electronica analoga

67
“Año de la Inversión para el Desarrollo Rural y la Seguridad Alimentaria” Informes de Laboratorio Electrónica análoga 2 ALUMNOS: Charca Morocco, Hernan W. Mamani Quispe, Jorge L. Martinez Arce, Yeremi L. Ticona Olazabal, Renzo A. Docente: Ing. H. Salazar ESCUELA PROFESIONAL: Ingeniería Electrónica 2013-A

Upload: ruben-cruz-caceres

Post on 16-Jan-2016

118 views

Category:

Documents


11 download

DESCRIPTION

un desarrolo de muchos laboratorios acerca de los transistores y filtros

TRANSCRIPT

Page 1: electronica analoga

“Año de la Inversión para el Desarrollo Rural y la Seguridad Alimentaria”

Informes de Laboratorio

Electrónica análoga 2

ALUMNOS:

Charca Morocco, Hernan W.

Mamani Quispe, Jorge L.

Martinez Arce, Yeremi L.

Ticona Olazabal, Renzo A.

Docente:

Ing. H. Salazar

ESCUELA PROFESIONAL:

Ingeniería Electrónica

2013-A

Page 2: electronica analoga

EXPERIMENTO N°1

EL AMPLIFICADOR CLASE B EN SIMETRÍA COMPLEMENTARIA

OBJETIVO

Estudiar el comportamiento de un amplificador clase B en simetría complementaria. Estudiar su

funcionamiento con fuente de alimentación única y doble.

Procedimiento:

Arme el circuito de la fiura 1-1, calcule Ic1,sat (impuesto por el valor de vcc). Anote este valor en

la tabla

Calcule el 2% de IIc1,sat y anote este valor en la tabla 1

VCC=10v

Ic1,sat 1.577mA

2% Ic1,sat 0.031mA

Page 3: electronica analoga

Energice la figura 1-1 con VCC=5v

Mida las tensiones DC en las bases de los transistores, en los emisores y en la carga Rl

Vb1 3.069V

Vb2 2.517V

Ve1 2.88V

Ve2 0V

Vrl 221nV

Page 4: electronica analoga

Ponga el generador a una frecuencia de 1KHz y el nivel de señal de salida del generador a 2Vpp

Observe la señal de salida en los extremos de la resistencia de 100 ohm ¿Qué tipo de distorsión

es esta? Anote el nombre.

Es una distorsión por error de cruce

Page 5: electronica analoga

Superponga en el osciloscopio las señales de entrada y salida y observe el umbral de conducción

de los transistores. Medir la amplitud del umbral de entrada

Reduzca la señal del generador a cero y conecte el multímetro como amperímetro (teniendo

cuidado de seleccionar la escala mas alta) en serie con el colector del transistor superior (NPN)

Page 6: electronica analoga

Lentamente incremente Vcc hasta que Icq=1mA. Quite el multímetro reconecte el colector

superior la fuente Vcc

Utilice el multímetro para medir Vbe (de uno de los transistores) y anote el valor en la tabla:

Page 7: electronica analoga

Aumente el nivel de señal del generador hasta obtener a la salida una señal de 8Vpp

A una amplitud de 10Vpp de entrada, la salida es recortada y tiene una amplitud de 8Vpp

Lentamente aumente el nivel de la señal hasta el punto en que aparezca un recorte en la señal

de salida

A una tensión de entrada 4vp (8vpp) la salida es de 4.5vpp

Page 8: electronica analoga

Usando el multímetro como voltímetro de alterna, mida el valor RMS del voltaje de salida y

anótelo en la tabla, a continuación, calcule y anote el valor de la potencia disipada en la carga

Arme el circuito de la figura 1-3 con el generador en cero voltios mida las tensiones continuas

(DC) en las bases y emisores de los transistores, asi como en la carga Rl, anote sus observaciones

y complete la tabla 3 en base a los valores medidos

Page 9: electronica analoga

Vb1 595.032mv

Vb2 -596.237mv

Ve1 4.467mv

Ve2 -5v

Vrl 3.872mv

Mida la corriente de reposo de los transistores, son idénticas? Por qué?

Ambos transistores npn y pnp stan trabajando de manera complementaria, lo cual indica que son

transistores simétricos, es por ellos que sus corrientes de reposo son teóricamente iguales.

Repita el paso 5, se observa distorcion en la señal de salida del circuito? Fundamente.

No se encuentra ninguna distorsión en la señal de salida del amplificador.

Page 10: electronica analoga

Repita los pasos 11,12,14 y complete la tabla con los valores medidos:

La señal de salida tiene un tope de 6.7vpp, eso debido a la configuración del amplificador, este

nivel de salida se alcanza con una señal de entrada de aprox 4.5vp

Si la señal de entrada sigue aumentándose, el nivel máximo de salida no se ve afectado,

únicamente se afecta el corte de la señal, el cual se ve mas pronunciado en señales altas de

entrada

A un valor de aproximadamente 5Vp la señal empieza a recortarse, se recorta a 6.7Vp, los cuales

ya se habían especificado anteriormente como valor máximo.

Page 11: electronica analoga

Usando un voltímetro de alterna, mida el valor rms del voltaje de salida y anótelo en la tabla,

calcule el valor de potencia disipada en la carga

Mediciones.

Vpp 6.7v

Vrms 2.64v

Pcarga 69.756mW

De sus observaciones y conclusiones sobre el experimento realizado.

En el primer circuito se observa un error de cruce en la señal de salida, esto debido a la

configuración del amplificador.

En el segundo circuito esta distorsión desaparece, debido a los diodos q se han colocado los cuales

estabilizan la polarización.

Realizar una simulación del circuito experimentado con algún paquete de software, incluyendo

listados y graficos correspondientes.

Todo el laboratorio fue realizado con el software NI Multisim en su versión 11

Page 12: electronica analoga

Lab 2

Respuesta en baja frecuencia EC y BC

Objetivo:

En el presente experimento se evaluaran las impedancias de entrada para dos configuraciones

distintas de un amplificador monoetapa, asimismo, se establecerá el comportamiento en bajas

frecuencias.

Procedimiento:

Arme el circuito de la figura:

Determine el punto Q midiendo las tensiones presentes en el circuito con respecto a tierra.

Icq=1.58mA

Vce=9.878V

Determine a ganancia del amplificador, inyectando una señal senoidal de 50mVpp a 1KHz

Page 13: electronica analoga

Av=Vo/Vi

Av=6.24V/50mV

Av=124.8

Determine la impedancia de entrada colocando el potenciómetro en serie con el generador.

Para ello varié su resistencia hasta que la señal en la base se reduzca a la mitad del valor que

arroja el generador en vacío:

a) Mida con sw en 1 (v1)

Vin=V1=25mV

b) Mida Vin con SW en 2, ajustando Rp hasta que Vin=V1/2

Zin circuito = Rp+Rg=50+2K=2050

Empleando el resultado anterior, determine el Hie del transistor utilizado:

Zin=98mV

Hie=1223

Aumente la amplitud del generador, retirando el potenciómetro, hasta observar una notoria

distorsión en Vo

Vi max=98mV

V max=9.8mV

Retire el condensador Ce y repetir los procedimientos anteriores a fin de obtener:

Page 14: electronica analoga

Zin’= 1950+50

Av’ = 9.8V

Determinar la respuesta en frecuencia del amplificador variando la frecuencia del generador y

llene la siguiente tabla:

f 10 20 50 100 200 500 1k 2k 5k 10k Hz

Vo 320 448 496 504 504 504 504 504 504 504 Volt

Colocando nuevamente el condensador Ce y verificando que en todo momento vi se mantenga

constante, llenar la tabla:

f 10 20 50 100 200 500 1k 2k 5k 10k Hz

Vo 0.32 1.4 2.5 4. 6.6 7.4 7.48 7.8 8 8 Volt

Page 15: electronica analoga

Utilizando el mismo circuito, variar a configuración a BC, tener cuidado de colocar una

resistencia de 1k en serie para no cargar al generador con la baja impedancia del amplificador en

base común

Medir:

Zinb=6.23

Avb=1

Al igual que en emisor común, determinar la respuesta de frecuencia llenando una tabla similar:

f 10 20 50 100 200 500 1k 2k 5k 10k Hz

Vo 0.5 1.3 3.2 7.1 8.3 8.3 8.3 8.3 8.3 Volt

Page 16: electronica analoga

Cuestionario:

Haga un análisis completo del amplificador estudiado experimentalente indicando los resultados

teóricos y comentando obre la estabilidad y criterios de diseño, efectue el análisis para cada

caso:

Emisor común con Ce

En corriente continua:

Icq=5.6mA Vceq=5.24-0.565=4.65V

Formas de onda de entrada Vi (A), salida antes de Rl (B) y salida con Rl Vo.

Page 17: electronica analoga

Se observa que Vi y Vo están desfasadas 180º

La configuración emisor común funciona como desfasador también, es por ello que la tensión de

entrada y salida están desfasadas 180º

Configuración emisor común sin CE

Page 18: electronica analoga

Configuración Base común:

Icq=5.6mA Vceq=5.240.565=6.65V

Page 19: electronica analoga

Comente acerca del método empleado para la medición de la impedancia de entrada de una

amplificador.

Al aplicar una diferencia de potencial entre dos puntos de una red se puede determinar las

impedancias en dos partes, en el caso lo que se busca es encontrar la impedancia a la que VI se

convierta en v1/2 lo que nos indicara que la impedancia es igual a la del resto de la red circuital

Comente acerca delos valores máximos de v0 vi y la distorsión observada.

Según la curva de polarización de un transistor BJT existe un límite en el cual la señal de entrada

con respeto a la de salida no presenta distorsión, al referirme a este término nos referimos a la

saturación de las crestas inferiores en la señal de salida lo cual modifica las lecturas del

amplificador. Por lo cual es conveniente que la señal de entrada sea lo bastante adecuada para

que no se produzca saturación

Comente sobre las diferencias entre las configuraciones ensayadas así como sobre sus ventajas y

desventajas.

En canto a la configuración de emisor común se puede decir que tiene una gran ganancia en voltaje

pero es poco estable con los cambios de frecuencia por eso se recomiendo analizar los

condensadores además de los criterios de diseño que se pueden usar para optimizar el trabajo del

mismo.

El amplificador emisor seguidor no posee mucha ganancia de tensión sin embargo es muy estable y

eso se comprueba porque nuestros resultados teóricos se asemejan a lo prácticos y parece que este

tipo de configuración posee un ancho de banda un poco reducido esto debido a su frecuencia de

corte del condensador.

El análisis del base común concluye en que al igual que el emisor común tiene una inestabilidad

inherente, su ventaja al igual que el emisor común es que posee una gran ganancia de tensión su

frecuencia de corte esta entre la del emisor común y la del emisor seguidor lo que implica que es

relativamente factible su utilización en variados proyectos

Anote en forma concreta sus observaciones y conclusiones sobre el experimento realizado.

Observamos que al realizar el siguiente experimento encontramos las características del transistor

como sus tensiones de saturación en las cuales deja de transmitir una señal idéntica a la de la

entrada por causa de la saturación del rizo inferior de la onda senoidal medida, también que son

diferentes a las operaciones teóricas a las reales.

Page 20: electronica analoga

EXPERIMENTO Nº 3

RESPUESTA EN BAJA FRECUENCIA DEL AMPLIFICADOR EN EMISOR COMÚN, CON

ACOPLAMIENTO R-C

OBJETIVO:

El objetivo de este experimento es estudiar el funcionamiento del amplificador en

configuración Emisor Común con BJT en bajas Frecuencias. Para ello se diseñará

previamente el amplificador seleccionando un punto Q de trabajo, una ganancia de

corriente y una frecuencia de corte determinada a -3dB. Luego se verificará

experimentalmente los resultados.

MATERIAL Y EQUIPO:

Osciloscopio

Generador de Audio

Fuente de alimentación DC

Multímetro

1 transistor BC548 o equivalente

Resistencias y condensadores según diseño

Tablero de conexión

Alicate

PROCEDIMIENTO:

1. Configure su generador como una fuente de corriente de señal. Para ello intercale

entre el generador y la entrada del amplificador una resistencia de 10KΩ.

Page 21: electronica analoga

2. Arme el amplificador diseñado por UD en un tablero de conexión (protoboard). Fig. 3-2

3. Alimente su circuito y aplíquele la señal de la fuente de corriente, cuidando que la

tensión de salida sobre la carga RL no presente distorsión. Seleccione una frecuencia

correspondiente a la gama de frecuencias medias. Anote sus observaciones:

EBR

Page 22: electronica analoga

Reemplazando valores:

C

i

XR

RVV

0

cC fRc

X 2

1

CsRiRsfCS

2

1

CsRiRsR

RVV i

2

10

71.50 V

4. Haga un barrido de frecuencia para encontrar la region de frecuencias muy bajas,

Escoja una frecuencia del extremo y, anotando la amplitud de la señal del generador,

tome conocimiento de la amplitud de voltaje de carga RL. Repita esta medición

aumentando la frecuencia del generador de 1 Hz en 1 Hz hasta llegar a 10Hz, de 10Hz

en 10Hz hasta llegar a 100Hz, de 100 Hz en 100Hz hasta llegar a 1 KHz y asi

sucesivamente. Termine sus lecturas una vez que haya alcanzado la gama de

frecuencias medias.

c

C

i XXR

VV

0

RCf

RCR

Xc

RXcR

Xc

V

V

i 2

1

21

1

1

12

0

2

0

1

1

f

fV

V

i

log20

1

1

2

2

0

ff

V

V

i

Page 23: electronica analoga

5. Construya un grafico de la ganancia de corriente del circuito versus frecuencia,

encontrando la frecuencia de corte en -3dB. Emplee papel semilogaritmico.

1Re1//2

11

CchfehieRbrif

22

12

CcRLRcf

Cef

Re2

13

Cehfe

riRbhib

f

1

//Re//2

14

mAIhfehie

EQ

25

Adoptar:

IEQ = 1…5Ma

21 ff

2103 ff

43 fdbf

ANEXO

Cálculos de diseño.

Empezaremos con las formulas:

Page 24: electronica analoga

KBRE 2100

200EBR k

EBR >>10Rz = 100K

VKK

VK

RR

VccRVB 4

4010

2010

12

2

mAK

VV

R

VI

E

EE 65.1

2

7.04

RmA

mVre 76.15

65.1

26

9076.15

2.2//4//0

kk

re

RlRc

V

VAv

i

Ze = Re = R1//R2//Bre

= 40K//10k//1.576

=1.32KΩ

RsRi

RiVsVi

569.0132.1

32.1

kk

k

RsRi

Ri

Vs

Vi 21.510 Vs

VAVs

CsRsRf LS

12

1

ufkkf LS

1032.112

1

HzfLS 86.6

Page 25: electronica analoga

En corriente continua:

ICQ = 5.6 mA

VceQ = 5.24 – 0.565 = 4.65 V

Page 26: electronica analoga

CONCLUSIONES

A frecuencias bajas la disminución de la ganancia se debe a la presencia de las

capacitancias CS, Cc y al desacoplamiento Ce.

Un cambio en frecuencia por un factor de 2 equivalente a una octava resulto un

cambio de 6 db tal como se observa por el cambio en ganancia de f1/2 – f1.

La ganancia máxima se da cuando Rc = 0.

Para un cambio de 10:1 en frecuencia equivalente a una década hay un cambio de

20db en la relación como se señala entre las frecuencias f1/f10 – f1.

Si se ignora los efectos de Cs y Ce el voltaje de salida V0 será el 70.7% de su valor de

banda media a fLC.

Page 27: electronica analoga

LABORATORIO N:4

RESPUESTA EN ALTA FRECUENCIA

OBJETIVO: Estudiar el comportamiento en alta frecuencia de unos amplificadores RC con BJT y acoplamiento RC. Comprobación del efecto Miller. MATERIAL Y EQUIPO: - Osciloscopio de doble canal de 60 MHz - Generador de Señales - Fuente de Alimentación DC - Multimetro digital - 1 Transistor 2N3904 - 6 resistencias (1/4W): 1K, 5.1K, 7.5K, 10K, 12K, 51K - 4 Condensadores:22uF / 16V, 6.8uF / 16V, 10uF / 16V, 240pF/25V - Tablero de Conexión - Alambres de conexión - Alicate PROCEDIMIENTO:

1. ARME EL CIRCUITO DE LA FIGURA.

Page 28: electronica analoga

2. APLIQUE ALIMENTACION Y LLENAR TABLA 1. la 1

3. CONECTE GENERADOR DE SEÑALES Y APLIQUE A SU CIRCUITO UNA SEÑAL DE 1 KHZ Y 25 Mv Pp

4. MIDA LA GANANCIA DE VOLTAJE.

Av = Vo / Vi = 29

5. OBTENGA LA GANANCIA DE CORRIENTE :

AI = IL / I1 = 39.2

Page 29: electronica analoga

6. OBTENGA LA RESPUESTA EN FRECUENCIA DEL CIRCUITO. LLENAR LA TABLA II SIN EL CONDENSADOR CR Y MANTENIENDO LA ENTRADA EN 25MV PICO PARA TODO EL RANGO DE FRECUENCIAS.

7. CONECTE UN CONDENSADOR CR = 240PF ENTRE LA BASE Y EL CONECTOR DEL TRANSISTOR (VER FIG. 4-1).

8. REPITA EL PASO 6 Y LLENE LA TABLA III.

CUESTIONARIO

1. Grafique en papel semilogaritmico las respuestas obtenidas en los pasos 6 y 8.

Fig. paso 3

Page 30: electronica analoga

Fig. paso 6 2. Calcule la ganancia teorica de voltaje a frecuencias medias sin e condensador Cr. Haga lo propio con la ganancia de corriente. Adopte el valor tipico de hfe del transistor 2N3904. 3. Calcule la frecuencia de corte superior fh del circuito sin el condensador Cr. Adopte Cb’e = gm ωT t Cb’c = valor tipico. C1 = CW + Cbe + Cm Cm = (1-Av)Cf Rpta: la frecuencia de corte sin el condensador de 240pF es -179.6 hz aprox Resuelva la pregunta anterior pero con el condensador Cr en el circuito. Ci = CW + Cbe + Cmi Ci = CW + Cbe + (1-Av)Cbe Rpta: la ganancia de corte con el condensador de 240pF es -173.4 aprox 5. Calcule la frecuencia de corte inferior L del circuito y las demas frecuencias de quiebre para ambos casos. Sin condensador: -Inferior: 7.381 hz Con condensador: -Inferior: 7.381 hz

Page 31: electronica analoga

6. Compare los Resultados Teoricos con los Experimentales. Los resultados obtenidos son bastante similares entre los teóricos y los obtenidos prácticamente en laboratorio, todo esto debido a que los componentes no son exactamente los valores que nos pide el circuito diseñado. Los resultados obtenidos son muy similares debido a que los componentes difieren muy poco en su magnitud. Estos cambios de valores en los dispositivos puede deberse a que la procedencia de los distintos dispositivos es diferente, a la fabricación de los mismos, etc Esto se debe a que los componentes tienen diversas marcas. Y también respecto al ambiente de trabajo. Otro factor de error puede deberse que en estas mediciones influya el ambiente de trabajo, pudiendo este crear zonas de estática o campos magnéticos los cuales pueden influir en el comportamiento y mediciones de nuestros circuitos. 7. Conclusiones y Observaciones. Cuando se incrementa la frecuencia de nuestra señal se puede ver u observar que la ganancia disminuye y se produce un desfase esto se debe a las capacidades parasitas y propias de los amplificadores usados. Los capacitares de acoplo y desacoplo se consideran como corto circuito y aparecen las capacidades Cbc, Cbe, Cce que aparecen en altas frecuencias. Entra a tallar el teorema de millar el cual se utiliza para simplificar resultados.

Page 32: electronica analoga

EXPERIMENTO Nº 5

EL AMPLIFICADOR OPERACIONAL

OBJETIVO:

Estudiar y aplicar las características de los amplificadores operacionales integrados en circuitos básicos.

MATERIAL Y EQUIPO:

- Osciloscopio - Generador de audio - Fuente de alimentación doble - Multimetro - 1 Opamp 741 - 4 resistencias: 1KΩ, 2 x 10KΩ, 100KΩ - 2 condensadores: 0.01uF, 0.02uF - 1 Potenciometro de 10K - 1 diodo 1N4148 - Tablero de conexión - Alicate de punta

Page 33: electronica analoga

PROCEDIMIENTO:

1. Arme el circuito de la Figura. 5-1

2. Varié el potenciómetro hasta que la salida sea cero con Vi = 0. Variar luego todo el

potenciómetro y encontrar los valores extremos de Vo cuando el cursos varia en todo su rango.

Vomax = 14.8mV Vomin = 14.8mV

( El potenciómetro proporciona la corriente OFFSET-NULL) Retorne el cursor a la posición que permite que Vo = 0.

3. Teniendo cuidado de conectar en forma correcta las fuentes DC (haga verificar por el profesor) y con Vi = 0, mida las tensiones en todos los terminales del operacional:

Terminales del Operacional

1 2 3 4 5 6 7 8

-12 0 0 -12 -12 10.90 12 12

4. Aplique como Vi una señal senoidal de 1KHz de 1Vpp y observe la salida, a fin de determinar la ganancia del amplificador.

Page 34: electronica analoga

Vi = 1 Vpp Vpp = 10V

Av = 10

5. Retire momentáneamente la resistencia de 100KΩ0

y observe Vo. Para asegurarse de su conclusión, varie la frecuencia y amplitud de Vi para observar el efecto. Coloque nuevamente la resistencia. Vppo=22V La señal de salida se satura debido a la alta ganancia en lazo abierto. Esto no ocurre con realimentación.

6. Varie la frecuencia del generador manteniendo Vi constante a fin de determinar la respuesta de frecuencia del amplificador. Observe la distorsion producida por el fenómeno del “slew-rate”.

F(Hz) 50 100 500 1K 5K 10K 50K 100K 200K 500K

Vo 10V 10V 10V 10V 10V 10V 10V 10V 10V 10V

7. CIRCUITO SUMADOR INVERSOR: Adicione el circuito mostrado en la Fig 5-2, para poder sumar una continua a la señal Vi.

Page 35: electronica analoga

8. Varie el potenciometro y observe el desplazamiento de la salida, anotando Vi, Ve y Vo con el componente DC. Anote los valores extremos de Ve que ocasionan un recorte en Vo.

9. Arme el circuito de la Fig. 5-3, que es un COMPARADOR y observe la señal de salida, variando

el potenciómetro a fin de cambiar el nivel de la tensión de referencia. Dibuje un caso anotando los valores en las entradas y salidas.

10. Coloque un diodo según indica las líneas punteadas y anotar el efecto que este produce en

la salida.

Vi 0.5 Vpp 0.5 Vpp 0.5 Vpp

VR 0.96 -0.96 0

Vppo 6.42 -6.36 9.98

Page 36: electronica analoga

11. Arme los circuitos de las figuras 5-4 y 5-5, que consisten en un INTEGRADOS y DERIVADOR

respectivamente, dibujando las señales de salida.

Page 37: electronica analoga

CUESTIONARIO:

1. Describa brevemente el circuito interno de un amplificador operacional, explicando el principio de funcionamiento.

Inversión:

Sin Inversión:

Los conocidos OPAMPS interiormente están compuestos por tres bloques, el primero que es un amplificador diferencial que amplifica y opera con referencia a las dos entradas del cual va a un amplificador de voltaje y a unos de corriente, esto para obtener las amplificaciones necesarias para un circuito de amplificación con capacidades de operación.

2. Para cada una de las aplicaciones basicas siguientes, dibujar el circuito indicando como funcionan y los resultados experimentales obtenidos:

CORRECTOR DE OFFSET.

Con una relación de ganancia A = 1

iV

VAv 0

2

1

R

R

La relación de P a ganancia seria:

AV = 1.1

Page 38: electronica analoga

AMPLIFICADOR INVERSOR.

Para el circuito tenemos el siguiente resultado ΔV = -10

1

2

R

R

Vi

VoV

AMPLIFICADOR SUMADOR INVERSOR.

Para este amplificador los resultados nos dan:

Vi = 500 mV Vo = 10V Av = 20

DETECTOR DE NIVEL (EL COMPARADOR):

Tenemos los siguientes resultados:

Vi = 0.5V Vo = 12.25 V Av = 24.5

Page 39: electronica analoga

LIMITADOR:

Este amplificador operacional tambien es conocido como logaritmico. Produce una salida de alto nivel constante. El diodo que utiliza es un tener y este es el que realimenta.

INTEGRADOR:

DIFERENCIADOR:

Page 40: electronica analoga

3. Haga mención de otras aplicaciones de los OPAMPs:

Se pueden utilizar tambien para filtros activos, mediante los modelos de Butterworth o Chebychev, etc

Se utiliza en filtros CHE activos. Se utilizan tambien en filtros pasivos En circuitos resonantes o vibradores. En rectificadores de media onda. En circuitos recortadores. En rectificadores de ondacompleta. En circuitos fijadores de nivel.

4. Mencione y de ejemplos de las diferentes clases de amplificadores operacionales y las aplicaciones especificas, según sus características especiales.

Generadores de barrido con auto evaluación. Se utilizan para generar una rampa lineal de tensión, la salida esta conectada directamente a la entrada inversora

Multiplicador Analógico:

Se utiliza para la integración de raíces cuadradas.

5. Dibuje la curva de respuesta en frecuencia en lazo abierto del OPAMP y explique las tendencias y puntos importantes. En el caso del amplificador inversor, grafique la respuesta en frecuencia teorica de lazo cerrado conjuntamente con la experimental, comparamndo ambas con la respuesta de lazo cerrado.

Page 41: electronica analoga

6. Extraiga de los manuales la información de los sgts. Terminos usados en los amplificadores operacionales: OFFSET VOLTAGE DRIFT, RISE TIME, BAND WIDTH, DIFERENCIAL INPUR, SLEW RATE, OVER SHOOT, CMRR, T.H.D, INPUT BIAS CURRENT, etc.

1. Tensión Offset de entrada, Es la tensión diferencial V que debe ser aplicada para hacer

que la tension de salida sea cero. 2. Corriente Offset de entrada, Es la diferencia entre las corrientes de la entrada V1 y V2

cuando se hace que la salida sea 0 mediante la inserción de una tension offset.

3. Corriente de polarizacion de entrada, Es el valor medio de las dos corrientes de entrada que son necesarias para que el transistor de entrada funcione correctamente.

4. Coeficiente de la temperatura de la tension offset de entrada o deriva termica.

5. Ganancia de tension para gran señal, Es la relacion entre la señal tension de entrada cuando la tension de salida tiene varios valores.

6. Relacion de rechazo de modo comun, Es la relación de ganancia de modo diferencial y la ganancia de modo comun.

7. Relacion de rechazo de la tension de alimentación, La falta de perfecta simetría en el circuito significa que la tension de salida varia con la tension de alimentación.

8. Compensación en frecuencia, Las limitaciones de frecuencia son debidas en el operacional a los anchos de banda finitos en los transistores tambien a las capacidades parasitas que estan presentes en todo circuito.

9. Ancho de banda de ganancia unidad, Es el margen de frecuencias desde la corriente continua hasta la frecuencia en que la ganancia del amplificador disminuye.

10. Slew Rate (Velocidad de cambio), y del establecimiento.

7. Anote sus observaciones y conclusiones del experimento.

Mayormente los OPAMPs se utilizan para obtener ganancias a partir de sus entradas inversora o inversora. Es decir para una amplificación simple que puede tener gran ganancia. El punto fuerte de los OPAMPs es la gran variación de configuraciones que podemos darle con las cuales podemos conseguir diferentes tipos de operaciones que seran aplicadas a sus entradas y consiguiendo una respuesta en su salida.

Page 42: electronica analoga

LABORATORIO Nº6

FILTRO ACTIVO DE RECHAZA BANDA

OBJETIVO:

Analizar las características de un filtro activo de rechaza banda ( notch-filter ) de q ajustable y frecuencia central de Hz

MATERIAL Y EQUIPO:

Osciloscopio

Generador de Audio

Fuente de Alimentación DC

Multimetro Digital

2 OPAMP 741 o TL071

3 Condensadores: 2x 0.22 uF, 0.74 uF

4 Resistencias (1 4⁄ 𝑊): 12KΩ

Un potenciómetro de 10KΩ

Tablero de conexión

Alicate

INFORMACION PREVIA

La lectura digital de magnitudes eléctricas como voltaje, corriente, resistencia, etc., está relacionada con el procedimiento electrónico de las señales provenientes de un ADC.

La señal entrante al convertirse debe ser filtrada para eliminar frecuencias espúreas. El zumbido proveniente de la línea de 60 Hz es un ejemplo de señal

parásita. En el presente experimento se estudiaran las características de un filtro de

rechaza de banda calculado para una frecuencia central de 60Hz.

PROCEDIMIENTO:

1. Arme el circuito de la figura.

Page 43: electronica analoga

2. Energice el circuito empleando la fuente bipolar y ajustando a sus salidas

a +12V y -12V. tenga cuidado con la polaridad de estas al conectarlas al circuito, pues podrían destruir al amplificador profesional.

3. Lleve el cursor del potenciómetro de su circuito hacia el extremo de la

tierra.

4. Conecte el generador de audio a la entrada del circuito y ajuste la salida de aquel para 1v pico de onda sinusoidal de 1KHz.

5. Haga un barrido de frecuencia desde DC (0Hz) hasta 10KHz. Observe la salida del circuito y anote la frecuencia a la que obtiene la mínima

amplitud.

Frecuencia central de rechazo. 90Hz

6. Tome las lecturas de salida en un rango de ±20Hz alrededor de la

frecuencia hallada en el paso 5. Mantenga en todo instante la amplitud del generador en un voltio.

Δ -20 -15 -10 -5 0 +5 +10 +15 +20

F 20 15 10 5 0 5 10 15 20

𝑽𝒐 18 19.5 16 15.9 0 -15.9 16 19.5 18

Page 44: electronica analoga

7. Tome las lecturas cada 10Hz. Hasta llegar a 100Hz. Luego cada 100Hz hasta llegar a 1KHz hasta llegar a 10KHz. Igualmente desde la frecuencia

de rechazo central disminuya 10Hz por vez hasta llegar a la frecuencia cero (DC). Lide igualmente la salida del circuito.

8. Plotee en papel semilogaritmico la ganancia del circuito en función de la

frecuencia. En la escala lineal del papel marque la ganancia de dB=20logA, done:

𝐴 =𝐴𝑚𝑝𝑙𝑜𝑡𝑢𝑑𝑝𝑖𝑐𝑜𝑑𝑒𝑠𝑎𝑙𝑖𝑑𝑎

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑝𝑖𝑐𝑜𝑑𝑒𝑒𝑛𝑡𝑟𝑎𝑑𝑎

9. Desconecte el generador y desenergice el circuito.

10. A continuación ajuste el valor de la resistencia del potenciómetro

para una lectura de 2.5KΩ entre el cursor y tierra (𝐾 = 14⁄ ).

11. Energice el circuito y conecte el generador, siempre ajuste para una amplitud de 1v pico.

12.Repita los pasoso 5 al 9 para valores de resistencia de potenciómetro de

5KΩ, 7.5KΩ y 9KΩ (𝐾 = 12⁄ , 1 4⁄ 𝑦 9 10⁄ respectivamente) y con una

amplitud de señal de generador de 1V pico.

Page 45: electronica analoga

Entrada 1 Vpp, salida Vo = 965 mVpp.

Ganancia A en decibeles con k en tierra:

1.000 Hz 10.00 Hz 100.0 Hz 1.000kHz 10.00kHz

5.000 dB

-5.000 dB

-15.00 dB

-25.00 dB

-35.00 dB

-45.00 dB

Measurement Cursors 1 vo X: 13.962 Y: -3.0156 2 vo X: 252.51 Y: -2.9997 Cursor 2 - Cursor 1 X: 238.55 Y: 15.875m

Page 46: electronica analoga

Ganancia A en decibeles con k = 1/4:

1.000 Hz 10.00 Hz 100.0 Hz 1.000kHz 10.00kHz

0.000 dB

-10.00 dB

-20.00 dB

-30.00 dB

-40.00 dB

Measurement Cursors 1 vo X: 18.018 Y: -3.0567 2 vo X: 194.94 Y: -3.0602 Cursor 2 - Cursor 1 X: 176.92 Y: -3.5358m

Ganancia A en decibeles con k = 1/2:

1.000 Hz 10.00 Hz 100.0 Hz 1.000kHz 10.00kHz

0.000 dB

-10.00 dB

-20.00 dB

-30.00 dB

-40.00 dB

Measurement Cursors 1 vo X: 24.829 Y: -3.0825 2 vo X: 143.60 Y: -2.9933 Cursor 2 - Cursor 1 X: 118.78 Y: 89.233m

Ganancia A en decibeles con k = 3/4:

Page 47: electronica analoga

1.000 Hz 10.00 Hz 100.0 Hz 1.000kHz 10.00kHz

0.000 dB

-10.00 dB

-20.00 dB

-30.00 dB

Measurement Cursors 1 vo X: 36.879 Y: -3.0027 2 vo X: 95.959 Y: -2.9381 Cursor 2 - Cursor 1 X: 59.080 Y: 64.656m

Ganancia A en decibeles con k = 9/10:

1.000 Hz 10.00 Hz 100.0 Hz 1.000kHz 10.00kHz

2.500 dB

-2.500 dB

-7.500 dB

-12.50 dB

-17.50 dB

-22.50 dB

Measurement Cursors 1 vo X: 49.410 Y: -3.0818 2 vo X: 73.115 Y: -2.5004 Cursor 2 - Cursor 1 X: 23.705 Y: 581.44m

Page 48: electronica analoga

OBSERVACIONES Y CONCLUSIONES

Un amplificador operacional es ideal como un filtro rechaza banda angosta o ancha

pues su grado de rechazo supera a los filtros pasivos.

Los filtros activos están limitados en frecuencia pues no trabajan a frecuencias

superiores a los 5Mhz, pierden estabilidad.

Hay otros modelos de filtros rechaza banda que puede ser implementados, estos

fueron desarrollados por Butterworth y SallenKey lo que permite multitud de

modelos para cada aplicación requerida.

Page 49: electronica analoga

LABORATARIO Nº7

AMPLIFICADOR REALIMENTADO

OBJETIVO:

En el presente experimento se estudiara y disenara un sistema con realimentacion de tension y de corrientes basadas en un amplificador diferencial y un o en E. C., midiendo las caracteristicas en cada caso.

MATERIAL Y EQUIPO

nte de Alimentacion DC doble

PROCEDIMIENTO:

Page 50: electronica analoga

1. Arme el circuito de la figura 7-1

2. Tenga mucho cuidado con los terminales de los transistores y verificando las conexiones, energizar el circuito y medir el punto de operacion de cada elemento.

3. Aplique una senal de 50 mV, 1 kHz senoidal a la entrada y mida la salida para determinar la ganancia.

Page 51: electronica analoga

A v = 39.65

Con pequenas frecuencias los valores de la ganancia tambien varian a comparacion que con frecuencias altas no se modifica.

4. Coloque un salida con el ç condensador de base al diferencial. Mida la ganancia delcircuito realimentado con error de tension.

A VfV = 54.98

5. Mida la resistencia de entrada :

Z inf = 4.98KΩ

Page 52: electronica analoga

6. Varie la amplitud del generador y determine la maxima salida sin distorsion no lineal. Observe la calidad de V 0 respecto a la senal V i .

V omax = 1m Vp

7. una resistencia en serie Ri de igual valor que RB .

Observe la senal de la salida con la entrada. El punto X del transistor Q 3 debe conectarse al punto N de Q 2 para que sea realimentacion negativa. Mida la ganancia de tension realimentada con error de corriente.

A vfi = 2

8. Mida la impedancia de entrada del circuito .

Z inf = 8.91Ω

9. Varie la frecuencia del generador , a fin de obtener la respuesta en frecuencia del amplificador , manteniendose Vi = 50 mVpp .

Page 53: electronica analoga

CUESTIONARIO

1) MUESTRE EL PROCEDIMIENTO DE DISEÑO:

2) GRAFIQUE LA RESPUESTA EN FRECUENCIA Av VS F

Fig. Ganancia en decibelios

Page 54: electronica analoga

Fig. Respuesta en frecuencia(Fase)

Page 55: electronica analoga

EXPERIMENTO N 8

Osciladores

OBJETIVO ESTUDIAR EL COMPORTAMIENTO DEL OSCILADOR RC POR DESPLAZAMIENTO DE FASE Y

DEL OSCILADOR RC CON PUENTE DE WIEN. ESTUDIO DE LOS MECANISMOS Y/O TÉCNICAS DE

LITACIÓN AMPLITUD.

MATERIAL Y EQUIPO:

OSCILOSCOPIO

FUENTE SIMÉTRICA

MULTÍMETRO

TL071

2N3904

11RESISTENCIAS: 22, 4X1K , 2X 2.7K , 4.7K

8 CONDENSADORES:3X 0.04UF, 2X 0.1UF , 22UF, 100UF

1POTENCIOMETRO DE 1K

Page 56: electronica analoga

Aplique alimentación al circuito y encuentre el punto de operación del transistor. Para ello desconecte uno de los condensadores de 0.015uf del circuito y mantenga el potenciómetro en su máxima resistencia

𝑰𝑪𝑸 = 𝟑. 𝟑𝟔𝒎𝑨

𝑽𝑪𝑬𝑸 = 𝟒.𝟓𝟖𝟐𝒗

Retire la alimentación y vuelva a conectar el condensador de 0.0.15uf Aplique nuevamente alimentación y observe la forma de onda de voltaje presente en el colector. Ajuste el potenciómetro para obtener máxima amplitud y mínima distorsión

frecuencia de la señal: f=1.45kz

Page 57: electronica analoga

Manteniendo una de las puntas de prueba del osciloscopio en el colector del transistor observe con la otra punta de medición en la base y en los punto A y B del circuito oscilador, fin de poder observar el desfase existente entre las formas de onda.

V colector con relación a:

MEDIDAS GRAFICA

V base La onda de color celeste es la señal en el colector Vpp=5.47V La onda de color violeta es la señal en el base Vpp= 185mv La señal de base con respecto a la de colector tienes un desfase de 180º

V B La onda de color celeste es la señal en

el colector Vpp=5.47V La onda de color violeta es la señal en el B Vpp= 440mv La señal de base con respecto a la de colector tienes un desfase de 221º

V A La onda de color celeste es la señal en

el colector Vpp=5.47V La onda de color violeta es la señal en el B Vpp= 1.58V La señal de base con respecto a la de colector tienes un desfase de 298.28º

INVESTIGUE EN LA BIBLIOGRAFÍA DEL CURSO Y DEMUESTRE QUE PARA EL INICIO Y MANTENIMIENTO DE LAS OSCILACIONES DEBE CUMPLIRSE QUE:

Page 58: electronica analoga

Dado

que la impedancia de entrada del transistor Ri = hie ||Rb, donde Rb = R1 || R2, y es normalmente

menor que R, se agrega la resistencia en serie R, de manera que R = R’ + Ri ≈ R’ + hie. Por lo tanto,

la condición para que haya oscilación es que i3/ib ≥ 1∠0. Las ecuaciones de malla en estas condiciones son:

Esta expresión representa la ecuación característica del sistema. Puesto que es homogénea será

equivalente a la relación L(s) = B(s)A(s), la cual contiene las condiciones de oscilación. Desarrollando el determinante se obtiene:

Sustituyendo s = jω se obtiene

La frecuencia de oscilación ω0 se determina igualando a cero la parte real

La condición de ganancia se obtiene de

reemplazando wo

Haciendo α = Rc/R:

resolviendo

Page 59: electronica analoga

E.- COMPARE LOS VALORES EXPERIMENTALES CON LOS CÁLCULOS TEÓRICOS QUE PUEDA OBTENER DE ESTAS FORMULAS F.- ¿CUAL SERIA A SU CRITERIO LA SECUENCIA A SEGUIR PARA DISEÑAR ESTE OSCILADOR?

Page 60: electronica analoga

6. ARME EL CIRCUITO DE LA FIGURA

7.-ENERGICELO Y OBSERVE CON LA AYUDA DEL OSCILOSCOPIO LA FORMA DE ONDA DEL VOLTAJE EN LA SALIDA DEL CIRCUITO. AJUSTE EL POTENCIÓMETRO PARA OBTENER MÁXIMA AMPLITUD CON LA MINIMA DISTORCION

f=1.58kHz Vpp=4.56V 8.- OBSERVE LAS FORMAS DE LAS ONDAS EN LAS PATILLAS 2 Y 3 DEL AMPLIFICADOR OPERACIONAl. salida

pin 2 pin 3 Las señales están en fase

Page 61: electronica analoga

9.-CORTE LA ALIMENTACIÓN DEL CIRCUITO Y DESCONECTE LOS DOS DIODOS. VUELVA A APLICAR ALIMENTACIÓN Y AJUSTE EL POTENCIÓMETRO PARA LA MÁXIMA SALIDA CON MÍNIMA DISTORSIÓN

Vo=20.9v

V1=6.81v

V2=7.33v

F=1.58KHZ

10.-¿CUÁL ES LA FUNCIÓN DE LOS DIODO EN EL CIRCUITO OSCILADOR CON PUENTE WIEN? Es limitar la amplitud de las entradas en los pines 2 y 3 para evitar llevar al opam a saturación

Page 62: electronica analoga

Reemplazando s = jω se tiene:

ta ecuación contiene los polos de la función de transferencia de tensión de la red. Se resuelve,

igualando las partes real e imaginaria a cero, obteniéndose, como antes,

remplazando en B(s) obtenemos la ganancia

Page 63: electronica analoga

LABORATORIO Nº9

OSCILADOR DE FRECUENCIA VARIABLE CON CONTROL AUTOMCATICO

DE GANANCIA

OBJETIVO:

Estudiar el comportamiento de un control automático de ganancia para la operación a

frecuencia variable en un oscilador puente Wien.

MATERIAL Y EQUIPO:

Osciloscopio

Generador de Audio

Fuente de Alimentación Doble

Multimetro Digital

2 Opamp TL 081

1FET NTE312

2 Diodos 1N4148

6 Resistencias (1 4⁄ 𝑊): 120Ω,3x10K ,2k ,10k

5Condensadores: 220uF,2x0.01 uF,2x100pF

Un potenciómetro simétrico de 10KΩ

Un potenciómetro de 500

Page 64: electronica analoga

PROCEDIMIENTO:

13.Arme el circuito de la figura.

14.Varie la tensión de la fuente negativa y llene la tabla 1:

Vgs(volts) v1(Vpp) v2(Vpp)

0 4 1.125

-0.1 4 1.196

-0.2 4 1.267

-0.4 4 1.404

-0.6 4 1.527

-1 4 1.705

15.Calcule entonces el valor de rds usando la siguiente formula:

𝑟𝑑𝑠 =𝑣2

𝑣2 − 𝑣1𝐾Ω

Y llene la tabla 2; además grafique los resultados de rds vs Vgs

Vgs(volts) Rds(KΩ)

0 0.39130435

-0.1 0.42653352

-0.2 0.46359312

-0.4 0.54083205

-0.6 0.61746866

-1 0.74291939

Page 65: electronica analoga

16.Arme el circuito de la figura 2:

17.Energícelo y observe con el osciloscopio la forma de onda del voltaje de

salida del circuito. Si no encuentra la oscilación varíe el potenciómetro P1 y obtenga Vo=3Vpp

18.Variando el potenciómetro obtenga la mínima y máxima frecuencia de oscilación

CUESTIONARIO

Explique el funcionamiento del control automático de ganancia

El control de ganancia lo hace el transistor FET canal N, si en la compuerta del transistor se

tiene alta señal de entrada el FET aumenta su resistencia drenador-surtidor, haciendo que

la ganancia se reduzca y si en la compuerta del transistor se tiene una pequeña señal de

Page 66: electronica analoga

entrada el FET disminuye su resistencia drenador-surtidor, haciendo que la ganancia

aumente.

De que depende el valor de RC del circuito gate- source

Depende de la frecuencia de oscilación requerida, con este circuito se obtiene un pico de

ganancia en esta frecuencia, esta es igual cuando la impedancia del resistor es igual a la

impedancia del capacitor.

Por que se amplifica Vo para poder excitar el FET?

Porque la señal original generada no es suficiente para que el FET pueda volver a oscilar, y

usando un amplificador operacional se puede tener una oscilación de mayor amplitud.

Por que al variar el potenciómetro P2 la amplitud de la señal de oscilación varía para luego

estabilizarse

Porque se está modificando la ganancia en el amplificador operacional y entra en una

respuesta transitoria, el circuito debe adaptarse a esta nueva configuración para poder llegar

a la estabilidad.

OBSERVACIONES Y CONCLUSIONES

El circuito número 1 con el transistor FET puede usarse como un control automático

de ganancia para poder comprimir cualquier señal de entrada.

El circuito de oscilación puente Wien de la parte 2 permite generar frecuencias fijas,

solo es necesario modificar las resistencias y capacitores para poder obtener la

frecuencia requerida siempre y cuando no se sobrepase los limites de operación del

OPAMP = 5MHz

Las aplicaciones de los circuitos osciladores son generalmente hacia los timers por

ejemplo el TIMER 555 pues generan pulsos de excitación para diversos circuitos

de la tecnología CMOS.

ANEXO

Otro modelo básico de circuito de oscilación

Solo consiste en de un opamp el potenciómetro R1 de 50k varia la ganancia de la oscilación

Y las resistencias R4 y capacitores C1 la frecuencia de oscilación

Page 67: electronica analoga