? crucial for time averages.

Eli Barkai, Bar-Ilan Univ.

Page 30: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Timing of start of measurement matters

h !Fi ¼ Cþ"!ðta=TÞ#ð1þ !Þ

gð$="ÞðT="Þ1%! ; (15)

for $ & T, with the constant C ¼ fð0Þ. The function g isdefined as gðsÞ ¼ s2!%2LffðnÞ % fð0Þ; n ! s!g in Laplacespace [32]. In the limit $ ! 0, the TA (15) reduces to theconstant C, the expectation value of the observable whenmeasured at identical positions. For example, if we studycorrelations in an equilibrated process, Fðx2; x1Þ ¼ x2x1,then C ¼ hx2i is the thermal value of x2. Conversely, Cnaturally vanishes for TA moments of displacements,Fðx2; x1Þ ¼ jx2 % x1jq, so it did not appear previously. Weobserve that the lag time dependence enters exclusivelythrough the multiplicative function gð$="Þ. For example,for fðnÞ ' nq, C ¼ 0, and we recover the previous result(10). Finally, the factor "! only depends on the ratio ta=Tand the parameter !, and due to a factor T!%1 any TAconverges to the constantC as T ! 1. Note that this depen-dence on ta andT is universal in the sense that it is indifferentto the specific choice of the observable F or model of thejump process xðnÞ, but directly follows from the nature of theaging counting process nðtÞ. In the Brownian limit ! ¼ 1,Eq. (15) reduces to h !Fi ¼ fð$="Þ, restoring the equiva-lence of ensemble and time averages and the stationarity.

Distribution of TAMSD.—Due to the scale-free nature ofthe distribution c ðtÞ of waiting times all TAs of physical

observables, e.g., #2, remain random quantities, albeit witha limiting distribution $ð%Þ for the dimensionless ratio

% ¼ #2=h#2i [9,17,41]. As contributions to TAs of theform (1) occur at time instants when the particle performs

a jump, we expect that in the sense of distributions both #2

and na should be equivalent, #2 ¼d cna, for some nonran-dom, positive c. In other words,

% ¼ #2=h#2i¼d naðta; TÞ=hnaðta; TÞi; (16)

for$ & T. We may thus deduce the statistics directly fromthe underlying counting process. In the SupplementalMaterial [37] we provide numerical evidence for thisargument.

The distribution$ð%Þ for ta ¼ 0 is related to a one-sidedstable law [13]. For ta ( T, Eqs. (16), (4), and (6), in thelimit $ & T yield

$ð%Þ ' ½1%m!ðT=taÞ*#ð%Þ þm!ðT=taÞ#ð2% !Þ

+ ðT=taÞ1%!

#ð!Þ H1;01;1

!%ðT=taÞ1%!

#ð!Þ

""""""""ð2% 2!;!Þð0; 1Þ

#: (17)

The probability 1%m!ðT=taÞ for not moving during themeasurement (% ¼ 0) approaches one as ’ ðT=taÞ1%!.Figure 2 shows excellent agreement of Eq. (17) withsimulations and demonstrates the qualitative changes inthe probability density with growing age of the process.

Deviations from ergodic behavior are quantified by the

ergodicity breaking parameter, EB ¼ h#22i=h#2i2 % 1,which is zero for an ergodic processs. Its magnitude

drastically depends on whether we focus on the mobilepopulation or not. For the full ensemble we find

EB ¼ 2!Bð½1þ ta=T*%1; 1þ !;!Þ

½1% ð1þ T=taÞ%!*2 % 1; (18)

while for the mobile fraction EBm ¼ m!ðT=taÞEB%ð1%m!ðT=taÞÞ. If ta ¼ 0, then 0 , EB ¼ EBm , 1reduces to the bounded result of Ref. [13]. In contrast, in thestrongly aged regime ta ( T, EB diverges as EB'2ðta=TÞ1%!=½!ð1þ !Þ*, indicating huge fluctuations. Thisis mainly due to the fundamentally different dynamics ofthe two populations; concentrating solely on the mobilegroup, we find that 0< EBm , 1 stays finite in the limitta=T ! 1. Figure 3 shows the behavior of EB.Conclusions.—We investigated the effects of aging on

TAs of physical observables. Previous calculations of TAstacitly neglect the fact that often the preparation of thesystem and start of the measurement do not coincide.While this does not cause any problems for ergodic sys-tems with rapid memory loss of the initial conditions, ingeneral this cannot be taken for granted in anomalousdiffusion processes. Here we showed for the case ofCTRW dynamics with scale-free waiting times that TAsof arbitrary physical observables carry the commonfactor "!. This factor is universal in the sense that itonly depends on the process age ta and the measurement

0 1 2 3 40

0.2

0.4

0.6

0.8

0

0.01

0.02

0.03

0.04

0 5 10 15 20

FIG. 2 (color online). Scatter density $ð%Þ for different ! andm!. Lines: Eq. (7) from Ref. [13] (Left) and Eq. (17) (Right).Symbols: Simulations of free CTRW. Note that the area underthe curves for the aged process (Right) is not unity, since thefraction 1%m! of immobile events is not shown. We used &2 ¼" ¼ 1 arb: units, $ ¼ 100, T ¼ 2+ 106, and ta ¼ 1:75+ 107.

0 0.2 0.4 0.6 0.8 10

1

2

3

4

10−2 10−1 100 101 102 10310−1

100

101

102

FIG. 3 (color online). Ergodicity breaking parameter (18) asfunction of ! (Left) and ta=T (Right). Note that the nonergodicfluctuations become larger with increasing ta.

PRL 110, 020602 (2013) P HY S I CA L R EV I EW LE T T E R Sweek ending

11 JANUARY 2013

020602-4

EB = 2αB([1 + ta/T ]−1; 1 + α, α)

[1− (1 + T/ta)−α]2− 1.

Eli Barkai, Bar-Ilan Univ.

Page 31: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

For time averages noise matters

121916-9 Jeon, Barkai, and Metzler J. Chem. Phys. 139, 121916 (2013)

FIG. 6. Results of the p-variation test for the nCTRW process with Brownian noise ηzB(t) for noise strengths η = 0.001, η = 0.01, and η = 0.1. The upper(lower) two rows are for α = 0.5 and 0.8. In all figures, the p sums are plotted with the same color code: n = 8 (black), 9 (red), 10 (green), 11 (blue), 12 (cyan),13 (violet), and 14 (yellow).

A. Ensemble-averaged mean squared displacement

In Fig. 8, we plot the ensemble averaged MSD ⟨x2(t)⟩ ofthe nCTRW process with Ornstein-Uhlenbeck noise for dif-ferent noise strengths η. We note that, regardless of the in-tensity η, the ensemble averaged MSDs follow the scalinglaw ∼tα of the noise-free CTRW process xα(t), in particu-

lar, at long times. Moreover, all MSD curves at different η

almost collapse onto each other, although small differencesare discernible at short times. These results suggest that, incontrast to the Brownian noise case discussed in Sec. IV,the Ornstein-Uhlenbeck noise does not critically interferewith the diffusive behavior of the noise-free CTRW motion,as expected. To obtain a quantitative understanding of these

FIG. 7. Sample trajectories of the nCTRW process x(t) with Ornstein-Uhlenbeck noise for several values of the noise strength η and anomalous diffusionexponents (a) α = 0.5 and (b) α = 0.8. In contrast to the Brownian noise case of Fig. 2, however, the approximately constant amplitude of the superimposednoise is characteristic for the Ornstein-Uhlenbeck process.

Downloaded 23 Aug 2013 to 132.70.33.140. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

〈r2〉 ∼ tα + const

〈δ2〉 ∼ ∆/t1−α + const

Eli Barkai, Bar-Ilan Univ.

Page 32: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Future work

So far over damped limit, no velocity.

Scale invariant velocity correlation functions 〈v(t)v(t+τ)〉 we generalizethe Green Kubo relation (simple).

Let 〈r2〉 ∼ tα and 〈v2〉 ∼ tβ.

Then 〈δ2〉 ∼ tβ∆α−β.

Aging exponent has a clear physical meaning, but is it physical?

Eli Barkai, Bar-Ilan Univ.

Page 33: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Summary

• In disordered system diffusivity remains random and depends on themeasurement protocol.

• In equilibrium, for closed system, fluctuations of quenched system far exceedthe annealed case.

• Aging effect is experimentally observed, δ2 decreases with measurement timet and increases with lag time ∆.

• For quenched systems the measurement time ageing is replaced with systemsize reduction of the diffusivity.

Eli Barkai, Bar-Ilan Univ.

Page 34: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Refs. and THANKS

• Popular reviews:

• Barkai, Garini and Metzler Strange Kinetics of Single Molecules in the CellPhysics Today 65(8), 29 (2012).

• Metzler, Jeon, Cherstvy, and Barkai Anomalous diffusion models and theirproperties: non-stationarity, non-ergodicity and ageing at the centenary ofsingle particle tracking Physical Chemistry Chemical Physics 16 (44), 24128 -24164 (2014).

• Theory:

• Akimoto, EB, Saito Universal Fluctuations of Single-Particle Diffusivity inQuenched Environment Phys. Rev. Lett. 117, 180602 (2016).

Eli Barkai, Bar-Ilan Univ.

Page 35: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

More ref.

• J.-H. Jeon, EB, R. Metzler Noisy continuous time random walks The Journalof Chemical Physics 139, 121916 (2013)

• A. Dechant, E. Lutz, D. Kessler, EB Scaling Green-Kubo relation and applicationto three aging systems. Physical Review X 4, 011022 (2014).

• P. Meyer, EB, and H. Kantz Scale invariant Green-Kubo relation for timeaveraged diffusivity arXiv:1708.09634 [cond-mat.stat-mech]

Eli Barkai, Bar-Ilan Univ.

Page 36: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

More ref.

• Experiments:

• Bronstein, Israel, Kepten, Mai, Shav-Tal, Barkai, Garini Transient AnomalousDiffusion of Telomeres in the Nucleus of Mammalian Cells Phys. Rev. Lett.103, 018102 (2009).

• Jeon, Tejedor, Burov, Barkai, Selhuber-Unkel, Berg-Sorensen, Oddershede, andMetzler In vivo anomalous diffusion and weak ergodicity breaking of lipidgranules Phys. Rev. Lett. 106, 048103 (2011).

Eli Barkai, Bar-Ilan Univ.

Page 37: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Ergodicity in equilibrium

〈O〉 =∫O(x)µ(dx) ≡ O = limt→∞

1t

∫ t0O(t′)dt′

For example x = 〈x〉.

Eli Barkai, Bar-Ilan Univ.

Page 38: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Weak Ergodicity Breaking in CTRW

O =∑x

pxOx

px = tx/t the occupation fractionOx value of the observable in state x.

ergodicity px → P eqx .

fα(O)

= −1π limε→0 Im

∑Lx=1 P

eqx (O−Ox+iε)

α−1∑Lx=1 P

eqx (O−Ox+iε)

α .

Ergodicity if α→ 1fα=1

(O)

= δ(O − 〈O〉

).

Rebenshtok, Barkai PRL 99 210601 (2007)

Eli Barkai, Bar-Ilan Univ.

Page 39: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

PDF of X UNBIASED CTRW

−0.5 −0.25 0 0.25 0.50

2

4

6

X / L

f( X

/ L

)α=0α=0.2α=0.5α=0.8α=1

Eli Barkai, Bar-Ilan Univ.

Page 40: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Diffusion maps

0 20 40 60 80 100

x 0

20

40

60

80

100y

0 20 40 60 80 100

x 0

20

40

60

80

100

y

0

0.5

1

1.5

2

2.5

3

3.5(a) (b)

Eli Barkai, Bar-Ilan Univ.

Page 41: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

Fractional Fokker Planck vs Fractional Brownian Motion

• Fractional Fokker Planck Equation (non-ergodic, non stationary)

∂α

∂tαP (x, t) = LfpP (x, t)

Physical picture: trap model, CTRW.

• Fractional Langevin equation (ergodic, stationary)

mx+mγa∂α−1

∂tα−1x(t) + U

′(x) = Fnoise(t)

Physical picture: single file diffusion, certain polymer models.

• Deng, Barkai PRE 79 011112 (2009).

• Metzler, Barkai, Klafter PRL 82, 3563 (1999).

Eli Barkai, Bar-Ilan Univ.

Page 42: Eli Barkai, Bar-Ilan Univ.barkaie/stPet1.pdf · stochasticity in the cell cycle. Eli Barkai, ... Smith (PRE) 2009. Burov, Metzler,Barkai(PNAS) 2010. Eli Barkai ... the underlying

And what about active super diffusion?

• Certain active processes in cell exhibit super diffusion δ2 ∼ ∆ξ and ξ > 1.

• Lévy walks and fractional Brownian motions are models of such behaviour.

• The time average MSD remains random when average sojourn time diverges.Froemberg EB PRE 87 030104(R) (2013).

Eli Barkai, Bar-Ilan Univ.