Electrochemical biosensors based on magnetic micro/nano particles

Download Electrochemical biosensors based on magnetic micro/nano particles

Post on 26-Nov-2016

218 views

Category:

Documents

4 download

Embed Size (px)

TRANSCRIPT

  • Electrochimica Acta 84 (2012) 62 73

    Contents lists available at SciVerse ScienceDirect

    Electrochimica Acta

    j ourna l ho me pag e: www.elsev ier .com

    Review article

    Electrochemical biosensors based on magnetic m

    Yuanhong Xu, Erkang Wang

    State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Aca

    a r t i c l

    Article history:Received 9 DeReceived in reAccepted 28 MAvailable onlin

    Keywords:Magnetic partBiosensorsElectrochemisElectrochemilu

    Contents

    1. Introd2. MPs-b

    2.1.

    2.1.2. Other MPs used in EC immunosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642.2. MPs used in other EC biosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652.3. Detection techniques and analytes in EC biosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    2.3.1. Detection techniques in EC biosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662.3.2. Analytes in EC biosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    2.4. Several noticeable strategies in MPs-based EC biosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683. MPs-b

    3.1. 3.2.

    4. Concl4.1. 4.2. AcknoRefer

    Abbreviatioanti-carcinoemDPV, differentnescence; EE2Ferrocene; HRmagnetic grapticles; NPs, naPrussian blue;polymorphismment; Th, thio

    CorresponE-mail add

    0013-4686/$ http://dx.doi.oased ECL biosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71MPs-based ECL immunosensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Other MPs-based ECL biosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    usions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72wledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    ences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    ns: AFP, -fetoprotein; ASV, anodic stripping voltammetry; CEA,bryonic antigen; CNTs, carbon nanotubes; CV, cyclic voltammetry;

    ial pulse voltammetry; EC, electrochemistry; ECL, electrochemilumi-, ethinylestradiol; EIS, electrochemical impedance spectroscopy; Fc,P, horseradish peroxidase; LSV, linear sweep voltammetry; MGNs,hene nanosheets; MNPs, magnetic nanoparticles; MPs, magnetic par-noparticles; SWV, square wave voltammetry; OTA, ochratoxin A; PB,

    SPCEs, screen printed carbon electrodes; SNPs, single-nucleotides; SELEX, Systematic Evolution of Ligands by Exponential Enrich-nine; TNT, 2,4,6-trinitrotoluene.ding author. Tel.: +86 431 85262003; fax: +86 431 85689711.ress: ekwang@ciac.jl.cn (E. Wang).

    1. Introduction

    A biosensor is an analytical device for detecting analytes thatcombines biological recognition element with a physicochemicaldetector component. It consists three parts: the biological recog-nition element, the transducer or the detector element and thereader device [1]. There are different types of biosensors depend-ing on different principles. According to the transducer types,biosensors can be classied as optical, thermal, piezoelectric, elec-trochemistry (EC), electrochemiluminescence (ECL) biosensors, etc.

    see front matter 2012 Elsevier Ltd. All rights reserved.rg/10.1016/j.electacta.2012.03.147 e i n f o

    cember 2011vised form 25 March 2012arch 2012e 5 April 2012

    icles

    tryminescence

    a b s t r a c t

    This review shows how magnetic micro/nano particles have made signicant contributions in the devel-opments of electrochemical and Ru(bpy)32+ electrochemiluminescent biosensors, including immuno-,enzyme, DNA, aptamer ones. Reports published from 2007 to November 2011 have been covered herein.More importantly, different aspects of the biosensors such as modes of magnetic particles, detection andow injection techniques, analytes and the corresponding sensitivity and sample matrix, as well as sev-eral noticeably prominent characteristics have been summarized and discussed in detail. Accordingly,research opportunities and future development trends in these areas are discussed.

    2012 Elsevier Ltd. All rights reserved.

    uction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62ased EC biosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63MPs used in EC immunosensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632.1.1. Iron oxide MPs used in EC immunosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64/ locate /e lec tac ta

    icro/nano particles

    demy of Sciences, Changchun, Jilin 130022, China

  • Y. Xu, E. Wang / Electrochimica Acta 84 (2012) 62 73 63

    EC process can directly convert a biological event to an electronicsignal, including the measurable current (amperometric), poten-tial or charge accumulation (potentiometric) or altered conductiveproperties of a medium (conductometric) between electrodes [2].The most cdifferential(SWV), linetammetry impedance emit measuinto radiaticial form ofECL of tris(2analogues) considerabltages of rapand ease of areas includronmental

    EC and Edesigned thantibodies, face, respecamplicatioand nanoteand magnetbiosensors.surface of tical covalensignal geneuate an ECsensing surrenewing tface. Moreointegrated ireach this r(MPs) to bumagnet, therecognitiontrode surfacexternal mimmobilizelower detecof concentrting analytepoor mass sor surface can removechromatogrmost of theand non-getion of biomor metal orpatibility anproviding aEC and ECL

    In this eaof magneticconsiderablthe numberbiosensors between 20more and mExcept for tto refer to thHu [9] gave

    of inorganic nanoparticles (NPs) such as metal, semi-conducting,magnetic and solid oxide, and hybrid ones for enhancing construc-tion of EC biosensors. Grieshaber et al. [2] described the principlesand architectures of the EC biosensors, magnetic nanoparticles

    )-bas as ventio0] ornd ppy)3t onlo recL biots an

    1B selempplicosened thion onatorical rars [

    to bed od las MPo-, e

    arizebiosquessitiv

    ndings as sed.

    s-ba

    Ps us

    eral-phaectly

    EC sdy inility,

    atte]. Ho

    tranpplicield

    elecmmoir re

    n of [12

    lyingognittibodde ssors he la

    the e verivelyommon techniques include cyclic voltammetry (CV), pulse voltammetry (DPV), square wave voltammetryar sweep voltammetry (LSV), anodic stripping vol-(ASV) amperometry, potentiometry, electrochemicalspectroscopy (EIS) and so on [2]. ECL is a means torable luminescent signals by converting EC energy

    ve energy via an EC reaction. ECL belongs to one spe- EC and is stated separately herein. Among these, the,2-bipyridyl)ruthenium(II) [Ru(bpy)32+] (including itsand its coreactants systems has received much moree attention. Both EC and ECL biosensors possess advan-id, high sensitivity, simple instrumentation, low costminiaturization, thus provide attractive means in manying clinical, biological, pharmaceutical, forensic, envi-

    and agricultural applications, etc. [3,4].CL immuno-, enzyme, tissue and DNA biosensors arerough immobilizing biological recognition elements ofenzyme, tissue and DNA on the working electrode sur-tively. To improve the sensitivity of biosensors, signaln process is needed. With the development of micro-chnology, micro/nanoparticles with optical, electronicic properties could be combined to the development of

    The micro/nanoparticles could be immobilized on thehe transducers by ways of physical adsorption, chem-t bonding, electrodeposition and so on for EC or ECLration and amplication [5]. One main factor to eval-

    or ECL biosensor is reproducible regeneration of theface. This renewal is a difcult task since it requireshe recognition element bound to the transducer sur-ver, this drawback makes the biosensors difcult to bento automatic systems [6]. An alternative approach toenewal is applying the disposable magnetic particlesild up the biosensors. With the assistance of an external

    in situ biosensing surface is built up by localizing the element-coated MPs on the electrode area. The elec-e can be easily renewed by alternate positioning of the

    agnet. Meanwhile, MPs provide a high surface area to the biomolecules as many as possible, resulting in ation limit. Moreover, the use of MPs can play the rolesation and purication. It is particularly efcient in detec-s in complex sample matrix, which may exhibit eithertransport to biosensor or physical blockage of biosen-by non-specic adsorption [6]. MPs-based techniques

    the need for sample pretreatment by centrifugation oraphy, thus shortening the handling time [3]. In addition,

    MPs, especially the iron oxide ones, are biocompatiblenotoxic; they can either be applied for simple adsorp-olecules, or functionalized or encapsulated in polymers

    silica NPs or carbon materials to enhance the biocom-d increase the functionalities [7,8]. Thus, MPs have been

    promising experimental platform for developing bothbiosensors.rly century, Sole et al. [7] summarized the analytical use

    beads as new materials for EC biosensing and presentede prospective aspects of this scientic eld. As expected,

    of publications per year on MPs related to EC and ECLshows an increasing trend in recent years, especially09 and 2011 (see in Fig. 1A). It clearly indicated thatore scientists are participating into this research eld.he research works, some literature reviews have begunese areas. For example, Guo and Dong [5] and Wang and

    general reviews of recent advances before the year 2008

    (MNPsof MPsbut attsors [1acids aof Ru(b[4], bubeen nand ECelemen

    Fig.nition Most aimmunscreenEvolutcombianalytfew yesection

    Basselectevariouimmunsummof the technithe senoutstatunitiediscus

    2. MP

    2.1. M

    Genas solidare dirwhichantiboportaberable[13,14and ECtical acan shof thebody i(3) thelizatiosurfaceis appbiorecgen/anelectrobiosenfrom tdue tomigratextensed biosensing was partly mentioned. Specic reviewersatile tools for EC or ECL biosensing were reported,n was only particularly paid on DNA hybridization sen-

    immunosensors [11] or detecting biomolecules (nucleicroteins) and cells before the year 2007 [3]. Applications2+ ECL in bioanalysis was summarized by Wei and Wangy aptamer biosensor was mentioned. So far, there hasent overview on the use of MPs for developing both ECsensors based on various types of biological recognitiond for detecting a variety of analytes.

    hows a statistical study according to the different recog-ents used in the MPs-based EC and ECL biosensors.ations of MPs are concentrated on the development ofsors, followed by DNA and enzyme biosensors. Sincerough the iterative process referred to as Systematicf Ligands by Exponential Enrichment (SELEX) from theial libraries of synthetic nucleic acid, aptamers-relatedesearch has experienced explosive growth over the past5]. Thus aptamer biosensor is classied as one separatee discussed herei...

Recommended

View more >