elementary linear algebra - prince of songkla...

56
Elementary Linear Algebra Howard Anton Chris Rorres

Upload: others

Post on 27-Jun-2020

57 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Elementary Linear AlgebraHoward Anton & Chris Rorres

Page 2: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Chapter Contents

1.1 Introduction to System of Linear

Equations

1.2 Gaussian Elimination

1.3 Matrices and Matrix Operations

1.4 Inverses; Rules of Matrix Arithmetic

1.5 Elementary Matrices and a Method for

Finding

1.6 Further Results on Systems of Equations

and Invertibility

1.7 Diagonal, Triangular, and Symmetric

Matrices

1A

Page 3: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

1.1 Introduction to

Systems of Equations

Page 4: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Linear Equations

Any straight line in xy-plane can be represented algebraically by an equation of the form:

General form: define a linear equation in the nvariables :

Where and b are real constants.

The variables in a linear equation are sometimes

called unknowns.

byaxa 21

nxxx ,...,, 21

bxaxaxa nn ...2211

,,...,, 21 naaa

Page 5: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example 1Linear Equations

The equations and

are linear.

Observe that a linear equation does not involve any products or roots of variables. All variables occur only to the first power and do not appear as arguments for trigonometric, logarithmic, or exponential functions.

The equations

are not linear.

A solution of a linear equation is a sequence of n numbers

such that the equation is satisfied. The set of all solutions of the equation is called its solution set or general solution of the equation

,132

1,73 zxyyx

732 4321 xxxx

xyxzzyxyx sin and ,423 ,53

nsss ,...,, 21

Page 6: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example 2Finding a Solution Set (1/2)

Find the solution of

Solution(a)

we can assign an arbitrary value to x and solve for y , or choose an arbitrary value for y and solve for x .If we follow the first approach and assign x an arbitrary value ,we obtain

arbitrary numbers are called parameter.

for example

124 )a( yx

2211 ,4

1

2

1or

2

12 , tytxtytx

2,1 tt

2

11 as

2

11,3solution theyields 3 21 tyxt

Page 7: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example 2Finding a Solution Set (2/2)

Find the solution of

Solution(b)

we can assign arbitrary values to any two variables and solve for the third variable.

for example

where s, t are arbitrary values

.574 (b) 321 xxx

txsxtsx 321 , ,745

Page 8: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Linear Systems (1/2) A finite set of linear equations in

the variablesis called a system of linear equations or a linear system .

A sequence of numbers is called a solution

of the system.

A system has no solution is said to be inconsistent ; if there is at least one solution of the system, it is called consistent.

nxxx ,...,, 21

nsss ,...,, 21mnmnmm

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

...

...

...

2211

22222121

11212111

An arbitrary system of mlinear equations in n unknowns

Page 9: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Linear Systems (2/2) Every system of linear equations has either

no solutions, exactly one solution, or infinitely many solutions.

A general system of two linear equations: (Figure1.1.1)

Two lines may be parallel -> no solution

Two lines may intersect at only one point

-> one solution

Two lines may coincide

-> infinitely many solution

zero)both not ,(

zero)both not ,(

22222

11111

bacybxa

bacybxa

Page 10: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Augmented Matrices

mnmnmm

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

...

...

...

2211

22222121

11212111

mmnmm

n

n

baaa

baaa

baaa

...

...

...

21

222221

111211

The location of the +’s, the x’s, and the =‘s can

be abbreviated by writing only the rectangular array of numbers.

This is called the augmented matrix for the system.

Note: must be written in the same order in each equation as the unknowns and the constants must be on the right.

1th column

1th row

Page 11: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Elementary Row Operations

The basic method for solving a system of linear equations is to replace the given system by a new system that has the same solution set but which is easier to solve.

Since the rows of an augmented matrix correspond to the equations in the associated system. new systems is generally obtained in a series of steps by applying the following three types of operations to eliminate unknowns systematically. These are called elementary row operations.

1. Multiply an equation through by an nonzero constant.

Ri->kRi

2. Interchange two equation. Ri <-> Rj

3. Add a multiple of one equation to another. Ri -> Ri + kRj

Page 12: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example 3Using Elementary row Operations

3x1 – 2x2 + 2x3 = 9

x1 – 2x2 + x3 = 5

2x1 – x2 – 2x3 = -1

3 -2 2 9

1 -2 1 5

2 -1 -2 -1

R1 <–> R2 1 -2 1 5

3 -2 2 9

2 -1 -2 -1

Page 13: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

R2 -> R2 – 3R11 -2 1 5

0 4 -1 -6

2 -1 -2 -1

R3 -> R3 – 2R1

1 -2 1 5

0 4 -1 -6

0 3 -4 -11

Page 14: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

R2 -> R2 – R31 -2 1 5

0 1 3 5

0 3 -4 -11

R3 -> R3 – 3R2

1 -2 1 5

0 1 3 5

0 0 -13 -26

Page 15: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

R3 -> - 1/13R31 -2 1 5

0 1 3 5

0 0 1 2

The solution x3=2,x2=-1,x1=1 is now evident.

Page 16: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

1.2 Gaussian Elimination

Page 17: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Echelon Forms

This matrix which have following properties is in reduced row-echelon form (Example 1, 2).

1. If a row does not consist entirely of zeros, then the first nonzero number in the row is a 1. We call this a leader 1.

2. If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of the matrix.

3. In any two successive rows that do not consist entirely of zeros, the leader 1 in the lower row occurs farther to the right than the leader 1 in the higher row.

4. Each column that contains a leader 1 has zeros everywhere else.

A matrix that has the first three properties is said to be in row-echelon form (Example 1, 2).

A matrix in reduced row-echelon form is of necessity in row-echelon form, but not conversely.

Page 18: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example 1Row-Echelon & Reduced Row-Echelon form

reduced row-echelon form:

00

00,

00000

00000

31000

10210

,

100

010

001

,

1100

7010

4001

row-echelon form:

10000

01100

06210

,

000

010

011

,

5100

2610

7341

Page 19: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example 2More on Row-Echelon and Reduced Row-Echelon form All matrices of the following types are in row-echelon

form ( any real numbers substituted for the *’s. ) :

*100000000

*0**100000

*0**010000

*0**001000

*0**000*10

,

0000

0000

**10

**01

,

0000

*100

*010

*001

,

1000

0100

0010

0001

*100000000

****100000

*****10000

******1000

********10

,

0000

0000

**10

***1

,

0000

*100

**10

***1

,

1000

*100

**10

***1

All matrices of the following types are in reduced row-echelon form ( any real numbers substituted for the *’s. ) :

Page 20: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example 3Solutions of Four Linear Systems (a)

4100

2010

5001

(a)

4

2-

5

z

y

x

Solution (a)

the corresponding system of equations is :

Suppose that the augmented matrix for a system of linear equations have been reduced by row operations to the given reduced row-echelon form. Solve the system.

Page 21: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example 3Solutions of Four Linear Systems (b1)

23100

62010

14001

(b)

Solution (b)

1. The corresponding system of equations is :

2 3

6 2

1- 4

43

42

41

xx

xx

xx

leading variables

free variables

Page 22: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example 3Solutions of Four Linear Systems (b2)

43

42

41

3-2

2- 6

4 - 1-

xx

xx

xx

tx

tx

tx

tx

,32

,26

,41

4

3

2

1

2. We see that the free variable can be assigned an arbitrary value, say t, which then determines values of the leading variables.

3. There are infinitely many solutions, and the general solution is given by the formulas

Page 23: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example 3Solutions of Four Linear Systems (c1)

000000

251000

130100

240061

(c)

2 5

1 3

2- 4 6

54

53

521

xx

xx

xxx

Solution (c)

1. The 4th row of zeros leads to the equation places no restrictions on the solutions (why?). Thus, we can omit this equation.

Page 24: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example 3Solutions of Four Linear Systems (c2)

Solution (c)

2. Solving for the leading variables in terms of the free variables:

3. The free variable can be assigned an arbitrary value,there are infinitely many solutions, and the general solution is given by the formulas.

54

53

521

5-2

3- 1

4-6- 2-

xx

xx

xxx

tx

tx

tx

sx

tsx

4

4

3

2

1

,5-2

3- 1

, 4-6- 2-

Page 25: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example 3Solutions of Four Linear Systems (d)

1000

0210

0001

(d)

Solution (d):

the last equation in the corresponding system of equation is

Since this equation cannot be satisfied, there is no solution to the system.

1000 321 xxx

Page 26: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Elimination Methods (1/6)

We shall give a step-by-step eliminationprocedure that can be used to reduce any matrix to reduced row-echelon form.

1 2 -1 1

2 5 -1 3

1 3 2 6

Page 27: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Elimination Methods (2/6) Step1.

R2 -> R2 – 2R1

1 2 -1 1

0 1 1 1

1 3 2 6

Step2.

R3 -> R3 – R1

1 2 -1 1

0 1 1 1

0 1 3 5

Page 28: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Elimination Methods (3/6) Step3.

R3 -> R3 – R2

1 2 -1 1

0 1 1 1

0 0 2 4

Step4.

R3 -> 1/2R3

1 2 -1 1

0 1 1 1

0 0 1 2

Page 29: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Elimination Methods (4/6) Step5.

R1 -> R1 – 2R2

1 0 -3 -1

0 1 1 1

0 0 1 2

Step6.

R2 -> R2 - R3

1 0 -3 -1

0 1 0 -1

0 0 1 2

Page 30: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Elimination Methods (5/6) Step7.

R1 -> R1 + 3R3

1 0 0 5

0 1 0 -1

0 0 1 2

The last matrix is in reduced row-echelon form.

Page 31: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Elimination Methods (6/6)

Step1~Step4: the above procedure produces a row-echelon form and is called Gaussian elimination.

Step1~Step7: the above procedure produces a reduced row-echelon form and is called Gaussian-Jordan elimination.

Every matrix has a unique reduced row-echelon form but a row-echelon form of a given matrix is not unique.

Page 32: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Defn เราเรยีกจ านวนแถวทีส่มาชกิไมเ่ป็นศนูยท์ัง้หมดในเมทรกิทข์ัน้บนัได (ลดรปู) แบบแถวทีส่มมลูกบั A วา่ คา่ล าดบัขัน้ (rank) ของ A และเขยีนแทนดว้ย rank(A)

ต.ย.

1 0 -3 0

0 1 2 0

0 0 0 1

0 0 0 0

Rank(A) =3

A =

Page 33: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

ก าหนดเมทรกิทข์องสมัประสทิธ ์(matrix of coefficients)

a11 a12 … a1n

A = a21 a22 … a2n

am1 am2 … amn

Page 34: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

และเมทรกิทแ์ตง่เตมิ (augmented matrix)

a11 a12 … a1n b1

A#= a21 a22 … a2n b2

am1 am2 … amn bm

Page 35: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Theorem

พจิารณาระบบสมการเชงิเสน้ AX = B ขนาด mxn ให ้A# เป็นเมทรกิทแ์ตง่เตมิของระบบ r = rank(A) และ r# = rank(A#) แลว้จะไดว้า่

1. ถา้ r < r# แลว้ระบบสมการไมม่ผีลเฉลย

2. ถา้ r = r# แลว้ระบบสมการมผีลเฉลย และ

(ก) มผีลเฉลยเดยีว ก็ตอ่เมือ่ r# = n

(ข) มผีลเฉลยมากมายนับไมถ่ว้น ก็ตอ่เมือ่ r# <

n

Page 36: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example

x1 + x2 – x3 + x4 = 1

2x1 +3x2 + x3 = 4

3x1 + 5x2 +3x3 – x4 = 5

1 1 -1 1 1

2 3 1 0 4

3 5 3 -1 5

R2 -> R2 – 2R1

1 1 -1 1 1

0 1 3 -2 2

3 5 3 -1 5

Page 37: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

R3 -> R3 – 3R1

1 1 -1 1 1

0 1 3 -2 2

0 2 6 -4 2

R1 -> R1 – R2

1 0 -4 -3 1

0 1 3 -2 2

0 2 6 -4 2

Page 38: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

R3 -> R3 – 2R2

1 0 -4 -3 1

0 1 3 -2 2

0 0 0 0 -2

R3 -> -1/2R3

1 0 -4 -3 1

0 1 3 -2 2

0 0 0 0 1

r < r# แสดงวา่ไมม่คี าตอบ

Page 39: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example

x1 + 2x2 – x3 = 1

2x1 +5x2 - x3 = 3

x1 + 3x2 +2x3 = 6

1 2 -1 1

2 5 -1 3

1 3 2 6

R2 -> R2 – 2R1

1 2 -1 1

0 1 1 1

1 3 2 6

Page 40: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

R3 -> R3 – R1

1 2 -1 1

0 1 1 1

0 1 3 5

R1 -> R1 – 2R2

1 0 -3 -1

0 1 1 1

0 1 3 5

Page 41: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

R3 -> R3 – R2

1 0 -3 -1

0 1 1 1

0 0 2 4

R3 -> 1/2R3

1 0 -3 -1

0 1 1 1

0 0 1 2

Page 42: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

R2 -> R2 – R3

1 0 -3 -1

0 1 0 -1

0 0 1 2

R1 -> R1+3R3

1 0 0 5

0 1 0 -1

0 0 1 2

r = r# = n มผีลเฉลยเดยีว คอื x1 = 5, x2 = -1, x3 = 2

Page 43: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example

x1 - 2x2 + 2x3 - x4 = 3

3x1 + x2 + 6x3 + 11x4 = 16

2x1 - x2 + 4x3 + 4x4 = 9

1 -2 2 -1 3

3 1 6 11 16

2 -1 4 4 9

R2 -> R2 – 3R1

1 -2 2 -1 3

0 7 0 14 7

2 -1 4 4 9

Page 44: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

R3 -> R3 – 2R2

1 -2 2 -1 3

0 7 0 14 7

0 3 0 6 3

R2 -> 1/7R2

1 -2 2 -1 3

0 1 0 2 1

0 3 0 6 3

Page 45: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

R3 -> 1/3R3

1 -2 2 -1 3

0 1 0 2 1

0 1 0 2 1

R3 -> R3 - R2

1 -2 2 -1 3

0 1 0 2 1

0 0 0 0 0

r = r# = 2 และ r# < n แสดงวา่มผีลเฉลยมากนับไมถ่ว้น

Page 46: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

เลอืกตัวแปรเสรจีากตัวแปรทีไ่มส่มนัยกบัเลข 1 ตัวแรกของแถวในเมทรกิทข์ัน้บันได (ลดรปู) แบบแถวทีส่มมลูแถวกบั A# จะมจี านวนตวัแปรเสร ี= n – r# จากตวัอยา่ง จะได ้x3 = s, x4 = t, x2 = 1 – 2t, x1 = 5 – 2s – 3t

Page 47: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Back-Substitution

It is sometimes preferable to solve a system of linear equations by using Gaussian elimination to bring the augmented matrix into row-echelon form without continuing all the way to the reduced row-echelon form.

When this is done, the corresponding system of equations can be solved by solved by a technique called back-substitution.

Page 48: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example Gaussian elimination(1/2)

Solve by Gaussian elimination and

back-substitution.

Solution

We convert the augmented matrix

to the row-echelon form

The system corresponding to this matrix is

0563

1342

92

zyx

zyx

zyx

0563

1342

9211

3100

10

9211

2

1727

3 , ,922

1727 zzyzyx

Page 49: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example Gaussian elimination(2/2)

Solution

Solving for the leading variables

Substituting the bottom equation into those above

Substituting the 2nd equation into the top

3

,2

,3

z

y

yx

3

,

,29

27

217

z

zy

zyx

3 ,2 ,1 zyx

Page 50: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Homogeneous Linear Systems(1/2)

A system of linear equations is said

to be homogeneous if the constant

terms are all zero; that is , the

system has the form :

Every homogeneous system of linear equation is consistent, since all such system have

as a solution. This solution is called the trivial solution; if there are another solutions, they are called nontrivial solutions.

There are only two possibilities for its solutions: The system has only the trivial solution.

The system has infinitely many solutions in addition to the trivial solution.

0...

0 ...

0 ...

2211

2222121

1212111

nmnmm

nn

nn

xaxaxa

xaxaxa

xaxaxa

0,...,0,0 21 nxxx

Page 51: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Homogeneous Linear Systems(2/2)

In a special case of a homogeneous linear system of two linear equations in two unknowns: (fig1.2.1)

zero)both not ,( 0

zero)both not ,( 0

2222

1111

baybxa

baybxa

Page 52: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example 7Gauss-Jordan Elimination(1/3)

0

0 2

0 32

0 2 2

543

5321

54321

5321

xxx

xxxx

xxxxx

xxxx

001000

010211

013211

010122

000000

001000

010100

010011

Solve the following homogeneous system of linear equations by using Gauss-Jordan elimination.

Solution

The augmented matrix

Reducing this matrix to reduced row-echelon form

Page 53: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Example 7Gauss-Jordan Elimination(2/3)

0

0

0

4

53

521

x

xx

xxx

0

4

53

521

x

xx

xxx

Solution (cont)

The corresponding system of equation

Solving for the leading variables is

Thus the general solution is

Note: the trivial solution is obtained when s=t=0.

txxtxsxtsx 54321 ,0 , , ,

Page 54: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Theorem 1.2.1

A homogeneous system of linear equations with more unknowns than equations has infinitely many solutions.

Note: theorem 1.2.1 applies only to homogeneous system

Page 55: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Computer Solution of Linear System

Most computer algorithms for solving large linear systems are based on Gaussian elimination or Gauss-Jordan elimination.

Issues

Reducing roundoff errors

Minimizing the use of computer memory space

Solving the system with maximum speed

Page 56: Elementary Linear Algebra - Prince of Songkla …staff.cs.psu.ac.th/iew/cs344-381/LinearEq1.pdfElementary Linear Algebra Howard Anton &Chris Rorres Chapter Contents 1.1 Introduction

Reference

http://vision.ee.ccu.edu.tw/modules/tinyd2/content/93_LA/Chapter1(1.1~1.3).ppt