elements of classical mechanics - mvputten.org · i. trajectories cartesian and polar ... three...

23
(c)2017 van Putten 1 Elements of classical mechanics

Upload: ngokhuong

Post on 07-May-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

(c)2017 van Putten 1

Elements of classical mechanics

🍎

(c)2017 van Putten 2

Contents

I. Trajectories

Cartesian and polar coordinates

Rotations

Energy and forces

I. Trajectories

Cartesian and polar coordinates

Rotations

Energy and forces

II. Three classical mechanics problems

Hooke’s spring

Newton’s apple

The jumper

Particle trajectories

Cartesian and polar coordinates

Trajectories: bound and unbound

Energy and forces

(c)2016 van Putten 3

4

🍎

Cartesian coordinate system

(c)2017 van Putten

5

— Cartesian coordinates (x,y)

🍎abscissa

ordi

nate

x-axis

y-axis A(x,y)

(c)2017 van Putten

6

🍎

— polar coordinates

(c)2017 van Putten

7

🍎

— polar coordinates (r,phi)

r = le

ngth

penc

il

ϕpolar angle

(c)2017 van Putten

Basis vectors

A=(a,b)

x-axis

y-axis

b

a

i

j

{i,j} = orthonormal basis:

i,j have unit length

i,j are orthogonala = projection of A onto the x-axis

b = projection of A onto the y-axis

(c)2017 van Putten8

Representations of a vector

A = a i + b j = a 10

⎝⎜⎞

⎠⎟+ b 0

1⎛

⎝⎜⎞

⎠⎟

= a0

⎝⎜⎞

⎠⎟+ 0

b⎛

⎝⎜⎞

⎠⎟= a

b⎛

⎝⎜⎞

⎠⎟

i = 10

⎝⎜⎞

⎠⎟, j = 0

1⎛

⎝⎜⎞

⎠⎟

(c)2017 van Putten9

choice of basis vectors

Rotation of a coordinate system

x-axis

y-axis

b’ a’

Ay’-axis

x’-axis

{i,j} {i’,j’}

ϕ

Rotation of an ONB

In rotating a coordinate system, vectors A remain unchanged

a’ = projection of A onto the x’-axis

b’ = projection of A onto the y’-axis

(c)2017 van Putten10

— projections

{i’, j’} from {i,j}:

a’ = projection of X onto the x’-axis

b’ = projection of X onto the y’-axis

x-axis

y-axis

Xunit circle

1

sinϕ

cosϕ

ϕi ' = cosϕ i + sinϕ jj ' = −sinϕ i + cosϕ j

(c)2017 van Putten11

Rotation: a linear transformation

A = a 'i '+ b ' j '= a '(cosϕ i + sinϕ j) + b'(−sinϕ i + cosϕ j)= (a 'cosϕ − b 'sinϕ )i +(a'sinϕ + b 'cosϕ ) j≡ ai +bj

ab

⎝⎜⎞

⎠⎟= R a '

b '⎛

⎝⎜⎞

⎠⎟=

cosϕ −sinϕsinϕ cosϕ

⎝⎜

⎠⎟

a 'b '

⎝⎜⎞

⎠⎟

R = rotation matrix

(c)2017 van Putten12

— example (I)

ϕ =ωt

ab

⎝⎜⎞

⎠⎟=

cosωt −sinωtsinωt cosωt

⎝⎜⎞

⎠⎟a 'b '

⎝⎜⎞

⎠⎟

In a co-rotating frame of the moon:

ω =2πP

angular velocity of circular motion with period P

Earth

Moon

a 'b '

⎝⎜⎞

⎠⎟= R

0⎛

⎝⎜⎞

⎠⎟

(c)2017 van Putten13

:

— example (II)ab

⎝⎜⎞

⎠⎟= R cosωt −sinωt

sinωt cosωt⎛

⎝⎜⎞

⎠⎟10

⎝⎜⎞

⎠⎟

= R cosωtsinωt

⎝⎜⎞

⎠⎟ Earth

Moon

A = ab

⎝⎜⎞

⎠⎟,

dAdt

= da / dtdb / dt

⎝⎜⎞

⎠⎟= Rω −sinωt

cosωt⎛

⎝⎜⎞

⎠⎟

Earth

Moon

A

dA/dtvelocity vector

position vector

dAdt

=dadt

⎛⎝⎜

⎞⎠⎟

2

+dbdt

⎛⎝⎜

⎞⎠⎟

2

= Rω

(c)2017 van Putten14

||A||=R d||A||/dt=0

:

15

ddti ' =ω j '

ddtj ' = −ω i '

⎨⎪⎪

⎩⎪⎪

— example (III)

{i '(t), j '(t)}Same applied to the rotating ONB

i’(t)

i’(t+dt) di’j’(t)

j’(t+dt)

dj’

(c)2017 van Putten

dϕdt

16

Trajectories in Newton’s gravitational field

Bound orbits

Unbound trajectories

(c)2017 van Putten

17

Trajectories in Newtonian gravity

Bound: elliptical orbits

Unbound: hyperbolic orbitsfocal points at ± p

ϕ

m

M

−ϕ0 <ϕ(t) <ϕ0

p-p

M

ml1 l2l1 + l2 = const.

(c)2017 van Putten

18

Elliptical trajectories (Kepler)

p-p

M

ml1 l2

l1 + l2 = const.

l1,2 = (x ± p)2 + y2

(l2 − 4 p2 )x2 + l2y2 = 14l2 (l2 − 4 p2 )

xa

⎛⎝⎜

⎞⎠⎟

2

+yb⎛⎝⎜

⎞⎠⎟

2

= 1

semi-major axis a semi-minor axis b

For a > b:

(c)2017 van Putten

Hyperbolic trajectories (“scattering”)

ϕ

m

M

−ϕ0 <ϕ(t) <ϕ0

r = rcosϕsinϕ

⎝⎜

⎠⎟ , r = r ϕ( )Polar coordinates:

Newton’s gravitational force F = −GMmr2

r̂, r̂ = rr,

Can show: r = const.sinϕ0 + sinϕ

(c)2017 van Putten19

20

Open and closed according to total energy H

Bound orbits:

Unbound trajectories:

closed

open (reach out to infinity)

H < 0

H > 0

(c)2017 van Putten

21

Kinetic and potential energy

Kinetic energy:

Potential energy (Newtonian gravitational binding energy):

Ek =12mv2

U = −GMmr

v

r

Ek ∝ v2 ≥ 0

U ∝−Mmr

≤ 0

(c)2017 van Putten

22

Total energy H

Total energy H: kinetic energy plus potential energy

H = Ek +U =12mv2 − GMm

r

(c)2017 van Putten

23

One-dimensional “orbits”

v = drdt

m dvdt= F = − d

drU = −

GMmr2

M m

linear motion in one dimension

dHdt

= mv dvdt+GMmr2

drdt= v m dv

dt+GMmr2

⎛⎝⎜

⎞⎠⎟= 0

Newton’s law of gravity

Total energy H is conserved

(c)2017 van Putten