electron beam acoustic and magneto-acoustic modes in a magnetized beam-plasma system

3
Volume 148, number 5 PHYSICS LETFERS A 20 August 1990 Electron beam acoustic and magneto-acoustic modes in a magnetized beam—plasma system V.K. Jam ‘and N.L. Tsintsadze 2 International Centre for Theoretical Physics, Trieste, Italy Received 4 August 1989; accepted for publication 12 June 1990 Communicated by R.C. Davidson The dispersion relation characterizing electrostatic modes in a cold magnetized plasma penetrated by a hot electron beam is solved analytically. In the limit k2A~ ~ 1 where k is the wavenumber of the mode and ~b is the Debye length of beam electrons, two new modes, viz, the electron acoustic and the magneto-acoustic mode, are found to exist. Expressions for the growth rate and threshold beam energy required for the onset of the kinetic instabilities of these modes are obtained. Electrostatic instabilities in beam—plasma systems have been studied extensively over the last couple of dec- ades due to their relevance to both laboratory and space plasma configurations [1—101. It is well-known that a magnetized plasma sustains a variety of electrostatic modes on ion and electron time scales. For example, Trivelpiece—Gould mode and Bernstein mode waves exist for k~p~ ~< 1 and k~p~ ~ 1 respectively, where k 1 is the transverse wavenumber and Pe is the electron Larmor radius. In case of cold ions and in the limit k 22~ .~ 1, where ~ is the Debye length of plasma electrons, ion-acoustic modes are observed. Various modes in plasma can be driven unstable via Cerenkov or cyclotron interactions by a drifting cold or hot electron beam which acts as a free energy source in a beam—plasma system. In spite of voluminous literature available to date on the excitation of electrostatic mode instabilities, modes in the limit k2A~ ~ 1, where ~‘b is the Debye length for beam electrons, have escaped the attention of theorists. In this Letter we therefore address ourselves to the study of electrostatic modes in the limit k2~ ~< 1 and investigate the effect of the beam on their dispersion characteristics. We consider a cold but finite temperature plasma in a magnetic field penetrated by a drifting electron beam with finite thermal spread. The dispersion relation for electrostatic modes in such a system can be written as [2] l+p+bO, (1) where = 1 + ~ [~ + ~, ~i z(w_fl~~)i (k2±V~) exp(~.. (2) 2w~b I” w—k 1 V0 ,jw—k1 Vo—nw,~’\ (k~v~~,\ ( k~v~’\] 1+ ‘9 b i 2 ,exp~— ~, 2 11’ ( ) ,‘,~ Vtb L r9Vtb ~ \ l9Vft~ / \ / \ where w, w~, w~, co~ are the wave, plasma, beam—plasma and electron cyclotron frequencies respectively; k~, k1, k are the parallel, perpendicular and total wavenumbers respectively; V0, v~, Vtb are beam drift velocity, Permanent address: Physics Group, School of Environmental Sciences, Jawahar Lal Nehru University, New Delhi 110067, India. 2 Permanent address: Institute of Physics, Academy of Sciences of the USSR, Guramishvili Street 6, Tibiisi 38007, USSR. 0375-9601/90/S 03.50© 1990 Elsevier Science Publishers B.V. (North-Holland) 269

Upload: vk-jain

Post on 21-Jun-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electron beam acoustic and magneto-acoustic modes in a magnetized beam-plasma system

Volume148,number5 PHYSICS LETFERS A 20August 1990

Electronbeamacousticand magneto-acousticmodesin amagnetizedbeam—plasmasystem

V.K. Jam ‘and N.L. Tsintsadze2InternationalCentrefor TheoreticalPhysics,Trieste,Italy

Received4August 1989;acceptedfor publication12 June1990Communicatedby R.C.Davidson

Thedispersionrelationcharacterizingelectrostaticmodesin a coldmagnetizedplasmapenetratedby a hot electronbeamissolvedanalytically.In thelimit k2A~~ 1 wherekis thewavenumberof themodeand~b is theDebyelengthof beamelectrons,twonewmodes,viz, theelectronacousticandthemagneto-acousticmode,arefoundto exist.Expressionsfor thegrowthrateandthresholdbeamenergyrequiredfor theonsetof thekineticinstabilitiesofthesemodesareobtained.

Electrostaticinstabilitiesin beam—plasmasystemshavebeenstudiedextensivelyoverthe lastcoupleof dec-adesdueto their relevanceto bothlaboratoryandspaceplasmaconfigurations[1—101.It is well-knownthata magnetizedplasmasustainsa variety of electrostaticmodeson ion andelectrontime scales.For example,Trivelpiece—GouldmodeandBernsteinmodewavesexist for k~p~~< 1 andk~p~~ 1 respectively,wherek

1is the transversewavenumberandPe is the electronLarmor radius. In caseof cold ions and in the limitk22~.~ 1, where~ is the Debyelengthof plasmaelectrons,ion-acousticmodesareobserved.Variousmodes

inplasmacanbedrivenunstablevia Cerenkovor cyclotroninteractionsbyadrifting coldor hot electronbeamwhichactsasafreeenergysourcein abeam—plasmasystem.In spiteof voluminousliteratureavailableto dateon theexcitationof electrostaticmodeinstabilities,modesin the limit k2A~~ 1, where~‘b is the Debyelengthfor beamelectrons,haveescapedthe attentionof theorists.In thisLetterwethereforeaddressourselvesto thestudyof electrostaticmodesin the limit k2~~< 1 andinvestigatethe effect of the beamon their dispersioncharacteristics.

We consideracoldbut finite temperatureplasmain amagneticfield penetratedby adrifting electronbeamwith finite thermalspread.The dispersionrelationfor electrostaticmodesin suchasystemcanbe written as[2]

l+�p+�bO, (1)

where

= 1 + ~ [~+ ~, ~iz(w_fl~~)i(k2±V~)exp(~.. (2)

2w~bI” w—k1 V0 ,jw—k1Vo—nw,~’\(k~v~~,\( k~v~’\]

1+ ‘9 b i 2 ,exp~—~, 2 11’ ( ),‘,~ Vtb L r9Vtb ~ \ l9Vft~ / \ / \

wherew, w~,w~,co~are the wave,plasma,beam—plasmaandelectroncyclotronfrequenciesrespectively;k~,k1, k are the parallel,perpendicularandtotal wavenumbersrespectively;V0, v~,Vtb arebeamdrift velocity,

Permanentaddress:PhysicsGroup,Schoolof EnvironmentalSciences,JawaharLalNehruUniversity,NewDelhi 110067,India.2 Permanentaddress:InstituteofPhysics,AcademyofSciencesof theUSSR,GuramishviliStreet6, Tibiisi 38007,USSR.

0375-9601/90/S03.50© 1990 — ElsevierSciencePublishersB.V. (North-Holland) 269

Page 2: Electron beam acoustic and magneto-acoustic modes in a magnetized beam-plasma system

Volume 148,numberS PHYSICSLETTERSA 20August 1990

plasmaandbeamelectronthermalvelocitiesrespectively.Z is the plasmadispersionfunction [8] andI~isthe modifiedBesselfunction of nth order.

Assumingw/k11v~,(w ±w~) /k11v1>> 0 for weakdamping,andin thelimit k~v~/2w~<<1, eq. (2) reducesto

21.2 21.2(Op __________

~ w2k2 — (w2—w~)k2

+ i ~ ~ {ex~[— ()2] + exp[ — (w_w~)2] + exp[ — (w+w~)2]} (4)

Wefurtherassumek~v~/2w~~ 1 andconsideronly the Cerenkovinteractionterm in eq. (3). We, there-fore, expandZ( (w—k

11V0)/kllvtb) in the small argumentapproximationw— k11 V0 0 andwrite eq. (3) in thefollowing form,

~ ~*{l+i ,1—w—k1v0 exp[_(°)~/t1Vo)2]} (5)

Vtb V~

1, Vtb

Neglectingthe imaginarytermsandassumingk2A~~*z1 whereAb ( Vtb/.~J~(Opb) is theDebyelength of the

beamelectrons,the dispersionrelation (1) simplifies to

F(wk)—’ ~P!EL w~k~ ~ (6)— — (O2k2 — (w2—w~)k2 k2v?b —

The solutionsof eq. (6) are

= ~ [ (w~+k2v~nP/nb)±~~/(w~+k2v~nP/nb)2—4k~v~a~nP/nb]. (7)

When

(~+k2v?bnP)2 4k~v~,w~n~

w÷andw_ canbe written in the following form,

k2v~n~ (8)

— k~v~np/nb 9— 1 + (nP/nb)k2V~,/w~

It may be notedthat the solutionsrepresentedby w~and w,. are similar to the dispersionrelationscor-respondingto megneto-acousticandion-acousticmodesexceptthat the ion inertia hasbeenreplacedby thebeamelectroninertia andthe plasmaelectrontemperatureby the beamelectrontemperature.We thereforetermthemodescharacterizedby w andw~asbeamelectronacousticandmagneto-acousticmodesrespectively.

To studythe stability of thesemodeswe write eq. (1) as

w~k~ ~

w2k2 (w2—w~)k2 k2v~

= — i ~ ~ {exp[ — (w)2] + exp[ — (w_wc )2] + exp[ — (w±coc)2]}

—i ,1r~2w~(o—k1V0) exp[_(~~V0)

2]. (10)

270

Page 3: Electron beam acoustic and magneto-acoustic modes in a magnetized beam-plasma system

Volume148,number5 PHYSICS LETFERSA 20August 1990

In theabsenceof thetermson therighthandside,thesolutionsofeq. (10) arew=w~,i.e.,F(co1)=0.Now

let (Obecomplex,W=COr+~Wj.Expandingthe left handsidearoundWr,

we obtainthe following expressionfor the growth rate,

= — ~ ((Or {exp[_(~)2]±:xp[_(0~)2]+exp[_(~0~)2]}

_ flt, C0rk1 V0 J’ (Wr’4’i V0\ ]‘\1. 3 ex~—~, ill,

I Vtb L \ “1 ~ / ji

where1.2 1.2

x=~~-+~~3 ((O2.(O2)2’

ThethresholdbeamenergyV~is obtainedby puttingCo, = 0 in eq. (11),

~ ~ (i + ~ {exp[_(~)2]+exp[_(~)~0c)2]}).

The contributiondue to the term exp{— [(w+w~)/k,v~]2} is very small andhenceis neglected.Thus for

beamenergy V0> VOT, the modeswill becomeunstable.

Theauthorsaregratefulto the InternationalCentreforTheoreticalPhysicsfor providinghospitalityduringthecourseof thiswork. Oneof us (V.K.J.) would like to thankProfessorP.K. Kaw, Institutefor PlasmaRe-searchBhat, Gandhinagar,Indiaforhelpful discussions.

References

[I] T.M. O’Neil andJ.H.Malmberg,Phys.Fluids11(1968)1974.[2]M.Seidl,Phys.Fluids13 (1970)966.[3] S.A. Self,MM. ShoucriandF.W.Crawford,J.AppI. Phys.42 (1971)704.[4] J.A.TataronisandF.W.Crawford,J.PlasmaPhys.4 (1970)249.5] A.B. Mikhailovskii, Theoryofplasmainstabilities,Vol. 1 (ConsultantsBureau,NewYork, 1974).

[6] A.L Akhiezer,IA. Akhiezer, R.V. Polovin, A.G. SitenkoandK.N. Stepanov,Plasmaelectrodynamics,Vol. I (Pergamon,Oxford,1975).

[7] J.E.AllenandA.D.R. Phelps,Rep.Prog.Phys.40 (1977)1305.[81B.D. FriedandS.D. Conte,Theplasmadispersionfunction (AcademicPress,NewYork, 1961).[91K. MizunoandS.Tanaka,Phys.fluids 17 (1974)156.

[10] V.K. Jam andPJ.Christiansen,PlasmaPhys.Contr.Fusion26 (1984)613.

271