electrodynamics 2019: lecture 2 - lunds tekniska högskola€¦ · electrodynamics 2019: lecture 2....

13
Electrodynamics 2019: Lecture 2 Anders Karlsson, [email protected] Electrical and information technology Electrodynamics 2019: Lecture 2

Upload: others

Post on 14-Jun-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electrodynamics 2019: Lecture 2 - Lunds tekniska högskola€¦ · Electrodynamics 2019: Lecture 2. Today’s lecture covers pages 7{15 in the Exercise book. Anders Karlsson, Electrical

Electrodynamics 2019: Lecture 2

Anders Karlsson, [email protected]

Electrical and information technology

Electrodynamics 2019: Lecture 2

Page 2: Electrodynamics 2019: Lecture 2 - Lunds tekniska högskola€¦ · Electrodynamics 2019: Lecture 2. Today’s lecture covers pages 7{15 in the Exercise book. Anders Karlsson, Electrical

Today’s lecture covers pages 7–15 in the Exercise book.

Anders Karlsson, Electrical and information technology

Page 3: Electrodynamics 2019: Lecture 2 - Lunds tekniska högskola€¦ · Electrodynamics 2019: Lecture 2. Today’s lecture covers pages 7{15 in the Exercise book. Anders Karlsson, Electrical

Last lecture

I The Maxwell equations in time domain.

I The Maxwell equations in frequency domain.

I The Vector Helmholtz equation.

I Introduction to waveguides.

I Helmholtz equation and boundary conditions for Ez.

I Helmholtz equation and boundary conditions for Hz.

Anders Karlsson, Electrical and information technology

Page 4: Electrodynamics 2019: Lecture 2 - Lunds tekniska högskola€¦ · Electrodynamics 2019: Lecture 2. Today’s lecture covers pages 7{15 in the Exercise book. Anders Karlsson, Electrical

Maxwell in time domain

The Maxwell equations in vacuum are

∇×E(r, t) = −∂B(r, t)

∂t(1)

∇×B(r, t) = µ0J(r, t) +1

c2∂E(r, t)

∂t(2)

∇ ·E(r, t) =ρ(r, t)

ε0(3)

∇ ·B(r, t) = 0. (4)

Anders Karlsson, Electrical and information technology

Page 5: Electrodynamics 2019: Lecture 2 - Lunds tekniska högskola€¦ · Electrodynamics 2019: Lecture 2. Today’s lecture covers pages 7{15 in the Exercise book. Anders Karlsson, Electrical

Maxwell in time domain

Since B = µ0H.

∇×E(r, t) = −µ0∂H(r, t)

∂t(5)

∇×H(r, t) = J(r, t) + ε0∂E(r, t)

∂t(6)

∇ ·E(r, t) =ρ(r, t)

ε0(7)

∇ ·H(r, t) = 0. (8)

Anders Karlsson, Electrical and information technology

Page 6: Electrodynamics 2019: Lecture 2 - Lunds tekniska högskola€¦ · Electrodynamics 2019: Lecture 2. Today’s lecture covers pages 7{15 in the Exercise book. Anders Karlsson, Electrical

Maxwell in frequency domain

Time harmonic signals:E(r) is the complex representation of E(r, t). The rule isE(r, t) = Re{E(r)e−iωt}

∇ ×E(r) = iωµ0H(r) (9)

∇×H(r) = J(r)− iωε0E(r) (10)

∇ ·E(r) =ρ(r)

ε0(11)

∇ ·H(r) = 0. (12)

Anders Karlsson, Electrical and information technology

Page 7: Electrodynamics 2019: Lecture 2 - Lunds tekniska högskola€¦ · Electrodynamics 2019: Lecture 2. Today’s lecture covers pages 7{15 in the Exercise book. Anders Karlsson, Electrical

Vector Helmholtz equation

Consider a source free region (J = 0, ρ = 0) with vacuum. Then:

∇2E(r) + k2E(r) = 0

∇2H(r) + k2H(r) = 0

Also

∇ ·E(r) = 0

∇ ·H(r) = 0

Anders Karlsson, Electrical and information technology

Page 8: Electrodynamics 2019: Lecture 2 - Lunds tekniska högskola€¦ · Electrodynamics 2019: Lecture 2. Today’s lecture covers pages 7{15 in the Exercise book. Anders Karlsson, Electrical

Hollow waveguide

V

Anders Karlsson, Electrical and information technology

Page 9: Electrodynamics 2019: Lecture 2 - Lunds tekniska högskola€¦ · Electrodynamics 2019: Lecture 2. Today’s lecture covers pages 7{15 in the Exercise book. Anders Karlsson, Electrical

Hollow waveguide

G

Anders Karlsson, Electrical and information technology

Page 10: Electrodynamics 2019: Lecture 2 - Lunds tekniska högskola€¦ · Electrodynamics 2019: Lecture 2. Today’s lecture covers pages 7{15 in the Exercise book. Anders Karlsson, Electrical

Hollow waveguide

V

∇2Ez(r) + k2Ez(r) = 0, r ∈ V (13)

Boundary conditionEz(r) = 0, r ∈ S (14)

Anders Karlsson, Electrical and information technology

Page 11: Electrodynamics 2019: Lecture 2 - Lunds tekniska högskola€¦ · Electrodynamics 2019: Lecture 2. Today’s lecture covers pages 7{15 in the Exercise book. Anders Karlsson, Electrical

Hollow waveguide

V

∇2Hz(r) + k2Hz(r) = 0, r ∈ V (15)

Boundary condition

n · ∇Hz(r) = 0, r ∈ S (16)

Anders Karlsson, Electrical and information technology

Page 12: Electrodynamics 2019: Lecture 2 - Lunds tekniska högskola€¦ · Electrodynamics 2019: Lecture 2. Today’s lecture covers pages 7{15 in the Exercise book. Anders Karlsson, Electrical

Hollow waveguide

G

r = ρ+ zz

E = ET + Ezz

H =HT +Hzz

∇ = ∇T +∂

∂zz

∇2 = ∇2T +

∂2

∂z2

Anders Karlsson, Electrical and information technology

Page 13: Electrodynamics 2019: Lecture 2 - Lunds tekniska högskola€¦ · Electrodynamics 2019: Lecture 2. Today’s lecture covers pages 7{15 in the Exercise book. Anders Karlsson, Electrical

Today

I z−dependence: Ez(r) = v(ρ)eikzz

I Eigenvalue problem for v(ρ)

I z−dependence: Hz(r) = w(ρ)eikzz

I Eigenvalue problem for w(ρ)

I Find v(ρ) and kz for rectangular waveguide.

I Find w(ρ) and kz for rectangular waveguide.

I Introduction to Comsol.

Anders Karlsson, Electrical and information technology