elementary observations on rogers-szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq the last...

40
1 Elementary observations on Rogers-Szegö polynomials Johann Cigler Fakultät für Mathematik Universität Wien [email protected] Abstract The Rogers-Szegö polynomials are natural q analogues of Newton binomials. In general they have no closed expression. We consider some exceptional cases which are products of a factor with a closed formula and another one with nice values for 1 q and 1. q These are related to “normalized” Rogers-Szegö polynomials which have nice expansions and Hankel determinants. The exposition of the paper is elementary and almost self-contained. 0. Introduction We make some elementary observations on the Rogers-Szegö polynomials 0 (, ) . n j n j q n r sq s j For arbitrary s there is no closed expression for (, ) n r sq . Notable exceptions are Gauss’s identity 2 2 (1,) ; n n r q qq and the formulae 2 1 2 ( ,) ; n n r qq qq and 2 , ; . n n r qq qq B. A. Kupershmidt [9] has obtained some generalizations of these results which were the starting point of my investigation (cf. also [3]). It turns out that for non-negative integers m the polynomials 2 , , m n r q q 2 1 , , m n r q q and 2 1 2 , m n r q q have the factorizations 2 2 2 , ; 1, , , m n n m n r q q qq T q q 2 2 2 1 1 , ; 1, , , m n n m n r q q qq U q q and 2 1 2 , ; 1, , , m n n m n r q q qq V q q where (,, ), m T xsq (,, ) m U xsq and (,, ) m V xsq are q Chebyshev polynomials. Computer experiments suggest that 2 , , k m n r q q , , m p n r q q and 2 1 2 , , m p n r q q where p is an odd prime, also have factorizations into a factor with closed expression and another one with nice values for 1. q These results still wait for a proof. The values of the

Upload: others

Post on 24-Mar-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

1

Elementary observations

on Rogers-Szegö polynomials

Johann Cigler

Fakultät für Mathematik

Universität Wien

[email protected]

Abstract

The Rogers-Szegö polynomials are natural q analogues of Newton binomials. In general they have no closed

expression. We consider some exceptional cases which are products of a factor with a closed formula and another one with nice values for 1q and 1.q These are related to “normalized” Rogers-Szegö

polynomials which have nice expansions and Hankel determinants. The exposition of the paper is elementary and almost self-contained.

0. Introduction

We make some elementary observations on the Rogers-Szegö polynomials

0

( , ) .n

jn

j q

nr s q s

j

For arbitrary s there is no closed expression for ( , )nr s q . Notable

exceptions are Gauss’s identity 22 ( 1, ) ;n n

r q q q and the formulae 21

2

( , ) ; nnr q q q q

and 2, ; .n nr q q q q

B. A. Kupershmidt [9] has obtained some generalizations of these results which were the starting point of my investigation (cf. also [3]).

It turns out that for non-negative integers m the polynomials 2 , ,mnr q q 2 1 , ,m

nr q q and

2 1 2,mnr q q have the factorizations 2 2

2 , ; 1, , ,m nn mn

r q q q q T q q

2 22 1 1, ; 1, , ,m n

n mnr q q q q U q q and 2 1 2, ; 1, , ,m n

n mnr q q q q V q q where

( , , ),mT x s q ( , , )mU x s q and ( , , )mV x s q are qChebyshev polynomials.

Computer experiments suggest that 2, ,km

nr q q , ,m pnr q q and 2 1 2, ,m p

nr q q where p

is an odd prime, also have factorizations into a factor with closed expression and another one with nice values for 1.q These results still wait for a proof. The values of the

Page 2: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

2

corresponding polynomials for 1q depend on the limits

2

12

,lim

;

m kn n

qn

r q qk

q q

and

2 1

12 1

,lim

;

m kn n

qn

r q qmk

q q

and similar results of this type.

More generally I consider “normalized” Rogers-Szegö polynomials

20( , , )

;

nj

j q

n

ns

jf n s q

q q

and

0

21

2

( )

( , , ) .;

nj

j q

n

ns

jF n s q

q q

Surprisingly the Hankel determinants , 0( , , ) det ( , , )

n

i jd n s q f i j s q

and

, 0( , , ) det ( , , )

n

i jD n s q F i j s q

which are polynomials in ( )[ ]q s have closed formulae.

Some of these were already implicitly contained in [7]. My conjecture for ( , , )D n s q has

recently been proved by D. Stanton [14]. The roots of ( , , )D n s q are of the form mq and the

roots of ( , , )d n s q are of the form (2 1)mq for integers .m Thus the sequence

0( , , )

nD n s q

vanishes for all large n if and only if ms q and the sequence 0

( , , )n

d n s q

vanishes for all large n if and only if 2 1ms q for some non-negative integer .m So these

determinants show again the special role of the Rogers-Szegö polynomials ,mnr q q and

2 1 2, .mnr q q

I want to thank Ole Warnaar, Dennis Stanton and Michael Schlosser for useful comments and the references [1] and [7].

1. Background material

1.1. q-commuting operators

Let q be a real number with 1.q As usual we set 1

[ ] [ ]1

x

q

qx x

q

for real numbers x

and let 1

[ ]! [ ]n

j

n j

for .n The q binomial coefficients x

k

are defined as

Page 3: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

3

1

0

1

0

1

.1

kx j

j

kk jq

j

qx x

k kq

We shall also use the q Pochhammer symbols

1

0

; 1n

j

nj

x q q x

and 0

; 1 .j

j

x q q x

The q binomial coefficients satisfy two recurrence relations

1

1kx x x

qk k k

(1.1)

and

11.

1x kx x x

qk k k

(1.2)

If A and B are linear operators on [ , ]x s which q commute, i.e. satisfy ,BA qAB then

0

( ) .n

n k n k

k

nA B A B

k

(1.3)

This fact has been found by M.P. Schützenberger [15] and has been rediscovered in [2].

The proof is almost trivial since

1 11( )( ) ( ) .

1n k n k k k n k k n k

k k k

n n n nA B A B A B A B q A B A B

k k k k

By comparing coefficients (1.3) is equivalent with the q exponential law

exp( ) exp( )exp( )A B A B (1.4)

for the first q exponential series

0

exp( ) exp ( ) .[ ]!

n

qn

zz z

n

(1.5)

All considered series will be interpreted as formal power series.

Let me first recall some well-known facts from this point of view (cf. e.g. [2]).

Let x and s be the multiplication operators with x and s respectively, and let be the

augmenting operator defined by ( , ) ( , )f x s f x qs for [ , ].f x s

Page 4: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

4

Then , , ,A B s , ,A B s x and , ,A B s s are some q commuting

operators which will be used in the sequel.

For example A s and B x are q commuting because

( , ) ( , ) ( , ) ( , ) ( , ).BAf x s x sf x s qsxf x qs qsx f x s qBAf x s

Therefore we get 0

( ) .n

k n kn

k

ns x s x

k

If we apply this operator identity to the

constant polynomial 1 we get the bivariate Rogers-Szegö polynomials

0 0

( , , ) 1 ( ) 1.n n

k n kk n k nn

k kq q

n nr x s q s x s x s x

k k

(1.6)

Note that (1, , ) ( , ).n nr s q r s q

There is also a second q exponential series

2Exp( ) Exp ( ) .[ ]!

n n

q

zz z q

n

(1.7)

Note that

exp( )Exp( ) 1.z z (1.8)

To show this let A s and .B s Then exp( ) exp( ) exp (1 ) .s s s Since

(1 )1 0s we get

2

0

1 exp (1 ) 1 exp( ) exp( )1 exp( ) ( 1) exp( )Exp( ).[ ]!

n nn

n

ss s s s q s s

n

Instead of exp( )z we will also consider the variant

0

( ) ( ) exp1 ;

n

q qn n

z ze z e z

q q q

(1.9)

which is the most convenient one in the context of basic hypergeometric series.

From our point of view the q analogue exp( ) exp( )

exp( )(1 )

z qzz

q z

of x xd

e edx

implies

the well-known results

( ) (1 ) ( )q qe qz z e z (1.10)

and by iteration

1( ) .

;qe zz q

(1.11)

Page 5: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

5

Therefore

2

2

2 2

0 0 0

1 1( ) ( ) ( ).

1 1 1q qq j j j

j j j

e z e z e zq z q z q z

(1.12)

The generating function of the Rogers-Szegö polynomials is

0

( , , ) exp( )exp( ).[ ]!

n

nn

zr x s q xz sz

n

(1.13)

This can be proved by comparing coefficients or by the exponential version of (1.6).

An equivalent version is

0

( , ) 1( ) ( ).

; ; ;nn

q qn n

r s qz e z e sz

q q z q sz q

(1.14)

Note also

2

0 0

; 1 1 ( 1)k

n nn k n k k k

nk k

n ns q s s q s

k k

(1.15)

and the equivalent q binomial theorem for q series

0

; ;( )( ) ( )1 .

; ( ) ;qnn

q qn qn

s q sz qe zz e s z e z

q q e sz z q

(1.16)

We will also need the following q analogue of 2 2 2( ) 2 .x y x xy ye e e e

Lemma 1.1 ([8], Corollary 3.3)

Let A and B be linear operators on [ , ]x s which satisfy .BA qAB

Then 2 2 2

2 2 2exp (( ) ) exp ( ) exp ((1 ) ) exp ( )qq q qA B A q AB B or equivalently

2 2 2

2 2 2( ) ( ) ( ) ( ).qq q qe A B e A e AB e B (1.17)

Proof

Since n n nB A Aq B we get ( ) ( )q qe B A Ae qB and therefore 1 1 1( ) ( ) ( ) ( ) (1 ) ( ) ( ) (1 ).q q q q q qe B Ae B Ae qB e B A B e B e B A B

Thus 1( ) ( ) (1 )nn

q qe B A e B A B and 1( ) ( ) ( ) ( (1 )).q q q qe B e A e B e A B

This implies

Page 6: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

6

( ) ( ) ( ) ( ) ( ) ( ) ( ).q q q q q q qe B e A e A AB e B e A e AB e B (1.18)

Therefore by (1.12)

2

2 2

2

2 2

( ) ( ) ( )

( ) .

q q q q q qq

q q q q q qq q

e A B e A B e A B e A e B e A e B

e A e A e AB e B e B e A e AB e B

1.2. The Rogers-Szegö polynomials

The Rogers-Szegö polynomials ( , , )nr x s q satisfy

1 1 1( , , ) ( ) ( , , ) ( , , ) ( , , ).n n n nr x s q s x r x s q sr x s q xr x qs q

This implies the well-known recurrence

11 2( , ) 1 ( , ) 1 ( , ).n

n n nr s q s r s q q sr s q (1.19)

For

1 1 1

11 2

( , ) 1 ( , ) ( , ) ( , )

1 ( , ) 1 ( , ).

n n n n

nn n

r s q s r s q r qs q r s q

s r s q q sr s q

The last identity follows from

11 1 2

1 2( , ) ( , ) 1 1 ( , )

1k k n k

n n nk k

n nr qs q r s q q s q s sr s q

k k

by noting that 11

.11

n

k

n nq

k kq

For later use let us mention the following consequence:

2 2 3 2 22 4( , ) 1 (1 ) ( , ) 1 1 ( , ).n n n

n n nr s q q q s s r s q q q s r s q (1.20)

Proof

By (1.19) we have

11 2

21 2 3

33 2 4

( , ) (1 ) ( , ) 1 ( , ),

( , ) (1 ) ( , ) 1 ( , ),

(1 ) ( , ) ( , ) 1 ( , ).

nn n n

nn n n

nn n n

r s q s r s q q sr s q

r s q s r s q q sr s q

s r s q r s q q sr s q

This implies

Page 7: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

7

2 12 3 2

2 1 2 32 2 4

2 2 3 2 22 4

( , ) (1 ) (1 ) ( , ) 1 ( , ) 1 ( , )

(1 ) 1 ( , ) 1 ( , ) 1 ( , )

1 (1 ) ( , ) 1 1 ( , ).

n nn n n n

n n nn n n

n n nn n

r s q s s r s q q sr s q q sr s q

s q s r s q q s r s q q sr s q

q q s s r s q q q s r s q

For 1x and 1s (1.19) reduces to

12( 1, ) 1 ( 1, ).n

n nr q q r q Since 0 ( 1, ) 1r q and 1( 1, ) 0r q

and thus to

Gauss’s identity

2 1

0

22

0

2 1( 1) 0,

2( 1) ; .

nk

k

nk

nk

n

k

nq q

k

(1.21)

This identity is equivalent with

2

2

0

exp( )exp( ) ;[2 ]!

n

nn

zz z q q

n

(1.22)

or equivalently with (1.12).

For 1x and s q we get

21

2

( , ) ; .nnr q q q q

(1.23)

Let us also note the following q analogue of 2 2 :x x

xe e e

2 2exp exp exp ( ).[2] [2] qq q

z qzz

(1.24)

or equivalently

2 2( ) ( ) ( )qq qe qz e z e z (1.25)

which is obvious by (1.11).

By comparing coefficients this is equivalent with

2

2 2

0

, 1 1 1 ; .n

k nn n

k q

nr q q q q q q q q

k

(1.26)

Page 8: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

8

A. Berkovich and S.O. Warnaar [1] have found generating functions for 2 ,nr s q and

2 1 ,nr s q and related facts. I will recall these results with a different proof.

Lemma 1.2 ([1], (8.9) and (8.11))

2 2

222 2

0

( , ) 1( ) ( )

( );nn

q qn q

n

r s qz e s z e z

e szq q

(1.27)

2 2

22 12 2

0

( , ) 1(1 ) ( ) ( ).

( );nn

q qn qn

r s qz s e s z e z

e qszq q

(1.28)

Proof

By (1.17) and (1.13) we get

2 2 2 2 2

2 2 2 222 2

0

( , ) 1( ) 1 ( ) ( ) ( )1 ( ) ( ).

( );nn

qq q q q qn q

n

r s qz e s z e s z e s z e z e s z e z

e szq q

For the second identity observe that by (1.10)

2 2 2

2 2 2 2 2 2

2 2 2

2 2 22 12 2

0

2 2 2 2

2 2 2

( , )( ) ( ) 1 ( ) ( ) ( ) ( )1

;

1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1(1 ) ( ) ( ) 1 ( )

( ) (

nnqq q q

nn

q q q q q qq q q

q q qq q

r s qz s e s z s e s z e s z e z

q q

s e s z e z se s z e z e q s z e ze sz e sz e qsz

s sz e s z e z s z e s ze qsz e qsz

2 2

2

2( ) ( )( ) (1 ) .

) ( )q q

qq

e s z e ze z s

e qsz

Comparing coefficients and observing (1.13) we get

Corollary 1.1 ([1], (8.8))

2

2 2 22

0

( , ) ; ( , )k

nk

n n kkk q

nr s q q q q s r s q

k

(1.29)

and

2

1

2 2 22 1

0

( , ) (1 ) ; ( , ).k

nk

n n kkk q

nr s q s q q q s r s q

k

(1.30)

Another consequence which is a q analogue of 2 2

0

1(1 ) 1 (1 )

knn k n k

k

ns s s

k s

is

Page 9: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

9

Corollary 1.2 (A. Berkovich and S.O. Warnaar [1], Theorem 8.1)

2

2 2 22

0

( , ) ; , ,n

kn n k

k k q

nqr s q s q s q

ks

(1.31)

and

2

2

2 2 22 1 1

0

2 2 2 2

0

( , ) , ,

(1 ) , , .

nk

n n kk k q

nk

n kk k q

nqr s q s q s q

ks

nqs s q q s q

ks

(1.32)

Proof

By comparing coefficients (1.31) is equivalent with

2 2 2 2

2 2

2 2 222 2 2 2 2 2

0

2 2

( , ); ( ; )

; ; ;

( ) ( ) ( ) ( )

n nn nn

nn n n

n n n

q q q q

qq q

r s q q z zz s q s q

sq q q q q q

e s z e z e s z e z

e qsz e sz e sz

and (1.32) with

2 2 2 2

2 2

2 2 2 22 12 2 2 2 2 2

0

2 2

2

( , )(1 ) ; ( ; )

; ; ;

( ) ( ) ( ) ( )(1 ) (1 ) .

n nn nn

nn n nn

n n n

q q q q

qq q

r s q q z zz s s q q s q

sq q q q q q

e s z e z e s z e zs s

e qsz e qsze q sz

There are curiously similar formulae if we replace 2 ,nr s q with 2, .nr s q

Lemma 1.3

The generating function of 2,nr s q is given by

2

2 2

22

2 2

,.

;n q q q qn

n qn q q

e zr s q e sz e z e szz

q q e ze qsz e qsz

(1.33)

Equivalently we get

22

2 22

0

, ( 1) ; ( , ).2

n

j j jn n jj

j

nr s q q q q s r s q

j

(1.34)

Page 10: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

10

This is again equivalent with

2

2 2 2 2

0 2

1, ; ; ;

2

n

n jn j j

j n j

nr s q q q qs q s q

j s

(1.35)

and with

22 2 2

20

2 12

2 10

2( 1) ; , ; ; ,

2 1( 1) ; , 0.

nk

n kk n nk

nk

n kkk

ns q r s q q q qs q

k

ns q r s q

k

(1.36)

Proof

The equivalences are easily verified. By (1.33) and (1.14) we get (1.34).

The right-hand side of (1.33) and (1.16) give (1.35) and (1.36) is equivalent with

2

2

2 2

2

,.

;nq q n

nq nq

e z r s qe zz

e sz q qe qsz

Therefore it suffices to show that the right-hand side of (1.35) satisfies the same recursion and the same initial values as the left-hand side. The initial values coincide for 0n and 1n and the recursion can be seen by applying the q Zeilberger algorithm to the right-hand side.

The Mathematica implementation qZeil by P. Paule and A. Riese [10] gives

2. Normalized Rogers-Szegö polynomials

2.1. A useful expansion

Let us introduce the “normalized” Rogers-Szegö polynomials

20( , , )

;

nj

j q

n

ns

jf n s q

q q

(2.1)

and

Page 11: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

11

0

21

2

( )

( , , ) .;

nj

j q

n

ns

jF n s q

q q

(2.2)

which satisfy ( , , ) ( , , ) 1.f n q q F n q q

Theorem 2.1

The normalized Rogers-Szegö polynomials have the following expansions:

2

12 1

0 0

0

( , , ) ( 1) ,; ;

n jj i

nj q j i

j qn j

ns q sj n

f n s qjq q q q

(2.3)

2

2 2 1

0 0

2 20

2( )

(2 , , ); ;

n kj j

nj q j

k qn k

ns q s

j nF n s q

kq q q q

(2.4)

and

2

2 1 2

0 0

2 20

1 1

2 1( )

(2 1, , ) .; ;

n kj j

nj q j

k qn k

ns q s

j nF n s q

kq q q q

(2.5)

Proof

For (2.3) we have to show that

2 2

12 2 1

2 10 1 0

2 20 0

;

( , , ) ( 1) ; ( 1) .; ;;

n jj i

jn nj q jj j n j j i

jj jn jj

n ss q q sj q n

f n s q q q qjq q q qq q

To prove this observe that

Page 12: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

12

2 2

2

2

2

2 2 2 2 2 2 20 0

222 1

2 2 2 2

;1 1

; ; ; ; ; ;

;;

( ) ( 1); ;; ;

nnj

q qn j q n

kk k k kk k

k kk k

qz qn zs e sz e z

j q q sz q z q sz q z q qz q

sq qqqz zs

sz q zq q q qq q q q

implies

To prove the other identities we compare coefficients in

0

22

1 2 20 0

( ) ( ) ( );

; .( ; ) ;

nnqj

q q q qn j qn

k k

kk kk

e szn zs e sz e z e z e z

j q q e z

s z zq q

q q q q q

gives

2

1 2 20 2

;( ) ; .

; ;

jn

j nj

j j n j j

q qn ss q q

j q q q q q

This implies

2 2 2 2

2

2 2 1 2 20 2 2 2 2

2 2 1 2 2

2

2 2 2 20 2 2 1 2 2 1

;(2 , , ) ; ,

; ;

;(2 1, , ) ; .

; ;

nn

nn j

n j n j j

nn

nn j

n j n j j

q qsF n s q q q

q q q q q

q qsF n s q q q

q q q q q

This can be simplified to give (2.4) and (2.5).

2.2. Factorizations

Corollary 2.1 (B. A. Kupershmidt [9])

For m the polynomials 2 1 2,mnr q q are divisible by ;

nq q and the polynomials

,mnr q q are divisible by 2

1

2

; .nq q

More precisely

2

2

2

2 2 22 1 2 2

0 0

22 1 2 2

0

1; ( 1) ;

; ;

;; ( 1) ; .

; ;

n nj j j

jnj jq j n jj

nj j n

jnj j n jj

n ss q q q q

j q q q q q

q qsq q q q

q q q q q

Page 13: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

13

2 2

2

(2 1)

02 1 1

0

, , ( 1) ; [ ],;

nm j

mj qm j j n j

jj qn

nq

j mf n q q q q q q

jq q

(2.6)

2

220 2 2 2 2 2

20

2( 1)

(2 , , ) ; [ ]2;

nj mj m

kj qm n k

kk

n

nq

j mF n q q q q q q

kq q

(2.7)

and

1

2 122 2 2 2 2

0

(2 1, , ) ; [ ].2 1

mk

m n k

kk

mF n q q q q q q

k

(2.8)

Proof

Observe that

2

2

2

1 12 1 2 1 2 2

0 0

0 0

1

0

1;

( 1) ( 1); ; ; ;

( 1) ;

j ji m m i

n nj j ji n i

j jq j j n j j

mj j n j

jj q

q q qq qn

qj q q q q q q q q

mq q q

j

and

2

2 1

22 2

0 2

2 2 2 2 2 20 0 2

2 22 22 22 2 2 2 2 2 2 22

2 2 20 0

; ;

; ; ; ; ;

;; ; .

2 2; ;

kj m

kn n

j n m

k kq m kk k n k k

m mk k

n k n kk

k kk k

k k

q qq q q qn

qk q q q q q q q q q q

q qm mq q q q q q

k kq q q q

Page 14: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

14

There is also a representation of (2.7) and (2.8) in terms of q Chebyshev polynomials

which sheds new light on some results of [3]. The q Chebyshev polynomials of the second

kind (cf. [5])

22

1 2

20

( , , ) ;

n

k k k n kn n k

k

n kU x s q q q q s x

k

(2.9)

satisfy

11 2( , , ) 1 ( , , ) ( , , )m m

m m mU x s q q xU x s q q sU x s q (2.10)

with initial values 1( , , ) 0U x s q and 0 ( , , ) 1.U x s q

Note that ( , 1,1) ( )n nU x U x are the classical Chebyshev polynomials of the second kind (cf.

OEIS [11], A133156).

The q Chebyshev polynomials of the first kind (cf. [5]

2

221

0

;[ ]( , , )

[ ] ; ;

n

k k n knn n k

k k k

q qn knT x s q q s x

kn k q q q q

(2.11)

satisfy

1 11 2( , , ) 1 ( , , ) ( , , )m m

m m mT x s q q xT x s q q sT x s q (2.12)

with initial values 0 ( , , ) 1T x s q and 1( , , ) .T x s q x

Note that ( , 1,1) ( )n nT x T x are the classical Chebyshev polynomials of the first kind (cf.

OEIS [11], A028297).

Let us define q Chebyshev polynomials of the third kind ( , , )nV x s q by the recurrence

2 1 2 1 21 2( , , ) 1 ( , , ) ( , , )m m

m m mV x s q q xV x s q q s V x s q (2.13)

with initial values 0 ( , , ) 1V x s q and 1( , , ) (1 ) .V x s q q x qs

Note that ( , 1,1) ( )n nV x V x are the classical Chebyshev polynomials of the third kind (cf.

OEIS [11], A228565).

Observe that

2 1, 1 , , .nn n nr q x q qx r qx q q xr x q (2.14)

By comparing coefficients this is equivalent with 2 1

1 1k k n kn n n n

q q q qk k k k

or

11 [ 1 ]

1 11 [ ]

n k

k

n n nq n k

k k kq k

which is obviously true.

Page 15: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

15

Corollary 2.2

For ,m n we get

2 22 , ; 1, , ,m n

n mnr q q q q T q q (2.15)

2 22 1 1, ; 1, , ,m n

n mnr q q q q U q q (2.16)

and

2 1 2, ; 1, , .m nn mn

r q q q q V q q (2.17)

To show this let n be fixed and observe that

1 1 1 2 22 , , 1 2 , , 2 , ,m m m m n mF n q q q F n q q q q F n q q

with initial values

20

2

1,2 , , 1

;n

n

r qF n q q

q q

and

2

2

,2 , , 1

;n

n

r q qF n q q

q q

which proves (2.15).

For the second identity we have

1 1 1 2 1 22 1, , 1 2 1, , 2 1, ,m m m m n mF n q q q F n q q q q F n q q

with initial values

2 10

2

1,2 1, , 0

;n

n

r qF n q q

q q

and

2 1

2

,2 1, , 1

;n

n

r q qF n q q

q q

which implies 212 1, , 1, , .m n

mF n q q U q q

In the same way we get that

2

(2 1)

02 1, ,;

nm j

j qm

n

nq

jf n q q

q q

satisfies

2 1 2 1 2 1 2 2 1 2 3, , 1 , , , ,m m m n m mf n q q q f n q q q f n q q

with initial values

201 1, ,

;

nj

j q

n

n

nq

jf n q

q q q q

and ( , , ) 1.f n q q

This implies 3 1( , , ) 1 nf n q q q q and therfore 2 1, , 1, , .m nmf n q q V q q

Page 16: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

16

To obtain the values for 1q note that 2

11, , 1,n

m qT q q

2

11, , 1,n

m qU q q

1

22 2

11, , ( 1) 3 ,

m mn

m qU q q

11, , 1,n

m qV q q

2

11, , 1,n

m qV q q

2 1

11, , 2 1.n

m qV q q m

Remarks

Formulae (2.6) - (2.8) also give explicit formulae for negative m because the change

j n j does not change the sums. Thus the alternating sums ,mnr q q can be explicitly

computed for all integers m and the non-alternating sums ,rnr q q can be explicitly

computed for all half-integers 1

.2

r

For n (2.6) converges to 2

(2 1)2

2 20 0

1( 1) ; .

; ;

m j mj j

mj j

j

mqq q q

jq q q q

Formula (2.7) converges to 222

120 0

1( 1) ;

2;;

mkmj

j

mj kj

mqq q q

kq qq q

and so does (2.8).

Corollary 2.3

Let .m Then 20

( 1)n

j mj

j q

nq

j

is divisible by 2

1

2

; .nq q

If we choose in (2.3) s q then we get 2

(2 1)

0

( 1)n

j m j

j q

nq

j

is divisible by ; .

nq q

Since 2 2 21

2 2

; ; ;n nnq q q q q q

we see that 2

(2 1)

0

( 1)n

j m j

j q

nq

j

is also divisible by

21

2

; .nq q

On the other hand we know that 2

2

0

( 1)n

j mj

j q

nq

j

is divisible by

2 4 2 21 1 1

2 2 2

; ; ; .n n nq q q q q q

Computer experiments suggest more generally the following conjectures.

Page 17: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

17

Conjecture 2.1

Let , .m k Then

2

2

0

, ( 1)k

k

nm j mj

nj q

nr q q q

j

is divisible by 2

1

2

; nq q

in [ ].q

Conjecture 2.2

For a prime number p let ( )pv x denote the padic valuation of ,x which is the largest

non-negative integer m such that mp divides x and let ( )( ) .pv x

pV x p For integers 0m

the polynomial 0

( 1)p

nj mj

j q

nq

j

is divisible by

12 12(2 1)

1

1 p

nj

V j

j

q

in [ ].q

Conjecture 2.3

For any odd prime p and any m there exists a factorization

2

( )2 1 2 (2 1)

0 1

, 1 (2 1, , )p

p

knn

V km p m jn p

j kq

nr q q q q c m n q

j

(2.18)

with (2 1, , ) [ ].pc m n q q

Example

Let us consider for example 6

5 6 5

0

, .n

jn

j q

nr q q q

j

Note that 3 1

1,2,1,4,5,2,7,8,1, .( )

k

k

V k

Here we get

5 60 , 1,r q q 5 6

1 3, (1 ) (5,1, ),r q q q c q 5 6 22 3, (1 ) 1 (5, 2, ),r q q q q c q

5 6 2 23 3, (1 ) 1 (5,3, ),r q q q q c q 5 6 2 2 4

4 3, (1 ) 1 1 (5, 4, ),r q q q q q c q

5 6 2 2 4 55 3, (1 ) 1 1 1 (5,5, ), .r q q q q q q c q

The first few terms of the sequence 3 0(5, , )

nc n q

are

Page 18: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

18

2 3 4 4 6 8 2 3 4 4 5 8 9 10 13 141, 1 , 1 , 1 1 ,q q q q q q q q q q q q q q q q q q q q

From the definition it is clear that 3(5, ,1) 1.c n More interesting is the sequence

2 3 3 4 4 5 73 0(5, , 1) 1, 5, 3, 5 3 , 3 , 5 3 , 3 , 5 3 , 3 , 5 3 , .

nc n

Let us more generally compute (2 1, , 1).pc m n To this end we need a special case of

Corollary 2.4 which will be proved later ((2.25) and (2.26)):

2

2(2 1)

0

12

2

lim;

p

nm j

j q n

qn

nq

jp

q q

(2.19)

and

2

2 1(2 1)

0

12 1

2 1

lim (2 1).;

p

nm j

j q n

qn

nq

jp m

q q

(2.20)

We have

2 2

(2 1) (2 1)

0 0

1 1( ) ( )

1 1

;(2 1, , 1) lim lim .

;1 1

p p

p p

n nm j m j

j jq q np k kq qn n

nV k V k

k k

n nq q

j j q qc m n

q qq q

It remains to compute

1( )

1

;lim .

1 p

njq n

V j

j

q q

q

To this end observe that for 0modj p we have

( ) 1pV j and therefore 2 (2 1)

2 (2 1)2 (2 1)(2 ) ((2 1) )( )

1

; 1 1.

1 11 p pp

jp j pn

jp j pjn jp n j p nV jp V j pV j

j

q q q q

q qq

For 1q the first product converges to 1.

Since (2 1)

(2 1)1((2 1) )

1lim ((2 1) )

1 p

j p

pj pqV j p

qV j p

q

and 2 4 2 !2 2p p

n nV V

we get

( !) !

2

1 ( , )

1

;lim .

1

p pn

v n vn

nq a j p

j

q qp

q

This gives

Page 19: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

19

( , )(1, , 1) b n ppc n p (2.21)

with

( , ) ( !) ! .2 2p p

n nb n p v n v

(2.22)

Therefore we get ((2 )!) ( !)(2 1, 2 , 1) p pn v n v n

pc m n p and ((2 1)!) ( !)(2 1, 2 1, 1) (2 1) .p pn v n v n

pc m n m p

2.3. Limit relations

Let us now consider how fast 0

( 1)k

nj mj

j q

nq

j

converges to 0 for 1.q

Theorem 2.2

2

0

21

2( 1)

lim;

k

nj mj

j q n

qn

nq

jk

q q

(2.23)

and

2 1

0

211

2 1( 1)

lim .;

k

nj mj

j q n

qn

nq

jmk

q q

(2.24)

Proof

By (1.20) we have

2 ( 1) 2 (2 3) 2 ( 1) 22 2 2 2 4, 1 (1 ) , 1 1 , .m k k k n m m m k k n k n m m k

n n nr q q q q q r q q q q q r q q

Therefore

2

2

,( , )

;

m kn

n

r q qh n q

q q

satisfies the recurrence

(2 3) 2 ( 1) 22 ( 1) 2

2 1 2 1 2 3

1 11 (1 )( , ) ( 1, ) ( 2, )

1 1 1

k n k n mk k n m m

n n n

q q qq q qh n q h n q h n q

q q q

with initial values

Page 20: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

20

(0, ) 1h q and (1, ) [ ] [ ].m kh q m q m k

For 1q we get

2(4 3) 2 ( 1)( ,1) ( 1,1) ( 2,1)

2 1 2 1

k n k nh n h n h n

n n

with initial values (0,1) 1h and (1,1) .h k

This implies ( ,1) nh n k and thus (2.23).

In the same way 2 1 ,m knr q q

satisfies the recurrence

(2 1) 22 1 2 1

(2 2) (2 1) 22 3

, 1 (1 ) ,

1 1 , .

m k k k n m m m kn n

k n k n m m kn

r q q q q q r q q

q q q r q q

Therefore

2 1

2

1

,( , )

;

m kn

n

r q qH n q

q q

satisfies the recurrence

(2 1) 2 ( 1) 2(2 1) 2

2 1 2 1 2 1

1 11 (1 )( , ) ( 1, ) ( 2, )

1 1 1

k n k n mk k n m m

n n n

q q qq q qH n q H n q H n q

q q q

with initial values

(0, ) [ ]H q m and 2[ ] [2 ]

(1, ) [ ] .[3]

mm k q k mH q m

For 1q this gives

22 1(4 1)( ,1) ( 1,1) ( 2,1)

2 1 2 1

k nk nH n H n H n

n n

with initial values (0,1)H m and (1,1) .H km This gives (2.24).

The same argument gives

Corollary 2.4

2

(2 1)

0

21

2

lim (2 );

k

nm j

j q n

qn

nq

jk

q q

(2.25)

Page 21: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

21

and

2

(2 1)

0

211

2 1

lim (2 ) (2 1).;

k

nm j

j q n

qn

nq

jk m

q q

(2.26)

Computer experiments suggest more facts of this kind. One of my conjectures has been proved by W. Sawin [12].

Theorem 2.3 (W. Sawin [12])

Let , .r m Then

22

0

21

2( 1)

lim 2;

k

nj rj mj

j nq

qn

nq

jk r

q q

(2.27)

Proof

Let 2

0

( , , , ) ( 1) .k

nj rj mj

j q

nf n r m k q

j

For 2k r we get from (1.15)

2 3 `(2 1)

2 2 2 2 2

0

( 1) 1 1 1 ; .k

k k k k kn j mj m m n m mj k

j q n

nq q q q q q

j

(2.28)

Since 1

lim 1 0a

qq

and

1

1lim

1

a

bq

q a

q b

we get

222 2

0 22 21 1

2( 1) ;

lim lim [ 0]; ;

k

k kn j m mj k

j q n

q qn n

nq q q

jn

q q q q

(2.29)

and

22 12 2

0 2 12 21 1

1 1

2 1( 1) ;

lim lim [ 0].2; ;

k

k kn j mj mj k

j q n

q qn n

nq q q

j km n

q q q q

Page 22: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

22

Let us consider these limits from another point of view. The denominator of (2.29) has the root 1q with multiplicity .n If the limit exists then the numerator also has the root 1q

with multiplicity at least .n Sawin‘s trick was to use de L’Hospital’s rule combined with Leibniz’s rule and the explicit result (2.28).

Observe that

2

2

2

22

0

2

2

0 0

2

2

0 0

2( 1)2 , , ,

2(1) (1)

2

( 1) (1) (1)

2

( 1) ( )( 1) ( 1) (1)

k

k

k

kn j mji ji

j q

i i

kji a

a mji nqj

a i aa j

kji a

i nqj

i aa j

nk qf n m k j

q q

nq

ji q

a q q

nq

jimj mj mj a

a q

0 0

[ ]( )( 1) ( 1) ( , , 2 )i a

b

a b

ij mj mj mj a F b i a n

a

with

2

2

2

0

2

( , , 2 ) ( 1) (1).k

kjc

nqj b

cj

nq

jF b c n j

q

Here we have 2 2 2 2 .b c a c i

It is clear that 22

2

0

2(0,0,2 ) ( 1) (1) [ 0].

k

kn jj

j q

nF n q n

j

We want to show that ( , , 2 ) 0F b c n for 2 .b c n

Let us assume by induction that

( , ,2 ) 0F b c n for b c i for some fixed 2 .i n

Then we get

Page 23: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

23

222

0

0

0

2( 1)

(1) [ ]( )( 1) ( 1) ( , , 2 )

( , , 2 ).

k

kn j mji j

ij q a

ia

ia

a

nq

j ij mj mj mj a F a i a n

aq

im F a i a n

a

(2.30)

Since

222 2

0 2

2( 1) ;

k

k kn j mj mj k

j q n

nq q q

j

the polynomial (2.30) vanishes for all m for 2 .i n Therefore ( , , 2 ) 0F a i a n for each

.a

Thus ( , ,2 ) 0F b c n for .b c i

We thus know that ( , , 2 ) 0F b c n if 2 .b c n Thus

2

2

2

0 0

22 , , ,

2(1) ( 1) ( )( 1) ( 1) (1)

k

kjn an

n nqj

n n aa j

nk qf n m k jnmj mj mj a

aq q

is a linear sum of ( , , 2 )F b c n with 2 2 .b c n If 1c then 2b c n and therefore

( , , 2 ) 0.F b c n The only remaining case is (2 ,0,2 ).F n n

In this case we get from the well-known formula 0

( 1) ![ ]n

n k m

k

nk n n m

k

that

22 22 22

0 0

2 2(2 ,0,2 ) ( 1) (1) ( 1) (2 )!.

k

kn njj n j n

j jq

n nF n n j q j n

j j

We shall now use these results in the general case.

We write ( , , , )f n r m k in the form

2 22 2 2

0 0

( , , , ) ( 1) ( 1) .k k

k kn n r j mj jj rj mj j

j jq q

n nf n r m k q q q

j j

This gives

2

2 2

22

0 0

2

(2 , , , )(1) ( 1) (1) (1).

k

kji ak

r j mji ai n

qji a i a

a j

nq

jif n r m k q

aq q q

Page 24: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

24

Now

2

2

(1)

kr j mj

a

a

q

q

is a polynomial of degree 2a in .j Therefore the right-hand side can

be written as a linear combination of the terms ( , , 2 )F b c n where 2 2 2( ) 2 .b c a i a i

We get as above

2

2

2

2

22

0 0

22

2

(2 , , , )(1) ( 1) (1) (1)

(2 ,0,2 )[ ] (1).

k

kjn ak

r j mjn an n

qjn a n a

a j

kr j mj

nn

n

nq

jnf n r m k q

aq q q

qF n n j

q

Now

2

22

2 2 2 2

(1)

1 1 .2 2 2 2

kr j mj

nn

n

nn

qj

q

k k k kj r j mj r j mj r j mj n r

Therefore we finally get

(2 , , , )(1) (2 )! .

2

nn

n

f n r m k kn r

q

By Gauss’s theorem we have 2; (2 ,0,0,1).n

q q f n

Thus

(2 ,0,0,1) 1(1) (2 )! .

2

nn

n

f nn

q

This implies by using de L’Hospital’s rule

Page 25: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

25

2

2

2

20

0

2 21 1

0 0

2( 1)

2( 1)

2lim lim 2 .

2 2 1( 1) ( 1)2

k

k

k

nn j rj mj

n nj rj mj j q

nj nq

nn nq qj n j j

j jq q

n

nq

n j kq rj qk r

n nq

j j

q

In an analoguous way we get

Theorem 2.4

22 1

0

211

2 1( 1)

lim (2 1) 2 .;

k

nj rj mj

j nq

qn

nq

jn r m k r

q q

(2.31)

Proof

Let

2

2

2 1

0

2 1

( , , 2 1) ( 1) (1).k

kjc

nqj b

cj

nq

jF b c n j

q

As above we get that ( , , 2 1) 0F b c n if 2 1b c n and that

2

2 2

1 21 2 1

10 0

2 1

(2 1, , , )(1) ( 1) (1) (1)

k

kjn ak

r j mjn an n

qjn a n a

a j

nq

jnf n r m k q

aq q q

is a linear combination of ( , , 2 1)F b c n with 2 2 2.b c n

Here for all pairs ( , )b c which occur in this sum ( , , 2 1) 0F b c n except for

( , ) (2 2,0),b c n (2 1,0)n and (2 ,1).n

Thus

Page 26: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

26

2

2

1 1 22 12 2 2 2

1 10

1 22 12 1 2 1

10

2

0

2 1(2 1, , , )(1) ( 1) (1)

2 1( 1) (1)

1( 1)

1

kr j mj

n nnj n n

n nj

kr j mj

nnj n n

nj

nj

j

nf n r m k qj j

jq q

nqj j

jq

n

2

22

212 2

2 1

(1) (1).k

kj

kr j mj

nqn n

n

nq

jqj j

q q

For the first term we get

211 2

2 21

(1)2

kr j mj nn

nn

q kj r

q

and

2 12 2

0

2 1( 1) ( 1)(2 1)(2 1)!.

nj n

j

nj n n n

j

For the second one we have 2

1 22 1 2 1 2 2 2

1(1) 1

2 2 2

( 1)2

kr j mj

nn n

n

n

q k k kj j r j mj r j mj r j mj n

q

kr n m

and

2 12 1

0

2 1( 1) (2 1)!.

nj n

j

nj n

j

In the last term we have

2

22 (1) .

2

kr j mj nn

nn

q kj r

q

There remains

2

2

2 12

0

2 1

( 1) (1).k

kj

nqj n

j

nq

jj

q

Note that 1

(1) .2 1

kq

n

j j nk

jq

This is easily verified by induction. It is obviously

true for 0j and all .n Let us suppose that it holds for 1j and all .n It is obviously true

for j and .n j Let it hold for .n Then we get

Page 27: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

27

1

1 1(1)

2 1 2

1 1 1.

2 1 2 1

k kk

jk

q qq

n nnq

j jj n j n j njk k k

j j jq q

j n n j nk k

j j j

Therefore we get

2

2

2

2 1

1 2 1 2 1 2 1(2 1)(1) .

2 1 2 2

k

kj

q

nq

j j n n nj k n jkk

j j jq

This gives

2

2

2 1 2 12 2 1

0 0

2 1

2 1(2 1) (2 1)( 1) (1) ( 1) 2 1 !.

2 2

k

kj

n nqj n j n

j j

nq

j nn k n kj j n

jq

Combining all results we get

1

1

(2 1, , , )(1) (2 1)! ( 1)(2 1) ( 1) ( 1)(2 1) / 2

2 2

( 1) (2 1)! (2 1) .2

nn

n

n

f n r m k k kr n n n r n m n n k

q

kn r n n r m

Now observe that 2

1; (2 1,0,1,1).

nq q f n

This implies

1

1

(2 1,0,1,1) 1(1) ( 1) (2 1)!.

2

nn

n

f nn n

q

Therefore

2

2

2 11

2 10

10

2 2 11 11

1

0

1

2 1( 1)

2 1( 1)

lim lim2 1;

( 1)

k

k

nn j rj mj

nj rj mj j q

nj q

nq qn j j

n

j q

n

nq

n jq

j qnq q

qj

q

Page 28: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

28

( 1) (2 1)! (2 1)2

2 (2 1) .1

( 1) (2 1)!2

n

n

n

kn r n n r m

k r n r m

n n

Analogous results hold for binomials of the form 2

0

.k

nrj mj

j q

nq

j

It is easy to check that

2

10

lim 0k

nrj mj

qj q

nq

j

for 0n if and only if 1mod 2r m and 0mod2.k

Therefore we get

Corollary 2.5

If 1mod 2r m then

2

2

2

0

12

2

lim;

k

nrj mj

j nq

qn

nq

jk r

q q

(2.32)

and

2

2

2 1

0

12 1

2 1

lim (2 1) .;

k

nrj mj

j nq

qn

nq

jn r m k r

q q

(2.33)

This follows from (2.27) because 2 2

( ) ( 1)rj mj j rj mjq q and

221

( ; )lim 2 .

;nn

qn

q q

q q

3. Some Hankel determinants

3.1. There is a close connection with Hankel determinants.

Proposition 3.1

For each m the sequences 2 1

0, , ,m

nf n q q

02 , , ,m

nF n q q

02 1, ,m

nF n q q

and 0

, ,m

nF n q q

satisfy homogeneous linear recurrences with constant coefficients.

Page 29: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

29

Proof

By (1.15) we see that 2 2( )

0 0

1( 1) ( 1) ; 0

j jr r

j m n j mn j mj mnm

j j r

r rq q q q q q q

j j q

for .r m

By Corollary 2.1 2 1, ,mf n q q is a linear sum of terms jnq with 0 1j m and therefore

satisfies the recurrence

1

2 2 1

0

1( 1) , , 0.

jm

j m

j

mq f n j q q

j

The same argument applies to the other cases.

If a sequence 0( )

nx n

satisfies a linear homogeneous recurrence of order r with constant

coefficients then the rows and columns of the Hankel matrix , 0( )

n

i jx i j

are linear

dependent for n r and therefore their determinants vanish.

Thus we get

Corollary 3.1

For each m the Hankel determinants 2 1 2 1

, 0( , , ) det ( , , ) ,

nm m

i jd n q q f i j q q

0 , 0( , , ) det (2 2 , , ) ,

nm m

i jD n q q F i j q q

1 , 0

( , , ) det (2 2 1, , )nm m

i jD n q q F i j q q

and

, 0

( , , ) det ( , , )nm m

i jD n q q F i j q q

vanish for all sufficiently large numbers .n

3.2. Orthogonal polynomials and Hankel determinants

For readers who are not familiar with orthogonal polynomials and Hankel determinants I first recall some well-known facts (cf. e.g. [4]).

A sequence of real-valued monic polynomials 0( )n n

p x

with deg np n is called

orthogonal with respect to a linear functional F if ( ) ( ) 0n mF p x p x for m n and

2( ) 0.nF p x

In particular for 0m we get

( ) [ 0].nF p x n (2.34)

Since deg np n the linear functional F is uniquely determined by (2.34).

On the other hand F is also uniquely determined by the moments ( ) na n F x for .n

Page 30: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

30

By Favard's theorem there exist numbers ( ), ( )n n such that

1 2( ) ( ( 1)) ( ) ( 2) ( ).n n np x x n p x n p x (2.35)

On the other hand for given sequences ( )n and ( ) 0n formula (2.35) together with the

initial values 0 ( ) 1p x and 1( ) 0p x defines a sequence of polynomials which are

orthogonal with respect to the linear functional F defined by (2.34). If ( )nF x a n then

21

, 0

(0) (1) ( 1) 1

(1) (2) ( )1

( ) det .(2) (3) ( 1)det( ( ))

( ) ( 1) (2 1)

n ni j

n

a a a n

a a a n x

p x a a a n xa i j

a n a n a n x

(2.36)

If we define ( , )a n j by

(0, ) [ 0]

( ,0) (0) ( 1,0) (0) ( 1,1)

( , ) ( 1, 1) ( ) ( 1, ) ( ) ( 1, 1),

a j j

a n a n a n

a n j a n j j a n j j a n j

(2.37)

then ( ,0) ( )a n a n and the Hankel determinant , 0det ( )

n

i ja i j

is given by

1

, 01 0

det ( ) ( ).n i

n

i ji j

a i j j

(2.38)

Thus if all ( )j have a closed expression so does the Hankel determinant.

Note that (2.35) immediately implies that the polynomials ( ) nn n

xp x r p

r

are also

orthogonal and satisfy

21 2( ) ( ( 1)) ( ) ( 2) ( ).n n np x x r n p x r n p x (2.39)

Their moments are given by

( ) ( ).n nF rx r a n (2.40)

This scenario can be used to guess and in some cases also to prove the Hankel determinants of a given sequence ( ) .a n

Page 31: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

31

Let me demonstrate this method in the known case (cf. [6]) of the sequence of Rogers-Szegö

polynomials 00

0

( , ) .n

jn n

j q n

nr s q s

j

Using (2.36) we compute the polynomials

( , , )np x s q for small values of n and determine ( , , )n s q and ( , , )n s q using (2.35). Then

we guess that

( , , ) 1nn s q q s (2.41)

and

1( , , ) 1 .n nn s q q s q (2.42)

By (2.38) the Hankel determinants become

1 1

3 2

, 01

( , , ) det ( , ) ( ) ; .n n

nn

i j ji jj

d n s q r s q q s q q

(2.43)

Till now (2.43) is only a guess. In order to prove it we compute ( , ) ( , , , )a n j a n j s q by

(2.37).

Again we guess that

( , , , ) ( , ) .n j

q

na n j s q r s q

j

(2.44)

Now it is easy to verify (2.37) and we are done.

The same procedure can be applied to obtain

2 1

0

( , , ) ( 1) ,j

nj n j

n jj

np x s q q r s q x

j

(2.45)

by using Favard’s theorem (2.35).

Remark

Comparing with [8], 14.24, we see that the polynomials ( , , )np x s q are the

Al-Salam-Carlitz I polynomials 1

2( )

0 0

( , , ) ( ; ) ( 1) .k

n kns k k j

n nk j

np x s q U x q q s x q

k

The above result is therefore equivalent with the fact that the Rogers-Szegö polynomials

0

( , )n

jn

j q

nr s q s

j

are the moments of the Al-Salam-Carlitz I polynomials with respect to

the linear functional .F This is a q analogue of the trivial fact that the linear functional F

defined by ( 1)F f f s satisfies ( 1 ) [ 0]nF x s n and ( 1) .n nF x s

Page 32: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

32

Since no Hankel determinant vanishes there is no 0s for which the Rogers-Szegö polynomials satisfy a recursion with constant coefficients.

3.3. Hankel determinants of

20( , , ) .

;

nj

j q

n

ns

jf n s q

q q

By (2.3)

12 1

0

0

( , , ) ( 1) .;

ji

nj i

j j

q sn

f n s qj q q

Let us consider more generally

12 1

0

0

( , , , ) ( 1) .;

ji

nj i

j q j

q t sn

h n s t qj qt q

(2.46)

Note that besides ( , ,1, ) ( , , )h n s q f n s q we also have 0

( , ,0, ) ( , )n

jn

j q

nh n s q r s q s

j

and

1( ,0, , ) .

;n

h n t qqt q

The last identity is known as Cauchy’s identity.

The sequence ( , , , )h n s t q satisfies the recurrence

1(1 ) ( 1, , , ) 1 ( 2, , , )( , , , )

1

n

n

s h n s t q q sh n s t qh n s t q

q t

with initial values (0, , , ) 1h s t q and 1

(1, , , ) .1

sh s t q

qt

In the same way as in Lemma 1.3 by applying qZeil we verify the identity

22

22

0

( 1) ; ( ) ( , )2

( , , , ) .;

n

j j jn jj

j

n

nq q q st r s q

jh n s t q

qt q

For 1t this reduces to (1.35).

This also leads to the generating function

2

20

( , , , ).

;q qn

n n q

e sz e zh n s t qz

q q e qstz

(2.47)

Page 33: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

33

It is easy to guess that

1 2

2 1 2 1

1 (1 )( , , ) (1 )

1 1

n nn

n n

q q t q tn s t q s

q t q t

(2.48)

and

1

2 1 2 122 2 1 2 2

1 1( , , ) 1 .

1 1 1

n n n

n n

n n n

q q t qn s t s q t q st

q t q t q t

(2.49)

This implies

2

22 1( 1)

0 022

0

; ;

( , , ) .;

n n

j jn nj jj

n

j nj

sq q q

qd n s q q

q q

(2.50)

Finally we also guess that

2 2

0

12 2 1

12 0

0 0

1( , , , , ) ( 1) , , ,

;

jn

j n n j

j

n jj i

n j jnii

n jj i

n j

np n x s t q q h j s q t x

j q

q t sn

q x qj q t q

(2.51)

and

2( , , , ) , , , .kna n k s t h n k s q t q

k

(2.52)

To give a formal proof of (2.50) it would suffice to verify (2.37) for these polynomials.

As Dennis Stanton kindly informed me these results already follow from his paper [7] with Mourad E. H. Ismail. Instead of Rogers-Szegö polynomials they consider the intimately related continuous q Hermite polynomials | .nH x q These satisfy 1 | 0,H x q

0 | 1H x q and

1 12 | | 1 |nn n nxH x q H x q q H x q (2.53)

for 0.n

Page 34: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

34

The connection is given by the well-known formula

( 2 ) 2

0

| , for cos ,n

i n k in in n

k

nH x q e e r e q x

k

(2.54)

which can be verified by comparing the recursions of both sides.

In order to state their results we need the monic version

1

; ;( ) ; , , ; ; , , ;

;n n

n n nn

n

qa q qc qp x p x a b c q P x a b c q

q ab q (2.55)

of the big q Jacobi polynomials ; , , ; .nP x a b c q They satisfy ( cf. [8], (14.5.4))

1 1 1( ) ( ) 1 ( ) ( ) ( )n n n n n n n nxp x p x A C p x A C p x (2.56)

with

1 1 1

2 1 2 2

1

1

2 2 1

1 1 1

1 1

1 1 1.

1 1

n n n

n n n

n n n

nn n n

aq abq cqA

abq abq

q abc q bqC acq

abq abq

(2.57)

In [7], Theorem 4.1. (D) Ismail and Stanton give a representation of the polynomials

2|

;n

n

H x q

q q as moments of some explicitly given q integral. In our terminology their result

can be stated in the following way:

Let F be the linear functional which satisfies 0nF p n for the monic big q Jacobi

polynomials 1

; , , ; .n

s sp x q

s q q q

In this case we get (cf. [8], 14.5)

1 1 2 1 2 2 1 2

1 22 2 2 1 2 2

1 1 1

1 1 1

n n n n n

n nn n n

q q q q s q sA C

s q q q

and

12 1 22

2 1 2 1

1 1 (1 )1 .

1 1

n nn

n n n n

s q q qA C q

s q q

[7], Theorem 4.1.(D) implies

Page 35: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

35

21 1|

2.

;

nnn

n

H s qs

F x qq q

(2.58)

By (2.39) and

21 1| ,

2n

n nH s q s r s qs

(2.59)

this means that the monic orthogonal polynomials corresponding to

2 2,

;n

n

r s q

q q are

1; , , ;

n

n

qs s sp x q

sq s q q q

in which case we get 1 2

2

2 1 2 1

1 (1 )1 1

1 1

n nn

n n n n

q q qA C q s

q q

and

1 2 1 2 2 1 2

1 22 2 1 2 2

1 1 1.

1 1 1

n n n n n

n nn n n

q q q q s q sA C

q q q

If we now replace 2s s we get (2.48) and (2.49) for 1.t

Thus we get

Theorem 3.1 (M.E.H. Ismail and D. Stanton [7])

The Hankel determinants ( , , )d n s q of

20( , , )

;

nj

j q

n

ns

jf n s q

q q

are given by

2

22 1( 1)

0 022

0

; ;

( , , ) .;

n n

j jn nj jj

n

j nj

sq q q

qd n s q q

q q

(2.60)

Page 36: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

36

3.4. Hankel determinants of (2 , , )F n s q and (2 1, , ).F n s q

Let us consider

2

2 1

02 2

0

( , , , );

ji

ni

j q j

q t sn

H n s t qj qt q

(2.61)

which satisfies ( , ,1, ) (2 , , ),H n s q F n s q 1

( , , , ) (2 1, , )1

qH n s q q F n s q

s

and

2

2

0

( , ,0, ) .n

j

j q

nH n s q s

j

We have also

2 2

1( ,0, , ) .

;n

H n t qqt q

The sequence ( , , , )H n s t q satisfies the recurrence

2 2 2 2 2 2

2 1 2

1 (1 ) ( 1, , , ) 1 ( 2, , , )( , , , )

1

n n

n

s q q st H n s t q q s H n s t qH n s t q

q t

with initial values (0, , , ) 1H s t q and 2

2

1 (1 )(1, , , ) .

1

q s sH s t q

qt

We also get

2

2 2 2

0

2 2

( 1) ,

( , , , ) ,;

jn

j j jn j

j q

n

nq s t r s q

jH n s t q

qt q

(2.62)

which for 1t reduces to (1.29).

For the generating function we get

2 2

2

2 20

( , , , ).

;q qn

n qn

e s z e zH n s t qz

e stzq q

(2.63)

Here we get

2 2 2 1 2 2 3 2 4 1 2 2 2 2 4 1 2

2 2

4 1 2 4 3 2

(1 ) 1 (1 ) 1( , , )

1 1

n n n n n n

n

n n

s q q t q t q t st q q q q tn s t q

q t q t

(2.64)

and

2 2 1 2 2 1( , , ) ( ,0, ) 1 1n n n nn s t n t s q t s q t q st q st (2.65)

Page 37: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

37

with

2 1 2 2 2

24 1 2 4 1 2 2 4 3 2

(1 )(1 )( ,0, ) .

(1 )(1 ) (1 )

n nn

n n n

q t qn t q

q t q t q t

(2.66)

In this case we get

2

2

22 2 1

0

2 2 12

122 20

2 1 2 2 20 0

1( , , ) ( 1) , , ,

.;

jn

j nn

j q

n jj i

n j jnii

n jj iq n j

np x s t q H j s q t

j q

s q tn

q x qj q t q

(2.67)

and

2

2( , , , ) , , , .k

q

na n k s t H n k s q t q

k

(2.68)

A proof can again be deduced from [7]. At the end of section 4 two formulae are stated, the first one of which is equivalent with

2

2

1 1|

2

;

nnn

n

H s qs

F x qq q

(2.69)

where F is the linear functional defined by 0nF p n for

2 22

2 2

1; , , ; .n n

s sp p x q

qs q q

In this case we get

4 2 2 1 2 3 4 1 2 2 2 2 4 1

2 1

2 4 1 4 3

(1 ) 1 (1 ) 11

1 1

n n n n n n

nn n n n

s q q q q s q q q qA C q

s q q

and

2 2 2 2 1 2 2 2 1 22 1 2 22 2

1 4 1 4 1 2 4 3 4

1 1(1 )(1 ).

(1 )(1 ) (1 )

n n n nn nn

n n n n n

s q s q t q s q sq qA C q

q q q s

The corresponding terms for 2 , ,F n s q are 2

2

1n n

s s

sA C

q

which is (2.64) for

1t and 2

4

12 n n

s s

sA C

q

which gives (2.65) for 1.t

Page 38: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

38

The second formula at the end of [7], Section 4, is equivalent with

2 1

22 3 2

1 1|

2

1 ;

nnn

n

H s qss

F x qs q q

where F is the linear functional defined by 0nF p n for

22 2

2

1; , , ; .n n

sp p x s q

s q

In the same way as above we get ( , , )n s q and ( , , )n s q of formulae (2.64) - (2.66).

Thus we get

Theorem 3.2 (M.E.H. Ismail and D. Stanton [7])

The Hankel determinants 0 , 0( , , ) det (2 2 , , )

n

i jD n s q F i j s q

and

1 , 0( , , ) det (2 2 1, , )

n

i jD n s q F i j s q

satisfy

2 2 10 0 2 2 1

0

1 2 2 2 11 1 2 2 2 1

0

1 1( , , ) ( ,0, )

1 1( , , ) ( ,0, )(1 ) .

n jn

j jj j

j

n jn

n j jj j

j

D n s q D n q s q s q s sq q

D n s q D n q s s q s q s sq q

(2.70)

3.5. Hankel determinants of ( , , ).F n s q

Finally we want to determine the Hankel determinants , 0( , , ) det .( , , )

n

i jD n s q F i j s q

Here we get

2

2 1 2 1

1 ( ) ( )( , ) ( 1)

(1 ) 1 1n

n n

s u n sv nn s

s q q

(2.71)

with

2 2 1 2 1 4 1

2 2 4 1 2 1 2 1

(2 ) 1 ,

(2 1) 1

n n n n

n n n n

u n q q q q

u n q q q q

(2.72)

and

4 1 2 1 2

4 3 2 1 2

(2 ) 1 1 1

(2 1) 1 1 1 .

n n n

n n n

v n q q q

v n q q q

Page 39: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

39

The corresponding ( , )n s are

4 1 2 2 12 2 1

22 4 1

1 1 1 1

(2 , ) ,(1 ) 1

n n nn n

n

s sq q s q s

q qn s

s q

(2.73)

2 1 2 2

2 2 224 3

1 1(2 1, ) (1 ) .

1

n n

n

n

q qn s s q

q

(2.74)

This conjecture has been proved by D. Stanton [14]:

Theorem 3.3

The Hankel determinants , 0( , , ) det ( , , )

n

i jD n s q F i j s q

satisfy

2

22 2 1

2 2 10

12

2

1 1 1 1

( , , ) ( ,0, )

(1 )

nn j

j jj j

j

n

s sq s q s

q qD n s q D n q

s

(2.75)

with

122

1

1 1 22 2( 1) 2 1 2 2224

24 1 4 30

1 11( ,0, ) ( 1) .

1 1

n

j

n n jn jjn j jn n

j jj

q qD n q q

q q

(2.76)

4. Conclusion

B. A. Kupershmidt [9] pointed out the fact that the alternating Gauss-like sums ,mnr q q

can be effectively calculated for integers m whereas the non-alternating sums ,rnr q q

can be effectively calculated for half-integers 1

.2

r The facts about the Hankel

determinants show that there are no other special values s such that ( , )nr s q has similar

properties. But there are interesting q analogues of (1 1)n of the form , ,m knr q q which

have a factorization , ( ) ( )m kn n nr q q b q u q into a “nice part” ( )nb q (which is a product of

terms 1 q ) and an “ugly part”, which has nice values for 1.q It seems that we have

only scratched the tip of an iceberg and there remains much to be done.

Page 40: Elementary observations on Rogers-Szegö polynomials · rsq sr sq r qsq r sq sr sq q sr sq The last identity follows from 1 11 2 12 (,) (,) 1 1 (,) 1 kk n k nn n kk nn rqsq r sq q

40

References [1] A. Berkovich and S.O. Warnaar, Positivity preserving transformations for q binomial coefficients, TAMS 357 (2005), 2291-2351

[2] J. Cigler, Operatormethoden für q Identitäten, Monatshefte Math. 88 (1979), 87-105

[3] J. Cigler, Finite q identities related to well-known theorems of Euler and Gauss,

arXiv: math/0610546, October, 2006 [4] J. Cigler, A simple approach to some Hankel determinants, arxiv:0902.1650, February, 2009 [5] J. Cigler, A simple approach to q Chebyshev polynomials, arXiv:1201.4703, January, 2012

[6] Q-H. Hou, A. Lascoux, and Y-P. Mu, Continued fractions for Rogers-Szegö polynomials, Numer. Algorithms 35 (2004), 81-90 [7] M.E.H. Ismail and D. Stanton, q integral and moment representations

for q orthogonal polynomials, Can. J. Math. 54 (2002), 701-735

[8] R. Koekoek, P. A. Lesky and R. F. Swarttouw, Hypergeometric orthogonal polynomials and their q analogues, Springer 2010

[9] T. H. Koornwinder, Special functions and q commuting variables,

arXiv: q-alg/9608008, August, 1996 [10] B. A. Kupershmidt, q Newton binomial: from Euler to Gauss,

J. Nonlinear Math. Phys. 7 (2000), 244-262 [11] OEIS, The Online Encyclopedia of Integer Sequences, http://oeis.org/ [12] A. Riese, qZeil, http://www.risc.jku.at/research/combinat/software/ergosum/RISC/qZeil.html [13] W. Sawin, Is there a q L’Hospital’s rule ? (Answer)

http://mathoverflow.net/questions/212926/ August, 2015 [14] D. Stanton, On a conjecture of Cigler, arXiv:1603.08583, March, 2016 [15] M.P. Schützenberger, Une interprétation de certaines solutions de l’équation fonctionnelle: ( ) ( ) ( ),F x y F x F y C. R. Acad. Sci. Paris 236 (1953), 352-353