electron dephasing and energy exchange in...

65
Electron Dephasing and Energy Exchange in Diffusive Metal Wires: Boulder Summer School 2005 – Lectures 2 & 3 Norman Birge, Michigan State University Collaborators: F. Pierre, A. Gougam (MSU) S. Guéron, A. Anthore, B. Huard, H. Pothier, D. Esteve, M. Devoret (CEA Saclay) Work supported by NSF DMR With special thanks to Hugues Pothier!

Upload: others

Post on 22-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Electron Dephasing and Energy Exchange in Diffusive Metal Wires:

Boulder Summer School 2005 – Lectures 2 & 3Norman Birge, Michigan State University

Collaborators:

F. Pierre, A. Gougam (MSU)S. Guéron, A. Anthore, B. Huard, H. Pothier,

D. Esteve, M. Devoret (CEA Saclay)

Work supported by NSF DMR

With special thanks to Hugues Pothier!

Page 2: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

PrologueResistivity of metals

De Haas & de Boer, 1934

PtHigh T, phonons

Low T, impurities & disorder

dR/dT>0 always

Page 3: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

But dR/dT<0 in some samples!

De Haas, de Boer, & van den Berg, 1934

Au

Page 4: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Suspect magnetic impurities

Fe in Cu:

J.P. Franck, Manchester, Martin (1961)

But how do they work?

Page 5: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

The solution

∑ ⋅=i

i SsJHrr

The s-d exchange model:

⎟⎟⎠

⎞⎜⎜⎝

⎛−∝

KTTB logδρ

vJeETk FKB1−

≈Kondo temperature:

0<dTdρ

⇒Kondo’s result:

ν = density of states at EF

!!

Page 6: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Moral of the story: magnetic impurities dominate the low-temperature resistivity of metals, even

at concentrations as low as 0.01%

1960’s

Page 7: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Jump ahead 20 years … 1980’s

...111++=

− pheldisorder τττ

τρ 1

2nem

=

elastic

preserves quantum phase coherence

inelastic

destroys quantum phase coherence

WRONG!

disorder

phonons

R

T

ρ

Matthiessen’s rule:

Low T:elasticinelastic ττ

11<< Electrons maintain quantum phase

coherence over distance Lφ >> le

Page 8: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Electron transport in diffusive regime

1. Elastic scattering (film boundaries, impurities)

diffusive states

2. Inelastic scattering (phonons, other electrons, spins)

loss of phase coherence

energy exchange between electrons

el

φL

eFe vl τ=

eFlvD 31=

φφ τDL =

e-

Page 9: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Why Is the Phase Coherence Time Important?

• τφ limits quantum transport phenomena:– normal metals: weak localization, UCF, Aharonov-Bohm– superconductors: proximity & Josephson effects

• Localization theory assumes Lφ > ξ– no M-I transition if τφ saturates at low temperature

• example of quantum system coupled to environment

Page 10: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Predictions for τφ at low T(Altshuler & Aronov, 1979)

At low T, τφ limited by e-e interactions

Screening depends ondimensionality

τφ depends on dimensionality

transverse dimensionsL Dφ φτ= >« wires » (1d regime) :

( At energy E,

compare / withtransverse dimensions)

D Eh

( / rule the game )E φτ∼ h

( )...2, ,

...

x y zq q q Dq iω

⎛ ⎞⎜ ⎟⎜ ⎟+⎝ ⎠

Page 11: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

τφ(T) in wires

τφ

T

T-2/3

T-3

e-e

e-ph1 K

(Altshuler, Aronov, Khmelnitskii, 1982)

φτ −= +2 / 3 13( )A T B T

πν

⎛ ⎞= ⎜ ⎟

⎝ ⎠h

1/ 3214

B

F K

k RLwt R

A Screened Coulomb interaction at d=1

Page 12: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Temperature dependence of τφconfirmation of AAK theory in quasi-1D

Echternach, Gershenson, Bozler, Bogdanov & Nilsson, PRB 48, 11516 (1993)

(electron-electron)

T-3 (electron-phonon)

T-2/3

Page 13: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

The Experimental ControversyMohanty, Jariwala and Webb, PRL 78, 3366 (1997)

T-2/3

T-3

Saturation of τφ:

Artifact of measurement ?If not, is it intrinsic ?

Page 14: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

-0 .0 4 -0 .0 2 0 .0 0 0 .0 2 0 .0 4

3 .1 K

1 .1 7 K

2 1 0 m K

4 5 m K

1 0 -3

ΔR/R

B (T )

Ag

Interference of time-reversed paths ⇒ “weak-localization” correction to R

B reduces weak-loc. correction

I

V

B

L ~ 0.25 mm

Measuring τφ(T)

Lφ=(Dτφ)1/2e-

Page 15: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Measuring τφ(T) : raw data

-10 0 10

B (mT)

10-3

40 mK

165 mK

0.6 K

1.95 KAg(6N)c

ΔR/R

-15 0 15

5x10-4

40 mK

155 mK

0.8 K

2.5 KAg(5N)b

-15 0 15

10-3

37 mK

92 mK

0.7 K

1.6 K

ΔR

/R

Au(6N)

B (mT)-50 0 50

5x10-4

1.7 K

0.62 K

100 mK

37 mK

Cu(6N)d

Ag(6N) & Au(6N):ΔR grows as T decreases

Ag(5N) & Cu(6N):ΔR saturates below ~ 100mK

5N = 99.999 % source purity6N = 99.9999 % “ “

100 atoms ~ 25 nm

1 ppm ofimpurities :

Page 16: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

τφ(T) in Ag, Au & Cu wires

Saturation of τφ is sample dependent

• Ag 6N, Au 6N→ agreement with AAK theory

• Ag 5N, Cu 6N→ saturation of τφ(T)

Low T behavior vs. Purity:

T-2/3 5N = 99.999 % source material purity6N = 99.9999 % “ “ “

0.1 1

1

10

Ag 6N Au 6N Ag 5N Cu 6N

τ φ (ns

)

T (K)

Page 17: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Quantitative comparison with AAK theoryfor clean samples

F. Pierre et al.,PRB 68, 0854213 (2003)

0.1 1

1

10

τ φ (ns)

T (K) πν

⎛ ⎞= ⎜ ⎟

⎝ ⎠h

1/ 3214

B

Fy

Kth

k RLwt R

A

φτ −= +2 / 3 13( )A T B T

Page 18: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

1st method : τφ

2nd method : measure energy exchange rates

Investigation of inelastic processes

Distribution f(E)reflects the exchange rates

UU

R

BV

τφ(T)

T

T-2/3

T-3

e-e

e-ph

1 K

Another process dominates in not-so-pure samples?

?

Page 19: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Background: Shot noise in diffusive metal wiresSteinbach, Martinis and Devoret, PRL 76, 3806 (1996)

Theory:

Nagaev 1992,1995

Kozub & Rudin, 1995

∫∫ −= )),(1)(,(4 ExfExfdxdELR

SI

What does f(x,E) look like?

Page 20: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Distribution function -- textbook case(no shot noise)

Assumes complete thermalization -- tD >> telectron-phonon

Never true in mesoscopic metal samples at low T!

τD=L2/D

Page 21: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Distribution function for τD << τelectron-phonon

f(x,E) shaped by energy exchange

f(E)

1

E0-eU

E

x

1

E-eU 0

f(E)

E

xτD << τinteraction τD >> τinteractionτD=L2/D

free electrons “hot” electrons

Page 22: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Aside 1: Current through a tunnel junction

( )2

RLR

2

LF n ( eVE )n (E) f (E)2 dE M 1 f ( )eVE→ +

πΓ = − +

ν∫h

eV

V

( )I e → ←= Γ − ΓL R

( )

L

RL

RT

n ( eV

eV

E )1I dEeR

x

n (E)

f (E) f (E )

+

+

=

NN junction:

T

n(E) 1 f(E)V

RI

= =

⇒ =

( )L Rf (E) f (E e1 V)←Γ = +−

Page 23: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Conductance of an N-X junction at T=0

V

N X( )

R

R

X

T

TeV

X

e

T

L

L

0

V

0

n (E )

f (E )

1I dEeR

1 dE

n (E)

f

eV

eV

eVn (E )

n

(E)

(E)

eR1 dE

eR

+

+

+

=

=

× −

=

TX

d nI 1d RV

(e )V=

Spectroscopy of nX

eVdV

dI

Page 24: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

How to measure f(E):tunnel spectroscopy using an N-S junction

V

N S

-0.4 -0.2 0.0 0.2 0.4

0

20

40

dI/d

V (µ

S)

V (mV)

eVΔ

Ag-Al 2 2

E

E − Δ

Page 25: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

N out of equilibrium:spectroscopy of f(E)

V

N* S

eVΔ

-0.4 -0.2 0.0 0.2 0.4

0

20

40

dI/d

V (µ

S)

V (mV)

( )T

SNS f (E1I d eEe

V)n (E) (E)R

f= −−∫

ST

Nd n (E) eVI 1 d E )E

RVf

d(′ −

−= ∫

Page 26: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Experimental setup

UU

VS

tunnel junction

L=5 to 40 µm2

DLDiffusion time: 1 to 60 nsD

τ = =

( )dI VdV

numericaldeconvolution ( )f E

Page 27: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

-0.6 -0.4 -0.210

20

V (

dI/d

V (µ

S)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60

20

40

60

80

100

V (mV)

dI/d

V (µ

S)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60

20

40

60

80

100

V (mV)

dI/d

V (µ

S)

-0.6 -0.4 -0.210

20

V (

dI/d

V (µ

S)

-0.2 0.00

1

E (meV)

f(E)

-0.2 0.00

1

E (meV)

f(E)

Summarize how to measure f(E):

UU

VS

U=0.2 mV

U=0 mV

f(E) dI/dV

Page 28: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

-0.3 -0.2 -0.1 0.0 0.10

1

L=1.5 μmτD=0.36 nsf(E)

-0.3 -0.2 -0.1 0.0 0.1

L=5 μmτD=4.5 ns

Effect of the diffusion time τD on f(E)

E (meV) E (meV)

U=0.2 mV

longer interaction time ⇒ more rounding

H. Pothier et al., PRL 79, 3490 (1997)

Page 29: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

0

1

τD=1.8 ns

Ag 6N (99.9999%)

f(E)

0

1

f(E)

τD=2.8 ns

Cu 5N(99.999%)

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.20

1

f(E)

E (meV)

τD=1.8 ns

Au 4N(99.99%)

Compare strength of interactions

effect of material ? effect of purity ?

Page 30: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Compare Dependence on U

0

1

U=0.1 mV

U=0.4 mV

f(E)

0

1

f(E)

-1.5 -1.0 -0.5 0.0 0.50

1

f(E)

E/eU

0

1L=20 µmτD=19 nsX=L/2

Ag 6N

f(E)

0

1

f(E)

L=5 µmτD=2.8 nsX=L/2

Cu 5N

-0.6 -0.4 -0.2 0.0 0.20

1

f(E)

E (meV)

L=1.5 µmτD=0.18 nsX=L/4

Au 4N

U=0.1, 0.2, 0.3 & 0.4 mV

Observe scaling law in Au 4N & Cu 5N but not in Ag 6N

Page 31: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Calculation of f(x,E)

{ }( ) { }( )in o2 ut

2f(E) f(E)t x

I x,E, f I x,E, fD∂ ∂+ = −

∂ ∂

Boltzmann equation in the diffusive regime (Nagaev, Phys. Lett. A, 1992):

xx-dx

x+dx

ε

E-ε

E

x 0 x Lf (E) f (E) Fermi function= == =

diffusion in real space

transfers of population in the energy space

Boundary conditions :

Page 32: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Calculation of f(x,E)

{ }( ) { }( )2 t

2

in ouI x,E, ff(E)x

I , , fD x E−∂

=∂

ε

E-ε

E E’

E’+ε

{ }( ) [ ] [ ]outI x,E, f dE'd f(E) 1 f(E ) f(E')K( 1 f(E') )= − − −ε ε ε + ε∫

e-e interactions :

fn3D

3 / 2κ

ε(Altshuler, Aronov, Khmelnitskii, 1982)

Boltzmann equation in the diffusive regime (Nagaev, Phys. Lett. A, 1992):

Page 33: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Theory of screened Coulomb interaction in the diffusive regime

(Altshuler & Aronov, 1979)

ingredients:polarisabilityoverlap ↑

Prediction for 1D wire : 3 / 2( )K κε

ε =

( )κ π ν−

= h1

3/2e2 SFD

ε

2 4 2dq

D q ω⎛ ⎞∝⎜ ⎟+⎝ ⎠

Page 34: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Experiment vs. Theory

-1 0

κ=0.425 ns-1meV-1/2

κthy=0.1 ns-1meV-1/2

0.2

Ag 6N0.5 mV0.4 mV0.3 mV0.2 mV0.1 mV

f(E)

E/eU

-1 0

κ=0.6 ns-1

Cu 5N

0.1 mV

0.2 mV

0.3 mV

0.4 mV

0.5 mV

E/eU

f(E)

κ=3.2 ns-1meV-1/2

κthy=0.1 ns-1meV-1/2

Cu 5N

0.1 mV

0.2 mV

0.3 mV

0.5 mV0.4 mV

K(ε)=κ ε-3/2

K(ε)=κ ε-2

Ag 6N: experiment agrees with theory

Cu 5N, Au 4N, Ag 5N: • energy exchange stronger than predicted• K(ε)=κ ε-2 fits data

Page 35: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

f(E)τφ(T)

Ag5NCu6N,5N,4N Au4N

fast relaxation rates

Comparison of the results of the two methods

Ag6N

saturation

3 / 2K( ) κε

3 / 2

1K( ) ∝εε

2 / 3T−∝

Page 36: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

f(E)

Comparison of the results of the two methods

τφ(T)

Ag5NCu6N,5N,4N Au4N

saturationfast relaxation rates

Ag6NCoulomb

interactions

Othermechanism

ROLE OF RESIDUAL IMPURITIES ?

3 / 2K( ) κε

3 / 2

1K( ) ∝εε

2 / 3T−∝

Page 37: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

The two puzzlesτφ(T) measurements

0.1 1

1

10

Ag 6N Au 6N Ag 5N Cu 6N

τ φ (ns)

T (K)-0.3 0.0

0

1

0.3mV 0.2mV 0.1mV

τD=2.8 ns

Cu5

f(E)

E(meV)

Ag5N - Cu5N,4N - Au4N

f(E) measurements

Anomalous interactions in the less pure samples

Page 38: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

The Kondo effect again

e

e

J .Sσur ur

Spin-flip scattering

increased resistivityreduction of τφ

Collective effect:Formation of a

singlet spin state

T

R

KT

Log(T)−β

sfγ

T

spin-flip

(total scattering rate)

phononsKondo

J1/νFKB eETk −≈

Page 39: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Nagaoka-Suhl expression of the spin-flip scattering rate near TK

1sf−τ

T

spin-flip

1 10 100

1

10

τ sf(T

)/(hv

F/2c im

p)

T/TK

Weak temperaturedependance near TK !!

Link to τφ(T) saturation?

Page 40: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

From τsf to τφ

Another important timescale: τKLifetime of the spin state

of a magn. imp.

If τK < τsf Other electrons matter

Randomising effecte fph se e

1 1 1 1φ −

= + +τ τ τ τ

If τK > τsf The spin states of the mag. imp. seen by time-reversedelectrons are correlated

e fph se e

1 1 1 2φ −

= + +τ τ τ τ

( V.I. Fal’ko, JETP Lett. 53, 340 (1991) )

Page 41: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Comparison of τsf and τK

kBT EF BFk Tν concentration of electronsthat can spin-flip

cimp concentration of magnetic impurities

B impFIf k T c :>ν τK < τsf

impT 40 mK c (ppm)×>Numerically,

for Au, Ag, Cu, …

e fph se e

1 1 1 1φ −

= + +τ τ τ τ

Page 42: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Effect of magnetic impurities on τφ

0.1 1

1

10 Ag (6N)

Ag (5N) bare

1.0ppm Mn

0.3ppm Mn

e-e & e-ph scattering

spin-flipscattering

TK

τ φ (ns)

T (K) τφ(TK) =0.6 ns

cimp (ppm)

Spin-flip rate peaks at TK:

1 10 100

1

10

τ sf(T

)/(hν

F/2c im

p)

T/TK

ee p se h f

11 11φ −

+τ τ

Page 43: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Fit parameters:Ag(5N) bare: 0.13 ppm+ 0.3 ppm : 0.40 ppm+ 1 ppm : 0.96 ppm

F. Pierre et al.,PRB 68, 0854213 (2003)

Effect of magnetic impurities on τφ

0.1 1

1

10 Ag (6N)

Ag (5N) bare

1.0ppm Mn

0.3ppm Mn

e-e & e-ph scattering

spin-flipscattering

TK

τ φ (ns)

T (K)

Above TK : partial compensation of e-e and s-f

apparent saturation

Page 44: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Why can’t we just detect magnetic impurities with R(T) (the original Kondo effect)?

1 ppm of Mn is invisible in R(T)(hidden by e-e interactions)

1 2 3 4

0.2

0.4

0.6

0.8

1.0

1.2

δR/R

(‰)

T-1/2 (K-1/2)

Ag with 1 ppm Mn at B=30mT Fit: 2.4E-4T-1/2

Page 45: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Source material purity vs. sample purity: Cu samples

Magnetic impurities are invisible in R(T)

0.1 1 10

0.1

1

10

Ag 6N Cu 5N #1 Cu 5N #2 Cu 6N #1 Cu 6N #2 Cu 6N #3

τ φ (ns)

T (K)

1 2 3 4 5

1

2

3

4

δR/R

(‰)

1/T-1/2 (K)

• In all Cu samples τφ(T) saturates at low T• τφ(T) is strongly reduced but shows no dip

Page 46: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Measure τφ(B) from Aharonov-Bohm oscillations

I

V

BT=100 mK

Cu ring0.0 0.5 1.0 1.5

0

1

2

δG (

e2 /h)

B (T)

0.00 0.05-0.2

0.0

0.2

1.40 1.45-0.2

0.0

0.2

Page 47: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

A.B. Oscillations vs. Magnetic Field

0 200 400 6000.0

0.5

1.0 B=0±0.1T B=1.2±0.1T

h/e

Pow

er s

pect

rum

AB

(a.u

.)

1/ΔB (1/T)

AB oscillations increase with B ⇒ presence of magnetic “impurities” !

Fourier Transform(T=100 mK)

40 mK noise floor

-20 -10 0 10 20

0.05

0.1

0.5

T=40 mK T=100 mK

ΔGh/

e * (k

BT/E

Th)1/

2 [e

2 /h]

2μBB/kBT

Page 48: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

What about energy exchange ?

Page 49: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Energy exchange mediated by magnetic impuritiesKaminski and Glazman, PRL 86, 2400 (2001)

f(E)

EE-ε E’+ε

E’

E’+εE’E E-ε

Virtual state

* *Reinforced by Kondo effect

Page 50: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Energy exchange mediated by magnetic impuritiesvanishes when gμBB >> eU

f(E)

EE-ε E’+ε

E’

E’+εE’E E-ε

Virtual state

gµB

Page 51: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

initial state:

final state:

Aside 2: Inelastic tunneling

eV

P(E)=probability to give energy E to environment

Ε

Page 52: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

P(E) depends on environmental impedance

V

Zext(ω)

C,RT

V

RT

Z (ω)=

[ ] ( )

J(t

e

0t

iEt /

t

0

V

)

i

K

dI

J(t

P(E)

P(E

)

)

1 dEd R

1 e dt2

Re Z( )d2 e 1R

V

+

+∞ − ω

=

ωω= −

ω

h

h

At T=0, one obtains :

Page 53: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Resistive environmentV

R

C,RT

For K

2RRdI c tV

Vs .

d

⎛ ⎞∝ +⎜ ⎟⎜ ⎟

⎝ ⎠

-1 0 10.0

0.5

1.0

C=0.92fFT=40 mK R/RK=.08 (R=2.06kΩ)

RTdI

/dV

V(mV)

0.01 0.1 1

0.5

1.0

V(mV)kT eRC

h

RCeV h

<

Page 54: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

UU

R

BV

Measure f(E) at B ≠ 0 using Dynamical Coulomb Blockade

-0.6 -0.3 0.0 0.3

18

21

dI/d

V (

µS)

-0 .6 -0.3 0.0 0.3

15

18

21

24

dI/d

V (

µS)

V (m V)

dI/d

V (

µS)

-0 .6 -0.3 0.0 0.3 0.6

15

18

21

24

V (m V)

V (m V)

-0.6 -0.3 0.0 0.3 0.6

18

21

V (m V)

dI/d

V (

µS)

U=0 mV

U=0.2 mVB=1.4 T

dI/dV → f(E) → electron-electron interactions

R=1 kΩ

Page 55: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

A controlled experiment

Ag (99.9999%)

0.9 ppm Mn2+

implantation

Comparativeexperiments

bare

implanted

Effect of 1 ppm Mn on interactions ?

Left as is

25 nm

106 Ag1Mn

Page 56: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

-0.2 0.0 0.2

0.9

1.0

-0.2 0.0 0.2

0.8

0.9

V (mV)

Rtd

I/dV

Experimental data at weak B

U = 0.1 mVB = 0.3 T

weak interaction

strong interaction

implanted

Rtd

I/dV

bare

U

( )

-0.5 0.0 0.5

0.9

1.0

V (mV)

Rtd

I/dV

( )

-0.5 0.0 0.5

0.9

1.0

V (mV)

Rtd

I/dV

Page 57: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

-0.2 0.0 0.2

0.9

1.0

-0.2 0.0 0.2

0.8

0.9

V (mV)

Rtd

I/dV

Rtd

I/dV

U = 0.1 mVB = 0.3 TB = 2.1 T

Very weakinteraction

Experimental data at weak and at strong B

implanted

bare

Page 58: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

0.1 1 10

0.1

1

10

τφ (ns)

T (K)

bare

implanted

Cbare =0.1 ppmCimplanted=0.9 ppm

Fits:

Coherence time measurementson the same 2 samples

Page 59: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Full U,B dependenceB

are

C=0

.1 p

pmIm

plan

ted

C=0

.9 p

pmU=0.1 mV

2.1 T1.8 T1.5 T1.2 T0.9 T0.6 T0.3 T

U=0.2 mV U=0.3 mV

-0.4 0.0 0.4

-0.2 0.0 0.2

0.8

0.9

1.0

1.1

1.2

V (mV)V (mV)V (mV)

RTd

I/dV

RTd

I/dV

-0.2 0.0 0.2

0.9

1.0

-0.4 0.0 0.4

-0.5 0.0 0.5

-0.5 0.0 0.5

Page 60: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Comparison with theoryB

are

C=0

.1 p

pmIm

plan

ted

C=0

.9 p

pm

2.1 T1.8 T1.5 T1.2 T0.9 T0.6 T0.3 T

U=0.1 mV U=0.2 mV U=0.3 mV

-0.4 0.0 0.4

-0.2 0.0 0.2

0.8

0.9

1.0

1.1

1.2

V (mV)V (mV)V (mV)

RTd

I/dV

RTd

I/dV

-0.2 0.0 0.2

0.9

1.0

-0.4 0.0 0.4

-0.5 0.0 0.5

-0.5 0.0 0.5

Goeppert, Galperin, Altshuler and Grabert, PRB 64, 033301 (2001)

1S2

⎛ ⎞=⎜ ⎟⎝ ⎠

Page 61: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Conclusions – Lectures 2 & 3Two methods to investigate interactions in wires

0.1 1

1

10

Ag 6N Au 6N Ag 5N Cu 6N

τ φ (ns

)

T (K)

τφ(T)

-0.4 -0.2 0.00

1

exp. U=0.1, 0.2, 0.3 mV theory

(κ3/2= 0.11 ns-1meV-1/2)f(E

)

E(meV)

f(E)

-0.2 0.0 0.2

0.8

0.9

1.0

1.1

1.2

RTd

I/dV

V (mV)

Moral of the story: even at concentrations as low as 1 ppm,magnetic impurities have a large influence on low-temperature electronic transport in metals.

Page 62: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Four consequences of electron-electron interactionsin quasi-1D diffusive wires (Altshuler & Aronov)

• loss of phase coherence: τφ ~ T-2/3 (AA+Khmelnitskii)• energy exchange between quasiparticles:

• correction to resistance: δR(T) ~ T-1/2

• correction to tunneling DOS, or dynamic Coulomb blockade: dI/dV ~ V2R/RQ R

∝ ε-3/2

Page 63: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

References• Dephasing

– Gougam, Pierre, Pothier, Esteve, Birge, J. Low Temp. Phys. 118, 447 (2000).– Pierre & Birge, Phys. Rev. Lett. 89, 206804 (2002).– Pierre, Gougam, Anthore, Pothier, Esteve, Birge, Phys. Rev. B 68, 085413

(2003).

• Energy Exchange– Pothier, Gueron, Birge, Esteve, Devoret, Phys. Rev. Lett. 79, 3490 (1997).– Pothier, Gueron, Birge, Esteve, Devoret, Z. Physik. B 104, 178 (1997). – Pierre, Pothier, Esteve, Devoret, J. Low Temp. Phys. 118, 437 (2000).– Anthore, Pierre, Pothier, Esteve, Devoret, cond-mat/0109297 (2001).– Anthore, Pierre, Pothier, Esteve, Phys. Rev. Lett. 90, 076806 (2003).

• Both– Pierre, Pothier, Esteve, Devoret, Gougam, Birge, cond-mat/0012038 (2000).– Pierre, Ann. Phys. Fr. 26, N°4 (2001).– Huard, Anthore, Birge, Pothier, Esteve, to be published in PRL (2005).

Page 64: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Evidence for extremely dilute magnetic impuritieseven in purest samples

Sample Imp. TK(K) c (ppm)Ag(6N)a Mn 0.04 0.009

“ b “ “ 0.011“ c “ “ 0.0024“ d “ “ 0.012

Au(6N) Cr 0.01 0.02

100 atoms ~ 25 nm

1 ppm :

In the wire, 0.01 ppm = 3 impurities/µm

1

10

0.1 1

1

10

Ag(6N)c Ag(6N)b Ag(6N)a

Ag(6N)d Au(6N)

τ φ (ns)

T (K)

Page 65: ELECTRON DEPHASING AND ENERGY EXCHANGE IN …boulderschool.yale.edu/sites/default/files/files/Birge_Lectures_2_3.pdf · J.P. Franck, Manchester, Martin (1961) But how do they work?

Compare τφ data with AAK and GZS theories

0.1 1 10 100 1000 10000 1000000.01

0.1

1

10MSU/Saclay: Ag6N; Au6NMaryland: Au (Mohanty et al.)Bell Labs: AuPd (Natelson et al.)

6

5

43

21

EC,D B

A

F

a bc

d

τ φmax

/τ eeAA

K (Tm

in)

τφ

max/τ0GZS