electronic devices - scalak · 2014. 3. 21. · 8 ke g kt e n i t at 2e 2 3 n 300 k 3 1.5 1010cm i...

14
2014-03-21 1 KE ELECTRONIC DEVICES Piotr Dziurdzia, Ph.D. C-3, room 413; tel. 617-27-02, [email protected] AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY IM. STANISŁAWA STASZICA W KRAKOWIE Faculty of Computer Science, Elelctronics and Telecommunications DEPARTMENT OF ELECTRONICS KE EiT PD Electronic devices - physics of semiconductors 2 PHYSICS OF SEMICONDUCTORS …….. a journey in searching „carriers-conductors” of electrical current ……

Upload: others

Post on 03-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 2014-03-21

    1

    KE

    ELECTRONIC DEVICES

    Piotr Dziurdzia, Ph.D. C-3, room 413; tel. 617-27-02, [email protected]

    AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY IM. STANISŁAWA STASZICA W KRAKOWIE

    Faculty of Computer Science, Elelctronics and Telecommunications

    DEPARTMENT OF ELECTRONICS

    KE

    EiT PD Electronic devices - physics of semiconductors 2

    PHYSICS OF

    SEMICONDUCTORS

    …….. a journey in searching „carriers-conductors” of electrical current ……

  • 2014-03-21

    2

    KE

    EiT PD Electronic devices - physics of semiconductors 3

    AFTER THIS CHAPTER WE SHOULD EASIER UNDERSTAND WHY:

    - in field effect semiconductor devices, the current-voltage characteristics are expressed by square relations ?

    - in the junction semiconductor devices, the current-voltage characteristics are expressed by exponential relations ?

    - in semiconductors, almost everything depends on

    temperature T, which sometimes is called as super parameter ?

    R=f(U, I, T)

    KE

    EiT PD Electronic devices - physics of semiconductors 4

    WHAT ARE WE GOING TO TALK ABOUT ?

  • 2014-03-21

    3

    KE

    EiT PD Electronic devices - physics of semiconductors 5

    SEMICONDUCTOR MATERIALS

    THE CLASSIFICATION OF MATERIALS IN TERMS OF ELECTRICAL CONDUCTIVITY

    S

    l S

    l

    S

    lR

    1

    conductivity

    resistivity

    m

    1

    m

    INSULATORS

    SEMICONDUCTORS

    METALS

    10E+6(Ωm)E-1 10E-6(Ωm)E-1

    12 orders of magnitude!

    (in room temperature)

    ρ ~ T ρ ~ exp(-T)

    KE

    EiT PD Electronic devices - physics of semiconductors 6

    Semiconductors - their important feature is that the conductivity may vary over a wide range due to changes in temperature, light or introduced dopants

    IV

    C Si Ge Sn

    V

    P As Sb

    III

    B Al Ga In

    III-V

    AlP AlAs GaP

    GaAs GaSb

    Elementary semiconductors

    Complex semiconductors

    SEMICONDUCTOR MATERIALS

  • 2014-03-21

    4

    KE

    EiT PD Electronic devices - physics of semiconductors 7

    SILICON ATOM

    +4

    According to Niels Bohr’s theory of an isolated atom, the electrons can have strictly defined energy levels expressed in a quantum way:

    2

    0

    22

    4

    8 hn

    mZeE e

    atomic number of the element (ZSi=14)

    elementary charge of the electron (1.6E-19C)

    mass of the electron (1.78E-31kg)

    the number of electron shell Planck constant

    (6.625E-34Js)

    permittivity of the vacuum (8.854E-12F/m)

    E

    KE

    EiT PD Electronic devices - physics of semiconductors 8

    +4 +4 +4 Sicm31 atoms2310

    eV1 eV2310

    If the band gap

    is: the distance between

    energy levels

    x

    E

    +4

    SILICON ATOMS

  • 2014-03-21

    5

    KE

    EV

    EC

    EiT PD Electronic devices - physics of semiconductors 9

    +4

    +4

    +4

    +4 +4

    +4

    +4

    +4

    +4

    +4

    +4

    +4

    +4 +4 +4

    +4 +4 +4

    +4 +4 +4

    +4

    +4

    +4

    Two-dimensional model of a semiconductor from IV group

    in temperature T=0K

    Energy band model

    e- e- e- e- e-

    valence band

    conduction band

    np. for Si Eg=1.1eV for Ge Eg=0.67eV

    eVEEE gVC energy gap

    SEMICONDUCTOR MODELS INTRINSIC SEMICONDUCTORS

    e- e-

    KE

    EiT PD Electronic devices - physics of semiconductors 10

    in temperature T>0K

    e-

    e-

    e- e- e-

    e-

    e- EV

    EC

    generation recombination

    +4 +4 +4

    +4 +4 +4

    +4 +4 +4

    +4

    +4

    +4

    Generation of electron-hole pairs can occur, for example under the influence of heat, light, radiation, ionization collision

    SEMICONDUCTOR MODELS INTRINSIC SEMICONDUCTORS

  • 2014-03-21

    6

    KE

    EiT PD Electronic devices - physics of semiconductors 11

    BAND MODEL OF ELECTRIC CONDUCTION

    INSULATORS

    METALS

    e-

    e-

    e- e-

    Eg3eV e- e-

    e- e-

    SEMIONDUCTORS

    10E+6(Ωm)E-1 10E-6(Ωm)E-1

    KE

    EiT PD Electronic devices - physics of semiconductors 12

    STATISTICS IN SEMICONDUCTORS

    What is the probability that an electron takes any energy state (level) E in

    absolute temperature T ?

    kT

    EE F

    e

    Ef

    1

    1

    Fermie-Dirac’s function

    k=8.62E-5eV/K=1.38E+23J/K - Boltzmann’s constant

    What is EF ? 21

    1

    1

    kT

    EEF FF

    e

    Ef

    Energy state located at the Fermie’s level can be taken by an electron with the probability of 0.5

    E

    f(E)

    EF

    0.5

    T=0K

    T1

    T2

    T1>T2

  • 2014-03-21

    7

    KE

    EiT PD Electronic devices - physics of semiconductors 13

    How can we determine the concentrations of electrons and holes in a semiconductor unit volume?

    electrons holes

    kT

    EEn F

    e

    Ef

    1

    1

    kTEE

    n

    F

    eEf

    dla |E-EF|>3kT

    kT

    EEp F

    e

    Ef

    1

    1

    kTEE

    p

    F

    eEf

    dla |EF-E|>3kT

    The energy density of available energy states for electrons in the conduction band:

    Ce

    C EEh

    mEN

    3

    2

    3*24

    The energy density of available energy states for electrons in the valence band:

    EEh

    mEN V

    hV 3

    2

    3*24

    *em effective mass of the electron *

    hm effective mass of the hole

    C

    FC

    E

    kT

    EE

    CnC eNdEEfENn

    V VF

    E

    kT

    EE

    VpV eNdEEfENp

    2

    3

    2

    *22

    h

    kTmN eC

    effective density of energy states in the conduction band

    2

    3

    2

    *22

    h

    kTmN hV

    effective density of energy states in the valence band

    STATISTICS IN SEMICONDUCTORS

    KE

    EiT PD Electronic devices - physics of semiconductors 14

    In intrinsic semiconductor:

    inpn

    kTE

    kT

    EE

    VCi

    gVC

    eATeNNnpTn 223

    2

    43

    **

    2

    4hemm

    hA

    The law of mass:

    npni 2

    STATISTICS IN SEMICONDUCTORS

  • 2014-03-21

    8

    KE

    kTE

    i

    g

    eATTn 223

    310105.1300 cmKni31mmso, in we can find

    15 millions of free electrons !!!

    and the same number of holes ;))

    Sicm31In there is

    atoms2310

    EiT PD Electronic devices - physics of semiconductors 15

    CURIOSITY I

    If the average thermal energy Et

    = kT of an electron at room

    temperature T = 300K, is

    Et = 0.025 eV, then how they can

    overcome the energy gap?

    Sufficient energy to overcome the energy gap in

    silicon at room temperature has one electron to

    1.5x10E+13 atoms!!!

    In silicon the energy

    gap is: Eg=1.1eV

    KE

    we should calculate:

    EiT PD Electronic devices - physics of semiconductors 16

    CURIOSITY II

    What is the sensitivity of free electrons and holes

    concentration changes in the intrinsic silicon at

    the ambient temperature T = 300K?

    222

    3

    kT

    E

    Tn

    dT

    dn

    g

    i

    i

    i

    W. Janke, „Zjawiska termiczne w elemntach i układach półprzewodnikowych”, WNT1992

    after substituting the data

    we obtain : %3.8300 Ki

  • 2014-03-21

    9

    KE

    EiT PD Electronic devices - physics of semiconductors 17

    DOPED SEMICONDUCTORS

    At room temperature, electrons pass from the donor band to the conduction band. After losing an electron, dopant atoms will be positive ions.

    +4 +4 +4

    +4 +4 +5

    +4 +4 +4

    +4

    +4

    +4

    +5 Donor dopant, for example: P, As, Sb

    e-

    e-

    e- e- e-

    e-

    e- EV

    EC ED

    e-

    e-

    e-

    e- e- e- e- e- e- e-

    0.05eV

    e-

    n (number of electrons) ≈ N (the number of dopant atoms) In doped n-type semiconductor, electrons are the majority

    carriers and holes the minority ones!

    KE

    EiT PD Electronic devices - physics of semiconductors 18

    +4 +4 +4

    +4 +4 +3

    +4 +4 +4

    +4

    +4

    +4

    +3 Acceptor dopant, for example: B, Al, Ga, In

    At room temperature the electrons from the valence band pass on the orbits of the dopant atoms. Upon receipt the electrons, the dopant atoms become negative ions.

    p (number of holes) ≈ NA (the number of dopant atoms) In doped p-type semiconductor, holes are majority carriers

    and electrons the minority ones!

    e- EV

    EC

    EA

    e-

    0.05eV

    DOPED SEMICONDUCTORS

  • 2014-03-21

    10

    KE

    EiT PD Electronic devices - physics of semiconductors 19

    Condition of electrical neutrality: the introduction of dopants into the semiconductor can not change the total charge load, which is in

    equilibrium and must be equal to zero.

    0 AD NpnN

    Dn Nn

    Ap Np

    D

    in

    N

    np

    2

    A

    ip

    N

    nn

    2

    From the law of mass we can determine the concentration of free carriers for a known concentration of dopants:

    for donor semiconductors:

    for acceptor semiconductors:

    DOPED SEMICONDUCTORS

    KE

    EiT PD Electronic devices - physics of semiconductors 20

    The introduction of dopants causes changes in the position of the Fermi level

    The position of the Fermi level is also a function of temperature

    NA ND

    EF

    0 NA=0 ND=0

    Ei

    EC

    EV

    DOPED SEMICONDUCTORS

  • 2014-03-21

    11

    KE

    EiT PD Electronic devices - physics of semiconductors 21

    Temperature dependence of carrier concentration in the donor semiconductor

    Ge Si

    T[K] 100 200 300 400 500

    ND

    Nu

    mb

    er

    of

    fre

    e e

    lect

    ron

    s

    Doping causes a stabilization of a number of carriers at a relatively high temperature range!

    spontaneous generation

    DOPED SEMICONDUCTORS

    KE

    Sicm31In there is

    atoms2310

    EiT PD Electronic devices - physics of semiconductors 22

    CURIOSIY III

    What will be the effect of doping: 1 arsenic atom (As +5)

    to 1 million silicon atoms (Si +4) ???

    After doping we obtain

    17

    6

    23

    1010

    10 arsenic atoms

    and the same number of free electrons

    in room temperature!

    mSi 3102

    mAsSi

    3102

    6

    3

    3

    10102

    102

    AsSi

    Si

  • 2014-03-21

    12

    KE

    EiT PD Electronic devices - physics of semiconductors 23

    ELECTRICAL CONDUCTIVITY IN SEMICONDUCTORS

    In the absence of an electric field the electrons follow a chaotic motion. At room temperature, the average thermal velocity is

    about ….

    ?

    s

    m5102

    KE

    EiT PD Electronic devices - physics of semiconductors 24

    Upon application of an external electric field, there appears a uniform movement of electrons – drifting the free carriers in an electric field. At room temperature the velocity of transport is about … ?

    s

    m34 1010

    e- e-

    e-

    e-

    e- e- e- e- e- e- e-

    E

    contact

    ELECTRICAL CONDUCTIVITY IN SEMICONDUCTORS

  • 2014-03-21

    13

    KE

    EiT PD Electronic devices - physics of semiconductors 25

    I E

    S

    Drift current density – 1-D considerations

    SdtvepSdtvendQ pn

    electric charge flowing through a surface S during time dt:

    pn vepvenJ dt

    dQ

    SJ

    1

    current density:

    EJ

    according to Ohm’s Law:

    pn pne so, the conductivity:

    Ev nn

    Ev pp

    mobility of electrons

    for silicon µn≈3µp

    mobility of holes

    ELECTRICAL CONDUCTIVITY IN SEMICONDUCTORS

    KE

    EiT PD Electronic devices - physics of semiconductors 26

    Diffusion of electric carriers e-

    e-

    e- e-

    e-

    e-

    e- e-

    e- e-

    e-

    x

    n(x)

    0

    dx

    xdn

    Diffusion currents occur in the states of imbalance in a semiconductor material where the carrier concentration becomes heterogeneous. The electric carriers move from an area of high concentration to the area of low concentration, until the distribution of free carriers is homogenous.

    dx

    xdnqDJ

    diffusion coefficient

    ELECTRICAL CONDUCTIVITY IN SEMICONDUCTORS

  • 2014-03-21

    14

    KE

    EiT PD Electronic devices - physics of semiconductors 27

    KTmVUe

    kTDDT

    p

    p

    n

    n 30026

    dx

    xdnDeEenJ nnn

    drift

    dx

    xdpDeEepJ ppp

    diffusion

    ELECTRICAL CONDUCTIVITY IN SEMICONDUCTORS