electrosurgery 1

Upload: alvaro-miranda

Post on 02-Jun-2018

235 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Electrosurgery 1

    1/14

    CONTINUING MEDICAL EDUCATION

    Electrosurgery

    Part I. Basics and principles

    Arash Taheri, MD,a

    Parisa Mansoori, MD,b

    Laura F. Sandoval, DO,a

    Steven R. Feldman, MD, PhD,a,b,c

    Daniel Pearce, MD,a and Phillip M. Williford, MDa

    Winston-Salem, North Carolina

    CME INSTRUCTIONS

    Thefollowing isa journal-based CMEactivitypresented bythe AmericanAcademy of

    Dermatology and is made up of four phases:

    1. Reading of the CME Information (delineated below)

    2. Reading of the Source Article

    3. Achievement of a 70% or higher on the online Case-based Post Test

    4. Completion of the Journal CME Evaluation

    CME INFORMATION AND DISCLOSURES

    Statement of Need:

    The American Academy of Dermatology bases its CME activities on the Academys core

    curriculum, identified professional practice gaps, the educational needs which underlie

    these gaps, and emerging clinical research findings. Learners should reflect upon clinical

    and scientific information presented in the article and determine the need for further

    study.

    Target Audience:

    Dermatologists and others involved in the delivery of dermatologic care.

    Accreditation

    The American Academy of Dermatology is accredited by the Accreditation Council for

    ContinuingMedical Educationto provide continuing medicaleducation for physicians.

    AMA PRA Credit Designation

    The American Academy of Dermatology designates this journal-based CME activity

    for a maximum of 1AMA PRA Category 1 Credits. Physicians should claim only the

    credit commensurate with the extent of their participation in the activity.

    AAD Recognized Credit

    This journal-based CME activity is recognized by the American Academy of

    Dermatology for 1 AAD Credit and may be used toward the American Academy of

    Dermatologys Continuing Medical Education Award.

    Disclaimer:The American Academy of Dermatology is not responsible for statements made by

    theauthor(s).Statementsor opinionsexpressedin this activityreflecttheviewsof the

    author(s) and do not reflect the official policy of the American Academy of

    Dermatology. The information provided in this CME activity is for continuing

    education purposes only and is not meant to substitute for the independent medical

    judgment of a healthcare provider relative to the diagnostic, management and

    treatment options of a specific patients medical condition.

    Disclosures

    Editors

    The editors involved with this CME activity and all content validation/peer reviewers

    of this journal-based CME activity have reported no relevant financial relationships

    with commercial interest(s).

    Authors

    Dr Feldman is a consultant and speaker, has received grants, or has stock options in

    Abbott Labs, Amgen, Anacor Pharmaceuticals, Inc, Astellas, Caremark, Causa

    Research, Celgene, Centocor Ortho Biotech Inc, Coria Laboratories, Dermatology

    Foundation, Doak, Galderma, Gerson Lehrman Group, Hanall Pharmaceutical Co

    Ltd, Informa Healthcare, Kikaku, Leo Pharma Inc, Medical Quality EnhancementCorporation, Medicis Pharmaceutical Corporation, Medscape, Merck & Co, Inc, Merz

    Pharmaceuticals, Novan, Novartis Pharmaceuticals Corporation, Peplin Inc, Pfizer

    Inc, Pharmaderm, Photomedex, Readers Digest, Sanofi-Aventis, SkinMedica, Inc,

    Stiefel/GSK, Suncare Research, Taro, US Department of Justice, and Xlibris. Drs

    Taheri, Mansoori, Sandoval, Williford, and Pearce have no conflicts of interest to

    declare.

    Planners

    The planners involved withthis journal-based CMEactivity havereportedno relevant

    financial relationships with commercial interest(s). The editorial and education staff

    involved with this journal-based CME activity have reported no relevant financial

    relationships with commercial interest(s).

    Resolution of Conflicts of Interest

    In accordance with the ACCME Standards for Commercial Support of CME, the

    American Academy of Dermatology has implemented mechanisms, prior to the

    planning and implementation of this Journal-based CME activity, to identify and

    mitigate conflicts of interest for all individuals in a position to control the content of

    this Journal-based CME activity.

    Learning Objectives

    After completing this learning activity, participants should be able to list the various

    electrosurgical modalities and describe their indications and contraindications;

    delineate the tissue effects of various electrical waveforms; recognize the factors

    influencing depth of tissue injury; and identify the sources of possible complications

    and describe strategies for the prevention of these complications.

    Date of release:April 2014

    Expiration date:April 2017

    2013 by the American Academy of Dermatology, Inc.

    http://dx.doi.org/10.1016/j.jaad.2013.09.056

    Technical requirements:

    American Academy of Dermatology:d Supported browsers: FireFox (3 and higher), Google Chrome (5 and higher),

    Internet Explorer (7 and higher), Safari (5 and higher), Opera (10 and higher).d JavaScript needs to be enabled.

    Elsevier:

    Technical Requirements

    This website can be viewed on a PC or Mac. We recommend a minimum of:d PC: Windows NT, Windows 2000, Windows ME, or Windows XPd Mac: OS Xd 128MB RAMd Processor speed of 500MHz or higherd 800x600 color monitord Video or graphics cardd Sound card and speakers

    Provider Contact Information:

    American Academy of DermatologyPhone: Toll-free: (866) 503-SKIN (7546); International: (847) 240-1280

    Fax: (847) 240-1859

    Mail: P.O. Box 4014; Schaumburg, IL 60168

    Confidentiality Statement:

    American Academy of Dermatology: POLICY ON PRIVACY AND

    CONFIDENTIALITY

    Privacy Policy- The American Academy of Dermatology (the Academy) is

    committed to maintaining the privacy of the personal information of visitors to its

    sites. Our policies are designed to disclose the information collected and how it will

    be used. This policy applies solely to the information provided while visiting this

    website. The terms of the privacy policy do not govern personal information

    furnished through any means other than this website (such as by telephone or mail).

    E-mail Addresses and Other Personal Information- Personal information such

    as postal and e-mail address may be used internally for maintaining member records,

    marketing purposes, and alerting customers or members of additional services

    available. Phone numbers may also be used by the Academy when questions about

    products or services ordered arise. The Academy will not reveal any information

    about an individual user to third parties except to comply with applicable laws or

    valid legal processes.

    Cookies - A cookieis a smallfilestoredon thesiteusers computeror Webserverand

    is used to aid Web navigation. Session cookies are temporary files created when a

    user signs in on the website or uses the personalized features (such as keeping track

    of items in the shopping cart). Session cookies are removed when a user logs off or

    when the browser is closed. Persistent cookies are permanent files and must be

    deleted manually. Tracking or other information collected from persistent cookies or

    any session cookie is used strictly for the users efficient navigation of the site.

    Links- This site may contain links to other sites. The Academy is not responsible for

    the privacy practices or the content of such websites.

    Children- This website is not designed or intended to attract children under the age

    of 13. The Academy does not collect personal information from anyone it knows is

    under the age of 13.

    Elsevier:http://www.elsevier.com/wps/find/privacypolicy.cws_home/

    privacypolicy

    591.e1

    http://www.elsevier.com/wps/find/privacypolicy.cws_home/privacypolicyhttp://www.elsevier.com/wps/find/privacypolicy.cws_home/privacypolicyhttp://www.elsevier.com/wps/find/privacypolicy.cws_home/privacypolicyhttp://www.elsevier.com/wps/find/privacypolicy.cws_home/privacypolicy
  • 8/10/2019 Electrosurgery 1

    2/14

    The term electrosurgery (also called radiofrequency surgery) refers to the passage of high-frequencyalternating electrical current through the tissue in order to achieve a specific surgical effect. Although themechanism behind electrosurgery is not completely understood, heat production and thermal tissue damageis responsible for at least the majorityif not allof the tissue effects in electrosurgery. Adjacent to the activeelectrode, tissue resistance to the passage of current converts electrical energy to heat. The only variable thatdetermines the final tissue effects of a current is the depth and the rate at which heat is produced.

    Electrocoagulation occurs when tissueis heatedbelow theboiling point and undergoesthermal denaturation.An additional slow increase in temperature leads to vaporization of the water content in the coagulated tissueand tissue drying, a process called desiccation. A sudden increase in tissue temperature above the boilingpoint causes rapid explosive vaporization of the water content in the tissue adjacent to the electrode, whichleads to tissue fragmentation and cutting. ( J Am Acad Dermatol 2014;70:591.e1-14.)

    Key words:coagulation; current; electricity; electrocoagulation; electrodesiccation; electrofulguration;electrosurgery; high frequency; radiofrequency.

    INTRODUCTIONKey pointsd In electrosurgery, an electric current flows

    from the active electrode through the pa-tients body to the return electrode

    d Electrocautery differs from electrosurgery inthat an electrical current heats a metallicprobe that is then applied to tissue (hot ironcautery). Because no heat is generatedin deeper tissue, electrocautery is moresuitable for the destruction of superficialtissue layers

    The concept of using heat for hemostasis goesback hundreds of years. As technology evolved,

    devices were created that used electricity toheat tissue and control bleeding. These advance-ments eventually developed into modern-day elec-trosurgery. The term electrosurgery (also calledradiofrequency surgery) refers to the passage ofhigh-frequency electrical current through the tissuein order to achieve a specific surgical effect, such ascutting or coagulation (Table I). Each electrosurgicaldevice consists of a high frequency electrical gener-ator and 2 electrodes (Fig 1). The electric currentflows from the active electrode through the patientsbody and then to the return (dispersive) electrode,

    where current flows back to the electrosurgicalgenerator. Adjacent to the active electrode, tissueresistance to the passage of alternating current con-

    verts electrical energy to heat, resulting in thermaltissue damage. While heat generation occurs withinthe tissue, the treatment electrode acts as a conductorthat only passes the current and may remain coolerthan the treated medium.1,2 Electrocautery differsfrom electrosurgery in that an electrical current heatsa metallic probe that is then applied to tissue (hot ironcautery). In electrocautery, nocurrent flows throughthe patients body (Fig 2).3 Because no heat isgenerated in deeper tissue, electrocautery is moresuitable for the destruction of superficial tissue layers.

    The term diathermy was originally applied to the

    therapeutic (nonablative) heating effect of passinghigh-frequency electrical current through deeperparts of the body. This term was later used todescribe cutting tissue.4,5 While the term diathermyis still used today, the term electrosurgery ispreferred when referring to cutting or coagulation.

    Although electrosurgical instruments are usedroutinely, familiarity with the principles behindhow these instruments produce their effect islimited.6,7 An understanding of the basic principlesof electrosurgery can help increase efficiency of useand reduce complications.

    From the Center for Dermatology Research, Departments of

    Dermatology,a Pathology,b and Public Health Sciences,c Wake

    Forest School of Medicine.

    The Center for Dermatology Research is supported by an unre-

    stricted educational grant from Galderma Laboratories, L.P.

    Dr Feldman is a consultant and speaker, has received grants, or

    has stock options in Abbott Labs, Amgen, Anacor Pharmaceu-

    ticals, Inc, Astellas, Caremark, Causa Research, Celgene, Cen-

    tocor Ortho Biotech Inc, Coria Laboratories, Dermatology

    Foundation, Doak, Galderma, Gerson Lehrman Group, Hanall

    Pharmaceutical Co Ltd, Informa Healthcare, Kikaku, Leo Pharma

    Inc, Medical Quality Enhancement Corporation, Medicis

    Pharmaceutical Corporation, Medscape, Merck & Co, Inc, Merz

    Pharmaceuticals, Novan, Novartis Pharmaceuticals Corporation,

    Peplin Inc, Pfizer Inc, Pharmaderm, Photomedex, Readers

    Digest, Sanofi-Aventis, SkinMedica, Inc, Stiefel/GSK, Suncare

    Research, Taro, US Department of Justice, and Xlibris. Drs

    Taheri, Mansoori, Sandoval, Williford, and Pearce have no

    conflicts of interest to declare.

    Reprint requests: Arash Taheri, MD, Department of Dermatology,

    Wake Forest School of Medicine, 4618 Country Club Rd,

    Winston-Salem, NC 27104. E-mail: [email protected].

    0190-9622/$36.00

    J AMACADDERMATOLAPRIL2014

    591.e2 Taheri et al

    mailto:[email protected]:[email protected]
  • 8/10/2019 Electrosurgery 1

    3/14

    Table I. Electrosurgical modes and definition of common terms used in electrosurgery

    Method

    Electrical current or

    mode of choice Alternative currents Definition

    Electrocautery Direct current Alternating current An electrical current heats a

    metallic probe that is then

    applied to tissueElectrosurgery High-frequency alternating

    current

    A high-frequency electrical

    current is passed through

    the tissue in order to

    achieve a specific surgical

    (thermal) effect, such as

    cutting or coagulation

    Electrocoagulation (contact

    coagulation)

    Continuous current (cutting

    mode)*

    Interrupted currents (eg,

    blend, coagulation, or

    fulguration modes)

    The tissue is heated below

    the boiling point and

    undergoes thermal

    denaturation

    Electrodesiccation Same as electrocoagulation Same as electrocoagulation Vaporization of the water

    content and drying occurs

    at superficial tissue layers

    at the end of coagulationElectrofulguration (spray or

    noncontact coagulation)

    Interrupted current

    (fulguration mode)

    Interrupted current

    (coagulation mode)

    The active electrode is held a

    few millimeters above the

    tissue. The electric current

    bridges the air gap by

    creating a spark

    Electrosection, pure cutting Continuous current (cutting

    mode)

    A sudden increase in tissue

    temperature above the

    boiling point leads to

    tissue fragmentation and

    cutting. In pure cutting,

    there is little coagulation

    on the incision walls and

    little hemostasisElectrosection, blend cutting Interrupted current (blend or

    coagulation modes)

    In blend cutting, there is

    more coagulation on the

    incision walls and more

    hemostasis than pure

    cutting

    Bipolar electrosurgery Bipolar mode There are 2 active electrodes

    Monopolar electrosurgery Monopolar modes (for

    cutting, coagulation,

    desiccation, and

    fulguration)

    There is 1 active and 1

    dispersive (return)

    electrode

    Biterminal electrosurgery All modes (for cutting,

    coagulation, desiccation,

    and fulguration)

    Both active and return

    electrodes are in contact

    with the patients bodyMonoterminal electrosurgery All modes except for pure

    cutting (monoterminal

    mode is not suitable for

    pure cutting)

    Return electrode is not

    connected directly to the

    patients body; instead, it is

    connected to the Earth

    and the Earth acts as an

    indirect return electrode

    *The cutting mode in some electrosurgical units cannot provide a very low power output that is necessary for a superficial coagulation using

    a fine-tip electrode.

    J AMACADDERMATOLVOLUME70, NUMBER4

    Taheri et al 591.e3

    http://-/?-http://-/?-
  • 8/10/2019 Electrosurgery 1

    4/14

    FUNDAMENTALS OF ELECTRICITYKey pointsd In a high-frequency alternate current circuit,

    cables and pathways of electricity alwaysform capacitors with each other and withnearby conductive environmental objects.Therefore, all insulation on instrumentsand cables is relative and some energy al-

    ways leaks through it as a capacitive currentd If the active electrode cable comes in close

    proximity to the patients body, currentleakage may result in a burn

    d When a direct or low-frequency currententers the body, a chemical reaction calledelectrolysis occurs at the electrodeetissueinterface. The chemical effects of electrolysisdisappear at higher frequencies

    d A direct or low frequency current can depo-larize cell membranes and cause neuromus-cular excitation. Neuromuscular stimulation

    becomes negligible at higher frequencies

    Electricity and currentsThere are 2 types of electrical current: direct and

    alternating. Direct current uses a simple circuit andflows only in 1 direction, whereas alternating currentswitches, or alternates, the direction of the flow ofelectricity back and forth. Household electrical walloutlets, for example, have alternating currents.During each phase of an alternating current, voltageand current fluctuate between a maximum (peak)and a minimum (0). The effective or average voltageis lower than the peak voltage (Fig 3) and is usually

    used to describe an alternate current source and tocalculate the power.

    A continuous circuit must be present in order fora direct current to flow. However, an alternatingcurrent can pass through some breaks and insula-tions by several mechanisms, the most important ofwhich is capacitance. In its simplest form, a capac-itor consists of 2 nearby conducting plates separatedby a nonconducting medium (Fig 4). Higher fre-quency alternating currents can pass a capacitormore easily than lower frequency alternating cur-rents. The flow of an alternating current through a

    capacitor is known as a capacitive current. In analternate current circuit, cables and pathways ofelectricity always form capacitors with each otherand with nearby conductive environmental objects.Therefore, high-frequency alternating currents areimpossible to insulate completely. All insulation oninstruments and cables is relative, and some energyalways leaks through insulations as capacitivecurrent.8,9

    In an electrosurgery circuit, the tissue adjacent tothe active electrode acts as a resistor that inducesheating (Fig 1). If the active electrode cable comes in

    close proximity to the dispersive electrode cable or

    Fig 1. An electrosurgery circuit. Current flows through thetissue, generating heat within the tissue. Heat generation ispractically limited to the area of high current density,meaning adjacent to the active electrode. The character-istics of the current flow affect the depth, speed, anddegree of tissue heating and determine the tissue results.The arrows indicate the direction of the electricity in 1phase of current. In the next phase, the current will be inthe opposite direction.

    Fig 2. An electrocautery circuit. No current flows throughthe patients body. Current heats the tip of the probe,

    which can then be used to heat superficial tissue layers.

    Fig 3. The peak and average voltage of alternatingelectrical currents. The left waveform has a higher ratioof average to peak voltage than the right waveform.

    J AMACADDERMATOLAPRIL2014

    591.e4 Taheri et al

  • 8/10/2019 Electrosurgery 1

    5/14

    to the patients body, a capacitor is formed thatpasses some of the current through an alternate path

    (Fig 5). This is called current leakage.10 Currentleakage may result in a burn on the patient or anyonethat comes in contact with the cable (Fig 5).11

    As detailed earlier, higher frequency alternatingcurrents can pass the capacitors more easily thanlower frequency currents. Ultra-high frequencies([5 MHz) are not used in electrosurgery becausethe leakage effect is toogreat to fall within the limitsset by safety standards.12,13

    Electricity and biologic tissuesElectrical conduction differs depending on the

    conductive material. In metals, the charge carriersare primarily electrons, whereas in gases and liquidsthe carriers are ions.14,15 Gases are nonconductivematerials. When a nonconductive gas is placed in asufficiently high voltage electric field (eg, betweenthe 2 poles of a high-voltage generator), the gas willbe ionized. This ionized gas is called plasma andconducts the electrical current as a spark. Twocommon examples of plasma are lightning in natureand fulguration in electrosurgery.

    Electrical conduction in biologic tissues is primar-ily caused by the conductivityof body fluids and is

    therefore predominantly ionic.

    16,17

    Chemical effects of electrical currents ontissues

    When a direct current enters the body through a

    metallic electrode, a chemical reaction called

    A

    F

    B

    C

    Fig 5. Current leakage in electrosurgery circuit. Currentleakage from active electrode cable to the patients bodymay result in a burn. It can occur as a result of putting theactive cable near the patients body (A) or near anyconductive element that is in direct contact or closecontact to the patients body or surgical staff (B; objectF). Examples of object F can be a surgical table or a

    metallic clamp that is used for securing the cable to thesurgical drapes over the patients body. On the other hand,if the active and dispersive electrode cables are put neareach other, current will leak from the active todispersive electrode cable before reaching the activeelectrode (C). As a result of this power loss, the powerdissipated in tissue will be less than the output power ofthe generator.

    Fig 4. An alternate current circuit with a generator, aresistor (R), and a capacitor (C). A capacitor consists of 2nearby conducting plates separated by a nonconductingmedium. When a direct current voltage source is appliedto a capacitor, there is an initial surge of current. Electronsflow into 1 of the plates, giving it a negative charge, andare taken off the other plate, causing that plate to becomepositively charged. While the capacitor is charging, currentflows, usually for a fraction of a second. The current willstop flowing when the capacitor has fully charged. How-

    ever, if the current changes its direction, as in the case of analternating current, the current will flow and charge thecapacitor every time the electricity changes direction.Therefore, some current will be allowed to pass in eachphase of the cycle. As the frequency of alternationsincreases, more current passes the capacitor every second.The result is that higher frequency alternating currents canpass the capacitor more easily than lower frequencyalternating currents.

    J AMACADDERMATOLVOLUME70, NUMBER4

    Taheri et al 591.e5

  • 8/10/2019 Electrosurgery 1

    6/14

    electrolysis occurs at the electrodeetissue interface.This chemical reaction may cause destruction of athin layer of tissue around the electrode veryslowly.18 Electrolysis has been used as a method ofhair removal (galvanic depilation) and for thetreatment of telangiectasia.19-21 A low-frequencyalternating current can cause similar chemical re-actions. However, because the chemical reaction ofeach phase can be neutralized by the oppositephase, these chemical effects diminish as the fre-quency of alternations increase and almost disap-

    pear at high frequencies ([5 to 10 kHz).2,17,22-26

    Effects of electrical currents on cellmembranes

    A direct or low-frequency alternate current candepolarize cell membranes and cause neuromus-cular excitation. This stimulation may cause pain,muscle contraction, and even cardiac arrhythmia.Neuromuscular stimulation decreases as the fre-quency of current increases above 1 kHz, andbecomes negligible at frequencies of 100 to 300kHz.22,23,26-28 At these high frequencies, current

    reversal is so rapid that cellular ion position changeis essentially nil and depolarization fails to occur.High-frequency alternating current therefore makesit possible to exploit the heating effects of electricitywhile avoiding the undesirable neuromuscular ef-fects. Whereas physiologic reasons dictate the lowerlimit of the frequency used, as detailed earlier,practical and safety considerations place restrictionson the upper limit of current frequency used byelectrosurgical units. Electrosurgical units typicallyproduce alternating currents in the frequency rangeof 0.3 to 5 MHz. These frequencies are part of the

    radiowave frequency range (Fig 6); this is whyelectrosurgery is also called radiofrequency (RF)surgery or high-frequency electrosurgery. Althoughthese terms are used synonymously, the term elec-trosurgery has a more specific meaning in appliedbiomedical engineering and is the preferredterm.10,29,30

    BASIC MECHANISM OFELECTROSURGERYKey pointsd An active electrode can concentrate the cur-

    rent at a small area and provide a sufficiently

    high current density to induce heating andthermal tissue damage. The large returnelectrode disperses the current, reducingthe current density to levels where tissueheating is minimal

    d Electrocoagulation occurs when tissue isheated below the boiling point and un-dergoes thermal denaturation

    d An additional slow increase in temperatureleads to vaporization of the water contentand tissue drying, a process called

    desiccationd A sudden increase in tissue temperature

    above the boiling point causes rapid explo-sive vaporization of the water content in thetissue adjacent to the electrode, which thenleads to tissue fragmentation and cutting

    Although precisely how electrosurgery works isnot completely understood, heat production andthermal tissue damage caused by tissue resistance tothe passage of the alternating electrical current isresponsible for at least the majorityif not allof

    the tissue effects in electrosurgery.16,29,31-34 Theelectrical current is applied to the surgical site witha small active electrode and is collected by a large-surface return electrode that is attached to thepatients body. An active electrode can concentratethe current at a small area in its immediate vicinityand provide a sufficiently high current density toinduce heating and thermal tissue damage.16,29 Thelarge return electrode disperses the current, reducingthe current density to levels where tissue heating isminimal.

    Electrocoagulation occurs when tissue is heated

    below the boiling point and undergoes thermaldenaturation.29 An additional slow increase in tem-perature leads to vaporization of the water content inthe coagulated tissue and tissue drying, a processcalled desiccation. As more superficial coagulatedtissues dry out, they become less electrically conduc-tive, potentially preventing the current fromcontinuing to flow and heat the tissue, therebylimiting the depth of coagulation.

    A sudden increase in tissue temperature above theboiling point results in rapid explosive vaporizationof the water content in the tissue adjacent to the

    electrode. This leads to tissue fragmentation, which

    Fig 6. Electromagnetic spectrum. Electrosurgical units use alternating currents withfrequencies which are part of the radio-wave frequency range.

    J AMACADDERMATOLAPRIL2014

    591.e6 Taheri et al

  • 8/10/2019 Electrosurgery 1

    7/14

    allows the electrode to pass through the tissue and isthe mechanism of tissue cutting in electrosurgery(electrosection).35-37

    CURRENT WAVEFORMSKey pointsd Cutting mode uses a continuous waveform

    that is able to provide the maximum outputpower of the generator

    d Intermittent currents have a lowermaximum power and a higher ratio ofpeak-to-average voltage than a continuouscurrent

    d Fulguration mode usually has the highestpeak voltage

    Electrosurgical generators are able to produce avariety of electric waveforms (Fig 7). The name ofeach waveform or mode does not necessarily trans-late to the final effect the mode has on tissue(Table I). The only variable that determines the finaltissue effects of a current is the depth and the rate atwhich heat is produced. The waveform, voltage, andpower of electrosurgical current and the size ofelectrode tip can affect the depth and the rate ofheat production and indirectly influence the finaleffect of current on the tissue.29,38,39

    In an intermittent waveform, the voltage,

    amperage, and power fluctuate between 0 or

    minimum in off phases and maximum in on phases.In this article, we use the term peak voltage to refer tomaximum voltage of the current during on phasesand the terms amperage and power to refer to the

    mean amperage and mean power of the current.

    ELECTROSURGICAL MODALITIESElectrocoagulationKey pointsd Coagulation can be performed in contact

    mode or in spray (fulguration) mode. How-ever, the term electrocoagulation is usuallyused to refer to electrocoagulation in contactmode

    d At the end of contact electrocoagulation, the

    more superficial coagulated tissues may dryout (desiccation). The current may decreaseor stop flowing at this time, a popping soundmay be heard, and sparking may occurthrough the dried, nonconductive layer,leading to explosion and fragmentation ofthe dried layer

    d Practically, a fine-tip electrode can be bestused for superficial electrocoagulation and alarge-tip electrode with a large contact areaonly for deep coagulation

    d In contact mode, depth of coagulation is

    proportional to the size of electrode tip,

    Fig 7. Different alternating electrosurgical current waveforms at equivalent output powersettings. Cutting mode uses a continuous waveform that is able to provide the maximum outputpower of the generator. Coagulation mode uses an intermittent waveform that pulses on andoff thousands of times per second. Coagulation waveform usually has a lower maximum powerthan cutting waveform because the delivery of the current is off for some periods of time. Acoagulation waveform incorporates higher voltage than a cut waveform at the same powersetting. Fulguration mode has the highest peak voltage ($ 10,000 volts), which helps with largespark formation. Interrupted modes have a higher ratio of peak to average voltage thancontinuous mode. In previous generations of electrosurgical units, damped currents werecommonly used to provide currents with high ratio of peak to average voltage. Theoretically,the surgical effects of damped currents are not different from interrupted undamped currents.

    J AMACADDERMATOLVOLUME70, NUMBER4

    Taheri et al 591.e7

  • 8/10/2019 Electrosurgery 1

    8/14

    Table II. Settings of electrosurgical units for destruction/coagulation based on the indication and type of procedure 46-57

    Depth of tissue injury Size of area

    Method of application

    of current

    Electrical current or

    mode of choice Alternative currents Setting

    Superficial destruction

    with low collateral

    damage

    Small Fine-tip electrode and

    contact method

    Continuous current

    (cutting mode)

    Interrupted current

    (blend or coagulation

    modes)

    Usually a very low po

    setting is used. Th

    power is started ve

    and is increased u

    reasonably fastmovement of the

    electrode on the ta

    can be attained.

    Coagulated materi

    be wiped off and a

    second pass may b

    performed if neces

    Large Fine- or large-tip

    electrode and

    fulgurationy (spray)

    method

    Interrupted current

    (fulguration mode)

    Interrupted current

    (coagulation mode)

    Depending on the sp

    movement of elect

    a low to medium p

    setting is used. Th

    power is started lo

    is increased until areasonably fast

    movement of the

    electrode on the ta

    can be attained.

    Coagulated materi

    be wiped off and a

    second pass may b

    performed if neces

    Medium depth

    destruction with

    some collateral

    damage

    Small to

    large

    Medium-tip electrode

    and contact method,

    or fine- or large-tip

    electrode and

    fulgurationy (spray)

    method

    Depending on the

    method (see above)

    Interrupted currents

    (blend or coagulation

    modes)

    Needs more power t

    superficial destruct

    curettage or shavi

    performed before

    electrosurgery,

    achievement of

    hemostasis using

    electrosurgery can

    (but not necessaril

    indicator of adequ

    treatment

  • 8/10/2019 Electrosurgery 1

    9/14

    power, and duration of activation time. How-ever, a relatively low power may be able toprovide a deeper maximum coagulationdepth than a higher power because of de-layed occurrence of desiccation with lowerpower

    d Fulguration mode can provide a superficialcoagulation if a relatively low power is used.It can cause deeper tissue damage if a rela-tively higher power is used or if the activatedelectrode is kept over a confined area for alonger period of time

    The rate at which the tissue temperature rises isproportional to the current density in tissue. Forcoagulation, the current density is lower than thatused for cutting to prevent tissue explosion andfragmentation. Electrocoagulation can be per-

    formed in contact mode or in spray (fulguration)mode. However, the term electrocoagulation isusually used to refer to electrocoagulation in contactmode.

    For superficial coagulation of small areas (eg, thedestruction of small seborrheic keratoses) a fine-tipelectrode should be used to concentrate the currentto a fine point (Table II). This allows the sametissue effect to be achieved with a lower powersetting. When using a fine-tip electrode, the currentdensity in tissue rapidly decreases with distancefrom the electrode (Fig 8); therefore, heat genera-

    tion is practically confined to the vicinity of theelectrode tip, potentially decreasing the depth ofdermal damage and possibility of visible scarformation.25

    When using a large-tip electrode with a largeelectrodeetissue contact surface, a higher poweroutput should be used to achieve the desired currentdensity and tissue effect (Fig 8).40 Current densitydecreases with distance from the electrode surfacemore slowly compared to a fine electrode. A higherpower output (higher amperage) and slowerdecrease in current density leads to presence of a

    higher current density in deeper layers, resulting indeeper tissue injury. A large electrode tip (ie, ball- ordisc-shaped electrodes), therefore, should be usedonly for deep coagulation (eg, the destruction ofreticulardermis after curettage of a malignant skintumor).41 Because superficial coagulation of largeareas (eg, the destruction of large, flat seborrheickeratoses or hemostasis of oozing surfaces) using afine-tip electrode is a slow process and takes time,spray mode coagulation or electrofulguration wasdeveloped (Table II).

    In electrofulguration, the active electrode is

    held a few millimeters above the tissue. Using anDeepdestruction

    (usuallyusedas

    analternativeto

    excision)

    Medium

    tolarge

    Large-tipelectrode

    andcontactmethod

    Continuouscu

    rrent

    (cuttingmo

    de)

    Interruptedcurrents

    (blendorcoagulation

    modes)

    M

    edium

    tohighpower

    setting.

    Thepower

    shouldbeenoughfora

    slow

    desiccation(hearing

    apoppingsoundaftera

    few

    second).Theslower

    desiccationprocess,the

    deeperdamage

    Basalcell

    carcinoma,x

    keratoacanthoma,xand

    squamo

    uscell

    carcinoma

    x

    Loopexcision

    Smallto

    large

    A

    thinwirein

    loopshape

    Continuouscu

    rrent

    (cuttingmo

    de)

    Interruptedcurrents

    (blendorcoagulation

    modes)

    Thetypeofthecurrentand

    thepowersettingshould

    beselecteddepending

    ontheamountofdesired

    hemostasis

    Analterna

    tivetoshave

    excision

    andhemostasis;

    notsuit

    ableforbiopsy

    forhistopathologic

    evaluation;rhinophyma

    *Althoughelectrosurgerycanbeusedfort

    hementionedindications,

    itisnotnecessarilythetreatmentofchoice.

    yDependingonthepowerandthespeedo

    fmovementoftheelectrodeonthetarge

    t,electrofulgurationpotentiallycaninduce

    eitheraverysuperficialorarelativelydeepdestruction.

    zBecauseoftheriskofviraltransmissionth

    roughthesmoke,electrofulgurationisnot

    apreferredmethodforthetreatmentofv

    iralwarts.

    xFragiletumorscanbetreatedusingcuretta

    geandelectrodesiccationasanalternativetoexcision.

    However,dependingonvariable

    s,suchastumortype,

    location,andsize,

    for

    manycasesofbasal

    cellcarcinomaandkeratoacanthomaandm

    ostcasesofsquamouscellcarcinomaexcisionratherthancurettageandelectrodesic

    cationispreferred.

    J AMACADDERMATOLVOLUME70, NUMBER4

    Taheri et al 591.e9

  • 8/10/2019 Electrosurgery 1

    10/14

    interrupted high-peaked voltage output (fulgurationmode), the gap of air between the electrode and thetissue will be bridged by an electric discharge arc(spark). The arc rapidly jumps and moves from onelocation to the other, reestablishing itself at differentlocations. In this approach, the current is spread overan area larger than that of just the tip of theelectrode.42 By moving the electrode and sprayingthe current over tissue, coagulation can be achieved

    on a large surface area faster than when operating incontact with tissue. Spray coagulation can beachieved with a fine- or large-tip electrode.

    In electrofulguration, each spark carries the cur-rent to a very small point at a moment, acting as avery fine electrode. Given a relatively low power, thetemperature is extremely high only at the end of eachspark, leading to tissue explosion and fragmentationor charring. However, the temperature drops rapidlywith increased distance from the end of the spark,and thermal damage is contained. Therefore, tissuedestruction and coagulation appears within a thin

    superficial layer of tissue, and fulguration can be

    suitable for superficial tissue destruction. However, ifa fulgurating electrode is kept over a confined area,continuous heat production on the superficial layerscan cause heating of deeper layers, primarily via heatconduction. In such cases, fulguration can poten-tially cause deep coagulation.

    During electrocoagulation, the more superficialtissues may dry out. This stage of coagulation, calleddesiccation, is important because the current maydecrease or stop flowing at this time, limiting themaximum depth of coagulation (Fig 9). When thisoccurs, a popping sound may be heard and/orsparking may occur through the dried nonconduc-tive layer, leading to explosion and fragmentation ofthe dried layer. Desiccation is not a method or adistinctive final resultit is only a stage that may ormay not happen, and it may happen at any timeduring the course of coagulation, regardless of the

    depth of the coagulated tissue. The timing of theoccurrence of desiccation during the course ofcoagulation depends on the rate of increase intemperature that is the result of current density.With lower current density, there may be adeep coagulation before desiccation happens.29

    Therefore, for deep coagulation (eg, after curettageof a malignant skin tumor), a relatively low powershould be chosen to provide a slow coagulation andlate occurrence of desiccation. However, a very lowpower may not be able to provide the desiredcoagulation. Although there are no published data,

    it seems that choosing a power which can providedesiccation (popping sound) after 4 to 7 seconds canresult in a relatively deep destruction. Achievementof hemostasis is not necessarily an indicator of adeep coagulation.

    It seems that definitions have at times hindered ahigher level of understanding of electrosurgery. Theterm electrodesiccation has been used in literatureas a distinctive method from coagulation. Someauthors use the term electrodesiccation to refer tomonoterminal electrocoagulation while reservingthe term electrocoagulation to refer to biterminal

    electrocoagulation.18,43,44

    Others use the term elec-trodesiccation to refer to contact electrocoagulationas opposed to spray electrocoagulation (fulgura-tion).13,45 A common and appropriate usage of theterm electrodesiccation is in reference to a deepcontact coagulation caused by a large electrode up tothe stage of tissue drying.29 This use of electrodes-iccation is what is referred to in electrodesiccationand curettage, a widely used surgical technique indermatologic surgery. Although tissue drying mayalso occur during fulguration, the term electrodesic-cation is mainly used to refer to the final stage of

    contact mode coagulation.

    Fig 8. Electrocoagulation. A fine-tip electrode needs a lowpower setting and is suitable for superficial coagulation. Alarge-tip electrode is suitable for deep coagulation. A largeelectrode cannot provide a superficial coagulation

    because current density decreases with distance from theelectrode surface slowly.

    J AMACADDERMATOLAPRIL2014

    591.e10 Taheri et al

  • 8/10/2019 Electrosurgery 1

    11/14

    Factors influencing the depth of coagulationWhile the amount of heat generation and

    resulting tissue damage is proportional to the elec-trodeetissue contact surface area (ie, the size of theelectrode tip) and the power setting (ie, waveform

    and voltage) used, it also depends on the duration ofactive contact between the active electrode andtissue. A longer activation time results in more heatgeneration and wider and deeper tissue damage.

    One may propose that choosing a low powersetting and a longer activation time is safer andproduces the same result as choosing a higherpower and a shorter activation time. However, thisis not the case. Longer activation times result in moreheat conduction and collateral tissue damage beforethe desired outcome is attained.11,40 This is similar tochoosing pulse duration of lasers. Therefore, in

    order to minimize the collateral tissue damage (eg,

    during destruction of flat seborrheic keratoses), theactivation time should be short or divided intomultiple pulses separated by periods of time longenough to allow the tissue to cool before the nextpulse.

    ElectrosectionKey pointsd For a pure cutting (relatively clean incision

    with little hemostasis) a thin electrode and acontinuous cutting current (cut mode) isused. The cutting of the tissue should bebrisk, using the lowest possible powersetting

    d A thick electrode cannot provide a pureclean cut

    d Blend cutting can be performed using an

    interrupted current (blend or coagulationmode)

    Electrosection provides a means of cutting tissuein place of a scalpel. The major advantage of thismethod of cutting is that hemostasis is achievedimmediately upon incision by coagulation on eitherside of the incision wall. Larger blood vessels maystill require additional spot coagulation at thecompletion of the cutting to achieve hemostasis.

    A thin needle or wire can concentrate current ona small area in the same way that a fine-tipcoagulation electrode does, and allows the same

    cutting effect to be achieved with a lower powersetting. This leads to less heat production and lesscollateral tissue coagulation compared with athicker electrode.37,58 Therefore, a thin needle orwire is used to make a relatively clean incision withminimal coagulation and hemostasis on either sideof the incision wall (Fig 10). A thick needleelectrode can cut through the tissue if a very highpower current is used. In this case, current densityand temperature decreases from electrode moreslowly compared with a thin electrode.25 The resultis a deeper coagulation margin during cutting that

    leads to more effective hemostasis and also moretissue damage. This mode is called blend cut,meaning a blend of cutting and coagulation(Fig 10).

    When the cutting electrode comes in contact withthe tissue, an initial tissue heating and explosivevaporization of the medium around the electrodeleads to isolation of the metallic electrode from thetissue. Ionization of the vapor around the electrodeallows maintaining the current through the vaporcavity by spark. Therefore, the cutting may continuewithout a direct contact between the active electrode

    and tissue.

    25,35

    The higher the peak voltage of the

    A

    B

    C

    Fig 9. Electrocoagulation and electrodesiccation. Theprocess starts with coagulation (A). At the end of coagu-lation, the more superficial coagulated tissue dries out(desiccation) and become less electrically conductive,potentially preventing the current from continuing toflow (B). However, sparking may then occur through thenonconductive desiccated layer, leading to disruption ofthis layer, passage of more current, more heat production,and deeper thermal damage (C).

    J AMACADDERMATOLVOLUME70, NUMBER4

    Taheri et al 591.e11

  • 8/10/2019 Electrosurgery 1

    12/14

    current, the larger the sparks. Larger sparks canspread current to a wider area of tissue around theelectrode and act as if a thicker electrode is beingused that cannot concentrate the current in a smallarea, resulting in a deeper coagulation (Figs 8 and10).24 Therefore, an interrupted highepeak voltagecurrent provides deeper collateral tissue coagulationon either side of the incision walls and betterhemostasis than a continuous lowepeak voltagecurrent (Figs 7 and 10).29,59 Blend mode or coagu-

    lation mode currents have a higher ratio of peak toaverage voltage than pure cut currents and can beused for making a blend cut. Depending on thetechnique used, the depth of coagulation on eithersideof an electrosurgical incision varies from 0.1 to 2mm.60-62 Fulguration mode currents have a very highratio of peak to average voltage (Fig 7) and producevery thick coagulation on the incision walls if usedfor cutting. While there are conflicting reports ofpostoperative results comparing pure electrosectionof the skin to scalpel surgery, electrosection, espe-cially blend cut, is seldom used when a primary

    closure is planned.63-66

    In order to have less collateral tissue damage andcoagulation on the incision walls, contact timeshould be reduced to minimize heat productionand conduction.11 Therefore, the cutting of the tissueshould be brisk with the lowest effective powersetting.36,37 When the power setting is too low, thecutting process may be slow, resulting in widercollateral coagulation.36 The correct output powerfor a clean incision can be determined by starting lowand increasing the power until the maximum cuttingspeed can be attained. If the power is insufficient, the

    electrode does not glide through the tissue easily,

    essentially sticking.34 If large arcing or sparking isseen across the surface of the tissue, the voltage is toohigh and should be appropriately reduced.Practically, after determining the best power setting,this setting can be used for each successive patient,maybe with some fine tuning.

    CONCLUSIONSThe superficial coagulation of small areas (eg,

    small, flat, benign epidermal tumors) can be per-formed with a fine-tip electrode. Cutting, blend,coagulation, or fulguration mode currents can beused; however, fulguration or coagulation modecurrents are more likely to cause tissue fragmenta-tion and deeper destruction by producing sparkthrough the desiccated tissues. Therefore, fulgura-tion current should be avoided for a very superficialcoagulation in contact mode (contact coagulation).On the other hand, the cutting mode in someelectrosurgical units cannot provide a very lowpower output that is necessary for a superficialcoagulation using a fine-tip electrode. In this case,coagulation mode, which may have a lower mini-mum output power, may be used. A large-tipelectrode is used for deep coagulation of a largearea. A high power is usually necessary; therefore,the cutting mode may be needed. Making a relativelyclean incision with little hemostasis (pure cutting)requires a thin electrode and a cutting current(cut mode). Blend cutting can be performed using

    an interrupted current (ie, blend or coagulationmode).

    Cutting mode current is suitable for all electrosur-gical methods except for fulguration, which requiresa higher peak voltage. This is the reason someelectrosurgical units only provide cut and fulgurationmodes.

    A knowledgeable selection of the electrosurgicalcircuit, electrode configuration, power, waveform,voltage, and activation time is necessary forachieving the best possible surgical results.Surgeons should be familiar with the principles of

    electrosurgery and its electrophysical properties.

    REFERENCES1. Rey JF, Beilenhoff U, Neumann CS, Dumonceau JM. European

    Society of Gastrointestinal Endoscopy (ESGE) guideline: the

    use of electrosurgical units. Endoscopy 2010;42:764-72.

    2. Huntoon RD. Tissue heating accompanying electrosurgery:

    an experimental investigation. Ann Surg 1937;105:270-90.

    3. Swerdlow DB, Salvati EP, Rubin RJ, Labow SB. Electrosurgery:

    principles and use. Dis Colon Rectum 1974;17:482-6.

    4. Turrell WJ. Treatment by diathermy. Br Med J 1923;1:143-5.

    5. Wilson D. Discussion on the present position of short-wave

    diathermy and ultrasonics. Proc R Soc Med 1953;46:331-8.

    6. Feldman LS, Fuchshuber P, Jones DB, Mischna J, Schwaitz-

    berg SD. Surgeons dont know what they dont know about

    Fig 10. Cross section of tissue with 3 cutting electrodes.Left, A thin needle is able to concentrate a lowepeakedvoltage, low-power current (cutting current with relativelylow power) on a small area and make a relatively cleanincision with very little coagulation on the incision walls.

    Middle, A thick electrode can cut through the tissue if ahigher power current is used. The result is deepercoagulation margins. Right, A highepeaked voltage cur-rent (blend or coagulation waveforms) produces largesparks and acts as if a thicker electrode is being used thatcannot concentrate the current.

    J AMACADDERMATOLAPRIL2014

    591.e12 Taheri et al

    http://refhub.elsevier.com/S0190-9622(13)01052-9/sref1http://refhub.elsevier.com/S0190-9622(13)01052-9/sref1http://refhub.elsevier.com/S0190-9622(13)01052-9/sref1http://refhub.elsevier.com/S0190-9622(13)01052-9/sref2http://refhub.elsevier.com/S0190-9622(13)01052-9/sref2http://refhub.elsevier.com/S0190-9622(13)01052-9/sref3http://refhub.elsevier.com/S0190-9622(13)01052-9/sref3http://refhub.elsevier.com/S0190-9622(13)01052-9/sref4http://refhub.elsevier.com/S0190-9622(13)01052-9/sref4http://refhub.elsevier.com/S0190-9622(13)01052-9/sref5http://refhub.elsevier.com/S0190-9622(13)01052-9/sref5http://refhub.elsevier.com/S0190-9622(13)01052-9/sref6http://refhub.elsevier.com/S0190-9622(13)01052-9/sref6http://refhub.elsevier.com/S0190-9622(13)01052-9/sref6http://refhub.elsevier.com/S0190-9622(13)01052-9/sref6http://refhub.elsevier.com/S0190-9622(13)01052-9/sref5http://refhub.elsevier.com/S0190-9622(13)01052-9/sref5http://refhub.elsevier.com/S0190-9622(13)01052-9/sref4http://refhub.elsevier.com/S0190-9622(13)01052-9/sref3http://refhub.elsevier.com/S0190-9622(13)01052-9/sref3http://refhub.elsevier.com/S0190-9622(13)01052-9/sref2http://refhub.elsevier.com/S0190-9622(13)01052-9/sref2http://refhub.elsevier.com/S0190-9622(13)01052-9/sref1http://refhub.elsevier.com/S0190-9622(13)01052-9/sref1http://refhub.elsevier.com/S0190-9622(13)01052-9/sref1
  • 8/10/2019 Electrosurgery 1

    13/14

    the safe use of energy in surgery. Surg Endosc 2012;26:

    2735-9.

    7. Zinder DJ. Common myths about electrosurgery. Otolaryngol

    Head Neck Surg 2000;123:450-5.

    8. Kuphaldt TR. Lessons in electric circuits. 6th ed. Bellingham

    (WA): Michael Stutz; 2006.

    9. Halliday D, Resnick R, Walker J. Fundamentals of physics. 8th

    ed. Hoboken (NJ): John Wiley & Sons, Inc; 2007.

    10. Pollack SV. Electrosurgery of the skin. 1st ed. New York:

    Churchill Livingstone; 1990.

    11. Kalkwarf KL, Krejci RF, Edison AR. A method to measure

    operating variables in electrosurgery. J Prosthet Dent 1979;

    42:566-70.

    12. Association for the Advancement of Medical Instrumentation

    web site. Medical electrical equipmentPart 2-2: particular

    requirements for the basic safety and essential performance

    of high frequency surgery equipment and high frequency

    surgical accessories. Available from:http://marketplace.aami.

    org/eseries/scriptcontent/docs/Preview%20Files%5C6012020

    904_preview.pdf. Accessed February 2, 2013.

    13. Duffy S, Cobb GV. Practical electrosurgery. 1st ed. London:

    Chapman & Hall; 1995.14. Gabriel C, Gabriel S, Corthout E. The dielectric properties of

    biological tissues: I. Literature survey. Phys Med Biol 1996;41:

    2231-49.

    15. Miklavcic D, Pavcelj N, Hart F. Electric properties of tissues.

    Wiley Encyclopedia of Biomedical Engineering. Hoboken (NJ):

    John Wiley & Sons, Inc; 2006.

    16. Christie RV, Binger CA. An experimental study of diathermy:

    IV. Evidence for the penetration of high frequency currents

    through the living body. J Exp Med 1927;46:715-34.

    17. Christie RV. An experimental study of diathermy: VI. Conduc-

    tion of high frequency currents through the living cell. J Exp

    Med 1928;48:235-46.

    18. Buzina DS, Lipozencic J. Electrosurgeryhave we forgotten

    it? Acta Dermatovenerol Croat 2007;15:96-102.

    19. Kligman AM, Peters L. Histologic changes of human hairfollicles after electrolysis: a comparison of two methods.

    Cutis 1984;34:169-76.

    20. Hobbs ER, Ratz JL, James B. Electrosurgical epilation.

    Dermatol Clin 1987;5:437-44.

    21. Kirsch N. Telangiectasia and electrolysis. J Dermatol Surg

    Oncol 1984;10:9-10.

    22. Christie RV, Loomis AL. The relation of frequency to the

    physiological effects of ultra-high frequency currents. J Exp

    Med 1929;49:303-21.

    23. dArsonval A. Action physiologique des courants alternatifs a

    grande frequence. Arch physiol Norm Path 1893;5:401-8.

    24. Elliott JA. Electrosurgery. Its use in dermatology, with a

    review of its development and technologic aspects. Arch

    Dermatol 1966;94:340-50.

    25. Palanker D, Vankov A, Jayaraman P. On mechanisms of

    interaction in electrosurgery. New J Phys 2008;10:123022.

    26. Turrell WJ. The physico-chemical action of interrupted

    currents in relation to their therapeutic effects. Proc R Soc

    Med 1926;20:103-16.

    27. dArsonva1 A. Action physiologique des courants alternatifs.

    Comp Rend Soc Biol 1891;43:283.

    28. Nernst W, Barratt JOW. Elektrische nervenreizung durch

    wechselstrome. Zeitschr Elektrochem 1904;10:664-8.

    29. Brill AI. Electrosurgery: principles and practice to reduce risk

    and maximize efficacy. Obstet Gynecol Clin North Am 2011;

    38:687-702.

    30. Bussiere RL. Principles of electrosurgery. Edmonds (WA):

    Tektran Inc; 1997.

    31. Advincula AP, Wang K. The evolutionary state of electrosur-

    gery: where are we now? Curr Opin Obstet Gynecol 2008;20:

    353-8.

    32. Finelli A, Rewcastle JC, Jewett MA. Cryotherapy and radio-

    frequency ablation: pathophysiologic basis and laboratory

    studies. Curr Opin Urol 2003;13:187-91.

    33. Solbiati L, Ierace T, Goldberg SN, Sironi S, Livraghi T, Fiocca R,

    et al. Percutaneous US-guided radio-frequency tissue abla-

    tion of liver metastases: treatment and follow-up in 16

    patients. Radiology 1997;202:195-203.

    34. Van Way CW, Hinrichs CS. Electrosurgery 201: basic electrical

    principles. Curr Surg 2000;57:261-4.

    35. Fante RG, Fante RL. Perspective: the physical basis of

    surgical electrodissection. Ophthal Plast Reconstr Surg

    2003;19:145-8.

    36. Sebben JE. Electrosurgery principles: cutting current and

    cutaneous surgerypart II. J Dermatol Surg Oncol 1988;14:

    147-50.

    37. Sebben JE. Electrosurgery principles: cutting current and

    cutaneous surgerypart I. J Dermatol Surg Oncol 1988;14:

    29-31.

    38. The Association of Surgeons in Training web site. Principles ofelectrosurgery. Available from: http://www.asit.org/assets/

    documents/Prinicpals_in_electrosurgery.pdf. Accessed February

    2, 2013.

    39. Tokar JL, Barth BA, Banerjee S, Chauhan SS, Gottlieb KT,

    Konda V, et al. Electrosurgical generators. Gastrointest

    Endosc 2013;78:197-208.

    40. Strock MS. The rationale for electrosurgery. Oral Surg Oral

    Med Oral Pathol 1952;5:1166-72.

    41. Noble WH, McClatchey KD, Douglass GD. A histologic com-

    parison of effects of electrosurgical resection using different

    electrodes. J Prosthet Dent 1976;35:575-9.

    42. Eggleston JL, von Maltzahn WW. Electrosurgical devices. In:

    Bronzino JD, editor. The biomedical engineering handbook.

    2nd ed Boca Raton (FL): CRC Press; 2000.

    43. Laughlin SA, Dudley DK. Electrosurgery. Clin Dermatol 1992;10:285-90.

    44. Boughton RS, Spencer SK. Electrosurgical fundamentals. J Am

    Acad Dermatol 1987;16:862-7.

    45. Van Way CW. Electrosurgery 101. Curr Surg 2000;57:172-7.

    46. Spiller WF, Spiller RF. Cryoanesthesia and electrosurgical

    treatment of benign skin tumors. Cutis 1985;35:551-2.

    47. Tyring SK. Molluscum contagiosum: the importance of early

    diagnosis and treatment. Am J Obstet Gynecol 2003;189(3

    Suppl):S12-6.

    48. Al Aradi IK. Periorbital syringoma: a pilot study of the efficacy

    of low-voltage electrocoagulation. Dermatol Surg 2006;32:

    1244-50.

    49. Ferenczy A, Behelak Y, Haber G, Wright TC Jr, Richart RM.

    Treating vaginal and external anogenital condylomas with

    electrosurgery vs CO2 laser ablation. J Gynecol Surg 1995;11:

    41-50.

    50. Tosti A, Piraccini BM. Warts of the nail unit: surgical and

    nonsurgical approaches. Dermatol Surg 2001;27:235-9.

    51. Goldman MP, Weiss RA, Brody HJ, Coleman WP III, Fitzpatrick

    RE. Treatment of facial telangiectasia with sclerotherapy,

    laser surgery, and/or electrodesiccation: a review. J Dermatol

    Surg Oncol 1993;19:899-906.

    52. Toombs EL. Electroplaning of non-inflammatory linear

    verrucous epidermal nevi (LVEN). J Drugs Dermatol 2012;

    11:474-7.

    53. Aferzon M, Millman B. Excision of rhinophyma with

    high-frequency electrosurgery. Dermatol Surg 2002;28:

    735-8.

    J AMACADDERMATOLVOLUME70, NUMBER4

    Taheri et al 591.e13

    http://refhub.elsevier.com/S0190-9622(13)01052-9/sref6http://refhub.elsevier.com/S0190-9622(13)01052-9/sref6http://refhub.elsevier.com/S0190-9622(13)01052-9/sref7http://refhub.elsevier.com/S0190-9622(13)01052-9/sref7http://refhub.elsevier.com/S0190-9622(13)01052-9/sref8http://refhub.elsevier.com/S0190-9622(13)01052-9/sref8http://refhub.elsevier.com/S0190-9622(13)01052-9/sref9http://refhub.elsevier.com/S0190-9622(13)01052-9/sref9http://refhub.elsevier.com/S0190-9622(13)01052-9/sref10http://refhub.elsevier.com/S0190-9622(13)01052-9/sref10http://refhub.elsevier.com/S0190-9622(13)01052-9/sref11http://refhub.elsevier.com/S0190-9622(13)01052-9/sref11http://refhub.elsevier.com/S0190-9622(13)01052-9/sref11http://marketplace.aami.org/eseries/scriptcontent/docs/Preview%20Files%5C6012020904_preview.pdfhttp://marketplace.aami.org/eseries/scriptcontent/docs/Preview%20Files%5C6012020904_preview.pdfhttp://marketplace.aami.org/eseries/scriptcontent/docs/Preview%20Files%5C6012020904_preview.pdfhttp://refhub.elsevier.com/S0190-9622(13)01052-9/sref12http://refhub.elsevier.com/S0190-9622(13)01052-9/sref12http://refhub.elsevier.com/S0190-9622(13)01052-9/sref13http://refhub.elsevier.com/S0190-9622(13)01052-9/sref13http://refhub.elsevier.com/S0190-9622(13)01052-9/sref13http://refhub.elsevier.com/S0190-9622(13)01052-9/sref14http://refhub.elsevier.com/S0190-9622(13)01052-9/sref14http://refhub.elsevier.com/S0190-9622(13)01052-9/sref14http://refhub.elsevier.com/S0190-9622(13)01052-9/sref15http://refhub.elsevier.com/S0190-9622(13)01052-9/sref15http://refhub.elsevier.com/S0190-9622(13)01052-9/sref15http://refhub.elsevier.com/S0190-9622(13)01052-9/sref16http://refhub.elsevier.com/S0190-9622(13)01052-9/sref16http://refhub.elsevier.com/S0190-9622(13)01052-9/sref16http://refhub.elsevier.com/S0190-9622(13)01052-9/sref17http://refhub.elsevier.com/S0190-9622(13)01052-9/sref17http://refhub.elsevier.com/S0190-9622(13)01052-9/sref18http://refhub.elsevier.com/S0190-9622(13)01052-9/sref18http://refhub.elsevier.com/S0190-9622(13)01052-9/sref18http://refhub.elsevier.com/S0190-9622(13)01052-9/sref19http://refhub.elsevier.com/S0190-9622(13)01052-9/sref19http://refhub.elsevier.com/S0190-9622(13)01052-9/sref20http://refhub.elsevier.com/S0190-9622(13)01052-9/sref20http://refhub.elsevier.com/S0190-9622(13)01052-9/sref21http://refhub.elsevier.com/S0190-9622(13)01052-9/sref21http://refhub.elsevier.com/S0190-9622(13)01052-9/sref21http://refhub.elsevier.com/S0190-9622(13)01052-9/sref22http://refhub.elsevier.com/S0190-9622(13)01052-9/sref22http://refhub.elsevier.com/S0190-9622(13)01052-9/sref23http://refhub.elsevier.com/S0190-9622(13)01052-9/sref23http://refhub.elsevier.com/S0190-9622(13)01052-9/sref23http://refhub.elsevier.com/S0190-9622(13)01052-9/sref24http://refhub.elsevier.com/S0190-9622(13)01052-9/sref24http://refhub.elsevier.com/S0190-9622(13)01052-9/sref24http://refhub.elsevier.com/S0190-9622(13)01052-9/sref25http://refhub.elsevier.com/S0190-9622(13)01052-9/sref25http://refhub.elsevier.com/S0190-9622(13)01052-9/sref25http://refhub.elsevier.com/S0190-9622(13)01052-9/sref26http://refhub.elsevier.com/S0190-9622(13)01052-9/sref26http://refhub.elsevier.com/S0190-9622(13)01052-9/sref27http://refhub.elsevier.com/S0190-9622(13)01052-9/sref27http://refhub.elsevier.com/S0190-9622(13)01052-9/sref27http://refhub.elsevier.com/S0190-9622(13)01052-9/sref28http://refhub.elsevier.com/S0190-9622(13)01052-9/sref28http://refhub.elsevier.com/S0190-9622(13)01052-9/sref28http://refhub.elsevier.com/S0190-9622(13)01052-9/sref29http://refhub.elsevier.com/S0190-9622(13)01052-9/sref29http://refhub.elsevier.com/S0190-9622(13)01052-9/sref30http://refhub.elsevier.com/S0190-9622(13)01052-9/sref30http://refhub.elsevier.com/S0190-9622(13)01052-9/sref30http://refhub.elsevier.com/S0190-9622(13)01052-9/sref31http://refhub.elsevier.com/S0190-9622(13)01052-9/sref31http://refhub.elsevier.com/S0190-9622(13)01052-9/sref31http://refhub.elsevier.com/S0190-9622(13)01052-9/sref32http://refhub.elsevier.com/S0190-9622(13)01052-9/sref32http://refhub.elsevier.com/S0190-9622(13)01052-9/sref32http://refhub.elsevier.com/S0190-9622(13)01052-9/sref32http://refhub.elsevier.com/S0190-9622(13)01052-9/sref33http://refhub.elsevier.com/S0190-9622(13)01052-9/sref33http://refhub.elsevier.com/S0190-9622(13)01052-9/sref34http://refhub.elsevier.com/S0190-9622(13)01052-9/sref34http://refhub.elsevier.com/S0190-9622(13)01052-9/sref34http://refhub.elsevier.com/S0190-9622(13)01052-9/sref35http://refhub.elsevier.com/S0190-9622(13)01052-9/sref35http://refhub.elsevier.com/S0190-9622(13)01052-9/sref35http://refhub.elsevier.com/S0190-9622(13)01052-9/sref36http://refhub.elsevier.com/S0190-9622(13)01052-9/sref36http://refhub.elsevier.com/S0190-9622(13)01052-9/sref36http://www.asit.org/assets/documents/Prinicpals_in_electrosurgery.pdfhttp://www.asit.org/assets/documents/Prinicpals_in_electrosurgery.pdfhttp://refhub.elsevier.com/S0190-9622(13)01052-9/sref39ahttp://refhub.elsevier.com/S0190-9622(13)01052-9/sref39ahttp://refhub.elsevier.com/S0190-9622(13)01052-9/sref39ahttp://refhub.elsevier.com/S0190-9622(13)01052-9/sref39ahttp://refhub.elsevier.com/S0190-9622(13)01052-9/sref37http://refhub.elsevier.com/S0190-9622(13)01052-9/sref37http://refhub.elsevier.com/S0190-9622(13)01052-9/sref38http://refhub.elsevier.com/S0190-9622(13)01052-9/sref38http://refhub.elsevier.com/S0190-9622(13)01052-9/sref38http://refhub.elsevier.com/S0190-9622(13)01052-9/sref39http://refhub.elsevier.com/S0190-9622(13)01052-9/sref39http://refhub.elsevier.com/S0190-9622(13)01052-9/sref39http://refhub.elsevier.com/S0190-9622(13)01052-9/sref40http://refhub.elsevier.com/S0190-9622(13)01052-9/sref40http://refhub.elsevier.com/S0190-9622(13)01052-9/sref41http://refhub.elsevier.com/S0190-9622(13)01052-9/sref41http://refhub.elsevier.com/S0190-9622(13)01052-9/sref42http://refhub.elsevier.com/S0190-9622(13)01052-9/sref43http://refhub.elsevier.com/S0190-9622(13)01052-9/sref43http://refhub.elsevier.com/S0190-9622(13)01052-9/sref44http://refhub.elsevier.com/S0190-9622(13)01052-9/sref44http://refhub.elsevier.com/S0190-9622(13)01052-9/sref44http://refhub.elsevier.com/S0190-9622(13)01052-9/sref45http://refhub.elsevier.com/S0190-9622(13)01052-9/sref45http://refhub.elsevier.com/S0190-9622(13)01052-9/sref45http://refhub.elsevier.com/S0190-9622(13)01052-9/sref46http://refhub.elsevier.com/S0190-9622(13)01052-9/sref46http://refhub.elsevier.com/S0190-9622(13)01052-9/sref46http://refhub.elsevier.com/S0190-9622(13)01052-9/sref46http://refhub.elsevier.com/S0190-9622(13)01052-9/sref46http://refhub.elsevier.com/S0190-9622(13)01052-9/sref46http://refhub.elsevier.com/S0190-9622(13)01052-9/sref47http://refhub.elsevier.com/S0190-9622(13)01052-9/sref47http://refhub.elsevier.com/S0190-9622(13)01052-9/sref48http://refhub.elsevier.com/S0190-9622(13)01052-9/sref48http://refhub.elsevier.com/S0190-9622(13)01052-9/sref48http://refhub.elsevier.com/S0190-9622(13)01052-9/sref48http://refhub.elsevier.com/S0190-9622(13)01052-9/sref49http://refhub.elsevier.com/S0190-9622(13)01052-9/sref49http://refhub.elsevier.com/S0190-9622(13)01052-9/sref49http://refhub.elsevier.com/S0190-9622(13)01052-9/sref50http://refhub.elsevier.com/S0190-9622(13)01052-9/sref50http://refhub.elsevier.com/S0190-9622(13)01052-9/sref50http://refhub.elsevier.com/S0190-9622(13)01052-9/sref50http://refhub.elsevier.com/S0190-9622(13)01052-9/sref50http://refhub.elsevier.com/S0190-9622(13)01052-9/sref50http://refhub.elsevier.com/S0190-9622(13)01052-9/sref49http://refhub.elsevier.com/S0190-9622(13)01052-9/sref49http://refhub.elsevier.com/S0190-9622(13)01052-9/sref49http://refhub.elsevier.com/S0190-9622(13)01052-9/sref48http://refhub.elsevier.com/S0190-9622(13)01052-9/sref48http://refhub.elsevier.com/S0190-9622(13)01052-9/sref48http://refhub.elsevier.com/S0190-9622(13)01052-9/sref48http://refhub.elsevier.com/S0190-9622(13)01052-9/sref47http://refhub.elsevier.com/S0190-9622(13)01052-9/sref47http://refhub.elsevier.com/S0190-9622(13)01052-9/sref46http://refhub.elsevier.com/S0190-9622(13)01052-9/sref46http://refhub.elsevier.com/S0190-9622(13)01052-9/sref46http://refhub.elsevier.com/S0190-9622(13)01052-9/sref46http://refhub.elsevier.com/S0190-9622(13)01052-9/sref46http://refhub.elsevier.com/S0190-9622(13)01052-9/sref45http://refhub.elsevier.com/S0190-9622(13)01052-9/sref45http://refhub.elsevier.com/S0190-9622(13)01052-9/sref45http://refhub.elsevier.com/S0190-9622(13)01052-9/sref44http://refhub.elsevier.com/S0190-9622(13)01052-9/sref44http://refhub.elsevier.com/S0190-9622(13)01052-9/sref44http://refhub.elsevier.com/S0190-9622(13)01052-9/sref43http://refhub.elsevier.com/S0190-9622(13)01052-9/sref43http://refhub.elsevier.com/S0190-9622(13)01052-9/sref42http://refhub.elsevier.com/S0190-9622(13)01052-9/sref41http://refhub.elsevier.com/S0190-9622(13)01052-9/sref41http://refhub.elsevier.com/S0190-9622(13)01052-9/sref40http://refhub.elsevier.com/S0190-9622(13)01052-9/sref40http://refhub.elsevier.com/S0190-9622(13)01052-9/sref39http://refhub.elsevier.com/S0190-9622(13)01052-9/sref39http://refhub.elsevier.com/S0190-9622(13)01052-9/sref39http://refhub.elsevier.com/S0190-9622(13)01052-9/sref38http://refhub.elsevier.com/S0190-9622(13)01052-9/sref38http://refhub.elsevier.com/S0190-9622(13)01052-9/sref38http://refhub.elsevier.com/S0190-9622(13)01052-9/sref37http://refhub.elsevier.com/S0190-9622(13)01052-9/sref37http://refhub.elsevier.com/S0190-9622(13)01052-9/sref39ahttp://refhub.elsevier.com/S0190-9622(13)01052-9/sref39ahttp://refhub.elsevier.com/S0190-9622(13)01052-9/sref39ahttp://www.asit.org/assets/documents/Prinicpals_in_electrosurgery.pdfhttp://www.asit.org/assets/documents/Prinicpals_in_electrosurgery.pdfhttp://refhub.elsevier.com/S0190-9622(13)01052-9/sref36http://refhub.elsevier.com/S0190-9622(13)01052-9/sref36http://refhub.elsevier.com/S0190-9622(13)01052-9/sref36http://refhub.elsevier.com/S0190-9622(13)01052-9/sref35http://refhub.elsevier.com/S0190-9622(13)01052-9/sref35http://refhub.elsevier.com/S0190-9622(13)01052-9/sref35http://refhub.elsevier.com/S0190-9622(13)01052-9/sref34http://refhub.elsevier.com/S0190-9622(13)01052-9/sref34http://refhub.elsevier.com/S0190-9622(13)01052-9/sref34http://refhub.elsevier.com/S0190-9622(13)01052-9/sref33http://refhub.elsevier.com/S0190-9622(13)01052-9/sref33http://refhub.elsevier.com/S0190-9622(13)01052-9/sref32http://refhub.elsevier.com/S0190-9622(13)01052-9/sref32http://refhub.elsevier.com/S0190-9622(13)01052-9/sref32http://refhub.elsevier.com/S0190-9622(13)01052-9/sref32http://refhub.elsevier.com/S0190-9622(13)01052-9/sref31http://refhub.elsevier.com/S0190-9622(13)01052-9/sref31http://refhub.elsevier.com/S0190-9622(13)01052-9/sref31http://refhub.elsevier.com/S0190-9622(13)01052-9/sref30http://refhub.elsevier.com/S0190-9622(13)01052-9/sref30http://refhub.elsevier.com/S0190-9622(13)01052-9/sref30http://refhub.elsevier.com/S0190-9622(13)01052-9/sref29http://refhub.elsevier.com/S0190-9622(13)01052-9/sref29http://refhub.elsevier.com/S0190-9622(13)01052-9/sref28http://refhub.elsevier.com/S0190-9622(13)01052-9/sref28http://refhub.elsevier.com/S0190-9622(13)01052-9/sref28http://refhub.elsevier.com/S0190-9622(13)01052-9/sref27http://refhub.elsevier.com/S0190-9622(13)01052-9/sref27http://refhub.elsevier.com/S0190-9622(13)01052-9/sref26http://refhub.elsevier.com/S0190-9622(13)01052-9/sref26http://refhub.elsevier.com/S0190-9622(13)01052-9/sref25http://refhub.elsevier.com/S0190-9622(13)01052-9/sref25http://refhub.elsevier.com/S0190-9622(13)01052-9/sref25http://refhub.elsevier.com/S0190-9622(13)01052-9/sref24http://refhub.elsevier.com/S0190-9622(13)01052-9/sref24http://refhub.elsevier.com/S0190-9622(13)01052-9/sref23http://refhub.elsevier.com/S0190-9622(13)01052-9/sref23http://refhub.elsevier.com/S0190-9622(13)01052-9/sref23http://refhub.elsevier.com/S0190-9622(13)01052-9/sref22http://refhub.elsevier.com/S0190-9622(13)01052-9/sref22http://refhub.elsevier.com/S0190-9622(13)01052-9/sref21http://refhub.elsevier.com/S0190-9622(13)01052-9/sref21http://refhub.elsevier.com/S0190-9622(13)01052-9/sref21http://refhub.elsevier.com/S0190-9622(13)01052-9/sref20http://refhub.elsevier.com/S0190-9622(13)01052-9/sref20http://refhub.elsevier.com/S0190-9622(13)01052-9/sref19http://refhub.elsevier.com/S0190-9622(13)01052-9/sref19http://refhub.elsevier.com/S0190-9622(13)01052-9/sref18http://refhub.elsevier.com/S0190-9622(13)01052-9/sref18http://refhub.elsevier.com/S0190-9622(13)01052-9/sref18http://refhub.elsevier.com/S0190-9622(13)01052-9/sref17http://refhub.elsevier.com/S0190-9622(13)01052-9/sref17http://refhub.elsevier.com/S0190-9622(13)01052-9/sref16http://refhub.elsevier.com/S0190-9622(13)01052-9/sref16http://refhub.elsevier.com/S0190-9622(13)01052-9/sref16http://refhub.elsevier.com/S0190-9622(13)01052-9/sref15http://refhub.elsevier.com/S0190-9622(13)01052-9/sref15http://refhub.elsevier.com/S0190-9622(13)01052-9/sref15http://refhub.elsevier.com/S0190-9622(13)01052-9/sref14http://refhub.elsevier.com/S0190-9622(13)01052-9/sref14http://refhub.elsevier.com/S0190-9622(13)01052-9/sref14http://refhub.elsevier.com/S0190-9622(13)01052-9/sref13http://refhub.elsevier.com/S0190-9622(13)01052-9/sref13http://refhub.elsevier.com/S0190-9622(13)01052-9/sref13http://refhub.elsevier.com/S0190-9622(13)01052-9/sref12http://refhub.elsevier.com/S0190-9622(13)01052-9/sref12http://marketplace.aami.org/eseries/scriptcontent/docs/Preview%20Files%5C6012020904_preview.pdfhttp://marketplace.aami.org/eseries/scriptcontent/docs/Preview%20Files%5C6012020904_preview.pdfhttp://marketplace.aami.org/eseries/scriptcontent/docs/Preview%20Files%5C6012020904_preview.pdfhttp://refhub.elsevier.com/S0190-9622(13)01052-9/sref11http://refhub.elsevier.com/S0190-9622(13)01052-9/sref11http://refhub.elsevier.com/S0190-9622(13)01052-9/sref11http://refhub.elsevier.com/S0190-9622(13)01052-9/sref10http://refhub.elsevier.com/S0190-9622(13)01052-9/sref10http://refhub.elsevier.com/S0190-9622(13)01052-9/sref9http://refhub.elsevier.com/S0190-9622(13)01052-9/sref9http://refhub.elsevier.com/S0190-9622(13)01052-9/sref8http://refhub.elsevier.com/S0190-9622(13)01052-9/sref8http://refhub.elsevier.com/S0190-9622(13)01052-9/sref7http://refhub.elsevier.com/S0190-9622(13)01052-9/sref7http://refhub.elsevier.com/S0190-9622(13)01052-9/sref6http://refhub.elsevier.com/S0190-9622(13)01052-9/sref6
  • 8/10/2019 Electrosurgery 1

    14/14

    54. Sheridan AT, Dawber RP. Curettage, electrosurgery and skin

    cancer. Australas J Dermatol 2000;41:19-30.

    55. Drake LA, Ceilley RI, Cornelison RL, Dobes WL, Dorner W,

    Goltz RW, et al. Guidelines of care for actinic keratoses.

    Committee on Guidelines of Care. J Am Acad Dermatol 1995;

    32:95-8.

    56. Ghodsi SZ, Raziei M, Taheri A, Karami M, Mansoori P, Farnaghi

    F. Comparison of cryotherapy and curettage for the treat-

    ment of pyogenic granuloma: a randomized trial. Br J

    Dermatol 2006;154:671-5.

    57. Soon SL, Washington CV. Electrosurgery, electrocoagulation,

    electrofulguration, electrodesiccation, electrosection, electro-

    cautery. In: Robinson JK, Hanke CW, Siegel DM, Fratila A,

    editors. Surgery of the skin: procedural dermatology. 2nd ed

    New York: Elsevier; 2010. pp. 225-38.

    58. Aronow S. The use of radio-frequency power in making

    lesions in the brain. J Neurosurg 1960;17:431-8.

    59. Chino A, Karasawa T, Uragami N, Endo Y, Takahashi H, Fujita

    R. A comparison of depth of tissue injury caused by different

    modes of electrosurgical current in a pig colon model.

    Gastrointest Endosc 2004;59:374-9.

    60. Ruidiaz ME, Cortes-Mateos MJ, Sandoval S, Martin DT,Wang-Rodriguez J, Hasteh F, et al. Quantitative comparison

    of surgical margin histology following excision with tradi-

    tional electrosurgery and a low-thermal-injury dissection

    device. J Surg Oncol 2011;104:746-54.

    61. Schoinohoriti OK, Chrysomali E, Iatrou I, Perrea D. Evaluation

    of lateral thermal damage and reepithelialization of inci-

    sional wounds created by CO(2)-laser, monopolar electro-

    surgery, and radiosurgery: a pilot study on porcine oral

    mucosa. Oral Surg Oral Med Oral Pathol Oral Radiol Endod

    2012;113:741-7.

    62. Duffy S. The tissue and thermal effects of electrosurgery in

    the uterine cavity. Baillieres Clin Obstet Gynaecol 1995;9:

    261-77.

    63. Kashkouli MB, Kaghazkanai R, Mirzaie AZ, Hashemi M,

    Parvaresh MM, Sasanii L. Clinicopathologic comparison of

    radiofrequency versus scalpel incision for upper blepharo-

    plasty. Ophthal Plast Reconstr Surg 2008;24:450-3.

    64. Loh SA, Carlson GA, Chang EI, Huang E, Palanker D, Gurtner

    GC. Comparative healing of surgical incisions created by the

    PEAK PlasmaBlade, conventional electrosurgery, and a

    scalpel. Plast Reconstr Surg 2009;124:1849-59.

    65. Silverman EB, Read RW, Boyle CR, Cooper R, Miller WW,

    McLaughlin RM. Histologic comparison of canine skin bi-

    opsies collected using monopolar electrosurgery, CO2 laser,

    radiowave radiosurgery, skin biopsy punch, and scalpel. Vet

    Surg 2007;36:50-6.66. Sinha UK, Gallagher LA. Effects of steel scalpel, ultrasonic

    scalpel, CO2laser, and monopolar and bipolar electrosurgery

    on wound healing in guinea pig oral mucosa. Laryngoscope

    2003;113:228-36.

    J AMACADDERMATOLAPRIL2014

    591.e14 Taheri et al

    http://refhub.elsevier.com/S0190-9622(13)01052-9/sref51http://refhub.elsevier.com/S0190-9622(13)01052-9/sref51http://refhub.elsevier.com/S0190-9622(13)01052-9/sref52http://refhub.elsevier.com/S0190-9622(13)01052-9/sref52http://refhub.elsevier.com/S0190-9622(13)01052-9/sref52http://refhub.elsevier.com/S0190-9622(13)01052-9/sref52http://refhub.elsevier.com/S0190-9622(13)01052-9/sref53http://refhub.elsevier.com/S0190-9622(13)01052-9/sref53http://refhub.elsevier.com/S0190-9622(13)01052-9/sref53http://refhub.elsevier.com/S0190-9622(13)01052-9/sref53http://refhub.elsevier.com/S0190-9622(13)01052-9/sref54http://refhub.elsevier.com/S0190-9622(13)01052-9/sref54http://refhub.elsevier.com/S0190-9622(13)01052-9/sref54http://refhub.elsevier.com/S0190-9622(13)01052-9/sref54http://refhub.elsevier.com/S0190-9622(13)01052-9/sref54http://refhub.elsevier.com/S0190-9622(13)01052-9/sref55http://refhub.elsevier.com/S0190-9622(13)01052-9/sref55http://refhub.elsevier.com/S0190-9622(13)01052-9/sref56http://refhub.elsevier.com/S0190-9622(13)01052-9/sref56http://refhub.elsevier.com/S0190-9622(13)01052-9/sref56http://refhub.elsevier.com/S0190-9622(13)01052-9/sref56http://refhub.elsevier.com/S0190-9622(13)01052-9/sref57http://refhub.elsevier.com/S0190-9622(13)01052-9/sref57http://refhub.elsevier.com/S0190-9622(13)01052-9/sref57http://refhub.elsevier.com/S0190-9622(13)01052-9/sref57http://refhub.elsevier.com/S0190-9622(13)01052-9/sref57http://refhub.elsevier.com/S0190-9622(13)01052-9/sref58http://refhub.elsevier.com/S0190-9622(13)01052-9/sref58http://refhub.elsevier.com/S0190-9622(13)01052-9/sref58http://refhub.elsevier.com/S0190-9622(13)01052-9/sref58http://refhub.elsevier.com/S0190-9622(13)01052-9/sref58http://refhub.elsevier.com/S0190-9622(13)01052-9/sref58http://refhub.elsevier.com/S0190-9622(13)01052-9/sref59http://refhub.elsevier.com/S0190-9622(13)01052-9/sref59http://refhub.elsevier.com/S0190-9622(13)01052-9/sref59http://refhub.elsevier.com/S0190-9622(13)01052-9/sref60http://refhub.elsevier.com/S0190-9622(13)01052-9/sref60http://refhub.elsevier.com/S0190-9622(13)01052-9/sref60http://refhub.elsevier.com/S0190-9622(13)01052-9/sref60http://refhub.elsevier.com/S0190-9622(13)01052-9/sref61http://refhub.elsevier.com/S0190-9622(13)01052-9/sref61http://refhub.elsevier.com/S0190-9622(13)01052-9/sref61http://refhub.elsevier.com/S0190-9622(13)01052-9/sref61http://refhub.elsevier.com/S0190-9622(13)01052-9/sref62http://refhub.elsevier.com/S0190-9622(13)01052-9/sref62http://refhub.elsevier.com/S0190-9622(13)01052-9/sref62http://refhub.elsevier.com/S0190-9622(13)01052-9/sref62http://refhub.elsevier.com/S0190-9622(13)01052-9/sref62http://refhub.elsevier.com/S0190-9622(13)01052-9/sref62http://refhub.elsevier.com/S0190-9622(13)01052-9/sref62http://refhub.elsevier.com/S0190-9622(13)01052-9/sref63http://refhub.elsevier.com/S0190-9622(13)01052-9/sref63http://refhub.elsevier.com/S0190-9622(13)01052-9/sref63http://refhub.elsevier.com/S0190-9622(13)01052-9/sref63http://refhub.elsevier.com/S0190-9622(13)01052-9/sref63http://refhub.elsevier.com/S0190-9622(13)01052-9/sref63http://refhub.elsevier.com/S0190-9622(13)01052-9/sref63http://refhub.elsevier.com/S0190-9622(13)01052-9/sref63http://refhub.elsevier.com/S0190-9622(13)01052-9/sref63http://refhub.elsevier.com/S0190-9622(13)01052-9/sref63http://refhub.elsevier.com/S0190-9622(13)01052-9/sref63http://refhub.elsevier.com/S0190-9622(13)01052-9/sref62http://refhub.elsevier.com/S0190-9622(13)01052-9/sref62http://refhub.elsevier.com/S0190-9622(13)01052-9/sref62http://refhub.elsevier.com/S0190-9622(13)01052-9/sref62http://refhub.elsevier.com/S0190-9622(13)01052-9/sref62http://refhub.elsevier.com/S0190-9622(13)01052-9/sref62http://refhub.elsevier.com/S0190-9622(13)01052-9/sref61http://refhub.elsevier.com/S0190-9622(13)01052-9/sref61http://refhub.elsevier.com/S0190-9622(13)01052-9/sref61http://refhub.elsevier.com/S0190-9622(13)01052-9/sref61http://refhub.elsevier.com/S0190-9622(13)01052-9/sref60http://refhub.elsevier.com/S0190-9622(13)01052-9/sref60http://refhub.elsevier.com/S0190-9622(13)01052-9/sref60http://refhub.elsevier.com/S0190-9622(13)01052-9/sref60http://refhub.elsevier.com/S0190-9622(13)01052-9/sref59http://refhub.elsevier.com/S0190-9622(13)01052-9/sref59http://refhub.elsevier.com/S0190-9622(13)01052-9/sref59http://refhub.elsevier.com/S0190-9622(13)01052-9/sref58http://refhub.elsevier.com/S0190-9622(13)01052-9/sref58http://refhub.elsevier.com/S0190-9622(13)01052-9/sref58http://refhub.elsevier.com/S0190-9622(13)01052-9/sref58http://refhub.elsevier.com/S0190-9622(13)01052-9/sref58http://refhub.elsevier.com/S0190-9622(13)01052-9/sref58http://refhub.elsevier.com/S0190-9622(13)01052-9/sref57http://refhub.elsevier.com/S0190-9622(13)01052-9/sref57http://refhub.elsevier.com/S0190-9622(13)01052-9/sref57http://refhub.elsevier.com/S0190-9622(13)01052-9/sref57http://refhub.elsevier.com/S0190-9622(13)01052-9/sref57http://refhub.elsevier.com/S0190-9622(13)01052-9/sref56http://refhub.elsevier.com/S0190-9622(13)01052-9/sref56http://refhub.elsevier.com/S0190-9622(13)01052-9/sref56http://refhub.elsevier.com/S0190-9622(13)01052-9/sref56http://refhub.elsevier.com/S0190-9622(13)01052-9/sref55http://refhub.elsevier.com/S0190-9622(13)01052-9/sref55http://refhub.elsevier.com/S0190-9622(13)01052-9/sref54http://refhub.elsevier.com/S0190-9622(13)01052-9/sref54http://refhub.elsevier.com/S0190-9622(13)01052-9/sref54http://refhub.elsevier.com/S0190-9622(13)01052-9/sref54http://refhub.elsevier.com/S0190-9622(13)01052-9/sref54http://refhub.elsevier.com/S0190-9622(13)01052-9/sref53http://refhub.elsevier.com/S0190-9622(13)01052-9/sref53http://refhub.elsevier.com/S0190-9622(13)01052-9/sref53http://refhub.elsevier.com/S0190-9622(13)01052-9/sref53http://refhub.elsevier.com/S0190-9622(13)01052-9/sref52http://refhub.elsevier.com/S0190-9622(13)01052-9/sref52http://refhub.elsevier.com/S0190-9622(13)01052-9/sref52http://refhub.elsevier.com/S0190-9622(13)01052-9/sref52http://refhub.elsevier.com/S0190-9622(13)01052-9/sref51http://refhub.elsevier.com/S0190-9622(13)01052-9/sref51