electrochemistry 12

95
Redox Reactions and Electrochemistry By Aktr

Upload: a-k

Post on 14-Apr-2017

282 views

Category:

Education


0 download

TRANSCRIPT

Page 1: Electrochemistry 12

Redox Reactions and Electrochemistry

By Aktr

Page 2: Electrochemistry 12
Page 3: Electrochemistry 12
Page 4: Electrochemistry 12

Loss of e

Gain of e

Reducing Agent

Oxidising agent

Page 5: Electrochemistry 12

Oxidation

Page 6: Electrochemistry 12

Reduction

Page 7: Electrochemistry 12

Electrochemical cell occur both

Page 8: Electrochemistry 12
Page 9: Electrochemistry 12
Page 10: Electrochemistry 12
Page 11: Electrochemistry 12

SnCl2(aq) + 2FeCl3(aq) → SnCl4(aq) + 2FeCl2(aq)

CuO(s) + H2(g) → Cu(s) + H2O(l)

Example

+2 +3 +4 +2

+100+2

Page 12: Electrochemistry 12

Conductance in electrolytic solution

Page 13: Electrochemistry 12
Page 14: Electrochemistry 12
Page 15: Electrochemistry 12
Page 16: Electrochemistry 12
Page 17: Electrochemistry 12
Page 18: Electrochemistry 12
Page 19: Electrochemistry 12
Page 20: Electrochemistry 12
Page 21: Electrochemistry 12
Page 22: Electrochemistry 12
Page 23: Electrochemistry 12
Page 24: Electrochemistry 12
Page 25: Electrochemistry 12
Page 26: Electrochemistry 12
Page 27: Electrochemistry 12

Also act as a conductor

Page 28: Electrochemistry 12
Page 29: Electrochemistry 12
Page 30: Electrochemistry 12
Page 31: Electrochemistry 12
Page 32: Electrochemistry 12

Conductance in electrolytic solutions

Page 33: Electrochemistry 12
Page 34: Electrochemistry 12
Page 35: Electrochemistry 12
Page 36: Electrochemistry 12

Metallic conductor depend upon

• Nature and structure of metal.• No. of valence electron per atom.• Temperature of the sample.

Page 37: Electrochemistry 12
Page 38: Electrochemistry 12
Page 39: Electrochemistry 12
Page 40: Electrochemistry 12

conductivity aqueous solution depend upon

• Nature of electrolyte.• Size of ion.• Solvation of ion.• Concentration of electrolytic.• Temperature.

Page 41: Electrochemistry 12
Page 42: Electrochemistry 12
Page 43: Electrochemistry 12
Page 44: Electrochemistry 12
Page 45: Electrochemistry 12
Page 46: Electrochemistry 12
Page 47: Electrochemistry 12
Page 48: Electrochemistry 12

One cell const. and resistivityKnown then we can find value Easily.

Page 49: Electrochemistry 12

Molar conductivity

Page 50: Electrochemistry 12
Page 51: Electrochemistry 12
Page 52: Electrochemistry 12
Page 53: Electrochemistry 12
Page 54: Electrochemistry 12
Page 55: Electrochemistry 12
Page 56: Electrochemistry 12
Page 57: Electrochemistry 12
Page 58: Electrochemistry 12
Page 59: Electrochemistry 12
Page 60: Electrochemistry 12
Page 61: Electrochemistry 12
Page 62: Electrochemistry 12
Page 63: Electrochemistry 12

Electrochemical cell

Page 64: Electrochemistry 12
Page 65: Electrochemistry 12

Chemical to electrical Electrical to chemical

Page 66: Electrochemistry 12

2. Voltaic or Galvanic cells- An electrochemical cell in which a spontaneous reaction produces electricity.Eg. Dry cell, lead storage cell etc.

Page 67: Electrochemistry 12

1. Electrolytic cell-An electrochemical cell in which a non spontaneous

reaction is forced to occur by passing a direct current from an external source into the solution.

Eg. Refining metal(purify), electroplating & production of many chemical substance.

Page 68: Electrochemistry 12

Gets Smaller -> <- Gets Larger

Page 69: Electrochemistry 12

Cell Notation

1. Anode2. Salt Bridge3. Cathode

Anode | Salt Bridge | Cathode

| : symbol is used whenever there is a different phase

Page 70: Electrochemistry 12

19.2

Cell Notation

Zn (s) + Cu2+ (aq) Cu (s) + Zn2+ (aq)

[Cu2+] = 1 M & [Zn2+] = 1 M

Zn (s) | Zn2+ (1 M) || Cu2+ (1 M) | Cu (s)anode cathode

Zn (s)| Zn+2 (aq, 1M)| K(NO3) (saturated)|Cu+2(aq, 1M)|Cu(s)anode cathodeSalt bridge

More detail..

Page 71: Electrochemistry 12

K(NO3)

Zn (s) + 2 H+(aq) -> H2 (g) + Zn+2 (aq)

Zn(s)| Zn+2|KNO3|H+(aq)|H2(g)|Pt

Page 72: Electrochemistry 12

Electrochemical Cells

The difference in electrical potential between the anode and cathode is called:

• cell voltage

• electromotive force (emf)

• cell potential

000reductionoxidationCell EEE

UNITS: Volts Volt (V) = Joule (J) Coulomb, C

Page 73: Electrochemistry 12

Standard Electrode Potentials

Standard reduction potential (E0) is the voltage associated with a reduction reaction at an electrode when all solutes are 1 M and all gases are at 1 atm.

V

Standard hydrogen electrode (SHE)

eatm

Reduction Reaction

Page 74: Electrochemistry 12
Page 75: Electrochemistry 12

Determining if Redox Reaction is Spontaneous

• + E°CELL ; spontaneous reaction

• E°CELL = 0; equilibrium• - E°CELL; nonspontaneous

reaction

More positive E°CELL ; stronger oxidizing agent ormore likely to be reduced

Page 76: Electrochemistry 12

Relating E0Cell to G0

echworkECell arg

Unitswork, Joulecharge, CoulombEcell; Volts

charge = nFFaraday, F; charge on 1 mole e-F = 96485 C/mole

work = (charge)Ecell = -nFEcell

G = work (maximum)

G = -nFEcell

Page 77: Electrochemistry 12

Relating CELL to the

Equilibrium Constant, KG0 = -RT ln K

G0 = -nFE0cell

-RT ln K = -nFE0cell

K

nFRTECell ln0

0257.0

96485

29831.8

moleC

KmolKJ

FRT

Kn

Kn

ECell log0592.0ln0257.00

Page 78: Electrochemistry 12
Page 79: Electrochemistry 12
Page 80: Electrochemistry 12

Effect of Concentration on Cell Potential

G =G0 + RTlnQ

G0 = -nFE0cell

-nFEcell= -nFE0cell + RTln Q

Ecell= E0cell - RTln Q

nF

Ecell= E0cell - 0.0257ln Q

nEcell= E0

cell – 0.0592log Q n

Page 81: Electrochemistry 12

Corrosion – Deterioration of Metals by Electrochemical Process

Page 82: Electrochemistry 12

Corrosion – Deterioration of Metals by Electrochemical Process

Page 83: Electrochemistry 12

Corrosion – Deterioration of Metals by Electrochemical Process

Page 84: Electrochemistry 12
Page 85: Electrochemistry 12

Cathodic Protection

Page 86: Electrochemistry 12

Abbreviated Standard Reduction Potential Table

Page 87: Electrochemistry 12
Page 88: Electrochemistry 12

Batteries

19.6

Leclanché cell

Dry cell

Zn (s) Zn2+ (aq) + 2e-Anode:

Cathode: 2NH4+ (aq) + 2MnO2 (s) + 2e- Mn2O3 (s) + 2NH3 (aq) + H2O (l)

Zn (s) + 2NH4 (aq) + 2MnO2 (s) Zn2+ (aq) + 2NH3 (aq) + H2O (l) + Mn2O3 (s)

Page 89: Electrochemistry 12

Batteries

Zn(Hg) + 2OH- (aq) ZnO (s) + H2O (l) + 2e-Anode:

Cathode: HgO (s) + H2O (l) + 2e- Hg (l) + 2OH- (aq)

Zn(Hg) + HgO (s) ZnO (s) + Hg (l)

Mercury Battery

19.6

Page 90: Electrochemistry 12

Batteries

19.6

Anode:

Cathode:

Lead storagebattery

PbO2 (s) + 4H+ (aq) + SO42- (aq) + 2e- PbSO4 (s) + 2H2O (l)

Pb (s) + SO42- (aq) PbSO4 (s) + 2e-

Pb (s) + PbO2 (s) + 4H+ (aq) + 2SO42- (aq) 2PbSO4 (s) + 2H2O (l)

Page 91: Electrochemistry 12

Fuel Cell vs. Battery

• Battery; Energy storage device– Reactant chemicals already in device– Once Chemicals used up; discard (unless rechargeable)

• Fuel Cell; Energy conversion device– Won’t work unless reactants supplied– Reactants continuously supplied; products continuously

removed

Page 92: Electrochemistry 12

Fuel Cell

A fuel cell is an electrochemical cell that requires a continuous supply of reactants to keep functioning

Anode:

Cathode: O2 (g) + 2H2O (l) + 4e- 4OH- (aq)

2H2 (g) + 4OH- (aq) 4H2O (l) + 4e-

2H2 (g) + O2 (g) 2H2O (l)

Page 93: Electrochemistry 12

Types of Electrochemical Cells

• Voltaic/Galvanic Cell; Energy released from spontaneous redox reaction can be transformed into electrical energy.

• Electrolytic Cell; Electrical energy is used to drive a nonspontaneous redox reaction.

Page 94: Electrochemistry 12
Page 95: Electrochemistry 12

Faraday’s Constant Redox Eqn

Molar Mass

Charge =(Current)(Time)