electric field of charged hollow and solid spheres

26
E-field of a charged hollow or solid sphere 1 Electric Field of charged hollow and solid Spheres © Frits F.M. de Mul

Upload: others

Post on 21-Jan-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 1

Electric Field of charged

hollow and solid Spheres

© Frits F.M. de Mul

Page 2: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 2

Presentations: • Electromagnetism: History

• Electromagnetism: Electr. topics

• Electromagnetism: Magn. topics

• Electromagnetism: Waves topics

• Capacitor filling (complete)

• Capacitor filling (partial)

• Divergence Theorem

• E-field of a thin long charged wire

• E-field of a charged disk

• E-field of a dipole

• E-field of a line of dipoles

• E-field of a charged sphere

• E-field of a polarized object

• E-field: field energy

• Electromagnetism: integrations

• Electromagnetism: integration elements

• Gauss’ Law for a cylindrical charge

• Gauss’ Law for a charged plane

• Laplace’s and Poisson’s Law

• B-field of a thin long wire carrying a

current

• B-field of a conducting charged

sphere

• B-field of a homogeneously

charged sphere

Downloads: www.demul.net/frits , scroll to “Electricity and Magnetism”

Page 3: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 3

E-field of a charged sphere

Available:

A sphere, radius R, with

• surface charge density σ [C/m2], or

• volume charge density ρ [C/m3]

σ and ρ can be f (position)

Question:

Calculate E-field in arbitrary points inside

and outside the sphere

Page 4: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 4

E-field of a charged sphere

Contents:

1. A hollow sphere, homogeneously charged (conducting)

2. Idem., non-homogeneously charged

3. A solid sphere, homogeneously charged

4. Idem., non-homogeneously charged

NB. Homogeneously charged spheres can also be calculated in an

easy way using the symmetry in Gauss’ Law.

Method: integration over charge elements (radial and angular

integrations).

Page 5: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 5

E-field of a charged sphere

Contents:

1. A hollow sphere, homogeneously charged (conducting)

2. Idem., non-homogeneously charged

3. A solid sphere, homogeneously charged

4. Idem., non-homogeneously charged

Page 6: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 6

1. Hollow sphere, homogeneously charged

1. Charge distribution:

(surface charge) s [C/m2]

Z

X

Y

R

R

R

2. Coordinate axes:

Z-axis = polar axis

3. Symmetry: spherical

4. Spherical coordinates:

r, q, j

er eq

q

ej

j

Page 7: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 7

1. XYZ-axes

X

Y

j

q

R

Z

2. Point P on Z-axis . P

3. all Qi’s at ri , qi , ji

contribute Ei to E in P

r

Qi

Ei

er

4. In P: Ei,x , Ei,y , Ei,z

5. Expect from symmetry:

S (Ei,x+Ei,y ) = 0

6. E = Ez ez only !

1. Hollow sphere, homogeneously charged

Ez

Ex

Ey

Page 8: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 8

Z

er

q

r

X

Y

. P

ez

j

dq

dj

dQ at dA

Distributed charge: dQ dE

)(4 2

0

zzr

dQeedE r

charge element

dQ = s dA

surface element

dA=(R.dq).(R.sinq.dj) R.sinq

r and (er .ez ):

see next page

1. Hollow sphere, homogeneously charged

dEz

Page 9: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 9

Z

X

Y

er

j

q

. P

r

dQ at dA

dE

dq

dj

ez

R.sinq

r

q

R

er

ez

zP

R.sinq

R.sinq

R.cosq

zP - R.cosq

r2=(R.sinq)2 + (zP - R.cosq)2

(er .ez)= (zP - R.cosq) / r

Cross section through OP:

1. Hollow sphere, homogeneously charged

dEz

Page 10: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 10

Z

X

Y

er

j

q

. P

r

dQ

dE

dq

dj

ez

R.sinq

)(4 2

0

zzr

dAeedE r

s

dA=(R.dq).(R.sinq.dj)

r2=(R.sinq)2 + (zP - R.cosq)2

(er .ez)= (zP - R.cosq) / r

2/322

0 ])cos.()sin.[(

]cos..[.sin...

4 qq

qjqq

s

RzR

RzdRdRdE

P

Pz

2/322

2

00

2

0])cos.()sin.[(

]cos..[sin.

4 qq

qq

sjq

RzR

RzRddE

P

Pz

1. Hollow sphere, homogeneously charged

These expressions can be used for

both |zP| ≥ R and |zP| < R

dEz

Page 11: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 11

Z

X

Y

er

j

q

. P

r

dQ

dE

dq

dj

ez

R.sinq

Integration:

• over φ : results in factor 2π

• over θ : replace sinθ.dθ by -d(cosθ) ,

divide above and below by R3,

call cosθ = x, and zP/R = a

and a2+1-2ax = y (with -2a.dx = dy)

and integrate over y

2/322

2

00

2

0])cos.()sin.[(

]cos..[sin.

4 qq

qq

sjq

RzR

RzRddE

P

Pz

1. Hollow sphere, homogeneously charged

Result of integration:

2 cases: |a| > 1 and |a| < 1.

This expression can also be used for other

limiting values of θ.

q

q

s

0

2221

0

11 with ,

2 a

y

yayF

FEz

dEz

Page 12: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 12

Z

X

Y

er

j

q

. P

r

dQ

dE

dq

dj

ez

R.sinq

2/322

2

00

2

0])cos.()sin.[(

]cos..[sin.

4 qq

qq

sjq

RzR

RzRddE

P

Pz

1. Hollow sphere, homogeneously charged

Result of integration:

with a= zP /R and y = a2+1-2a.cos θ .

2 cases: |a| > 1 and |a| < 1 .

This expression can also be used for other

limiting values of θ.

q

q

s

0

2221

0

11 with ,

2 a

y

yayF

FEz

Next slide: plot of F for varying values of the

integration limits :

begin θb = 0..1800 ; end θe =1800

θb= 00 : closed sphere

θb > 00 : “bowl” shape

dEz

Page 13: Electric Field of charged hollow and solid Spheres

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4 -3 -2 -1 0 1 2 3 4

F(zP)

a = z(P) / R

2/a^2 thb=0

thb=30 thb=60

thb=90 thb=120

thb=150 thb=180

a = -1 .. +1 :

inside sphere:

z = -R .. +R

E-field of a charged hollow or solid sphere 13

1. Hollow sphere, homogeneously charged q

q

s

0

2221

0

11 with ,

2 a

y

yayF

FEz

θb= 00 : closed sphere

θb > 00 : “bowl” shape

In plot: θb = “thb”

with a= zP /R and y = a2+1-2a.cos θ.

1st curve, “2/a^2” :

= according to “Gauss”

2

2

2

0

2

2Pz

R

aE

s

s

Plot of F for varying values of the

integration limits :

begin θb = 0..1800 ; end θe =1800

θb

bowl

θe =1800

Page 14: Electric Field of charged hollow and solid Spheres

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4 -3 -2 -1 0 1 2 3 4

F(zP)

a = z(P) / R

2/a^2 thb=0

thb=30 thb=60

thb=90 thb=120

thb=150 thb=180

a = -1 .. +1 :

inside sphere:

z = -R .. +R

E-field of a charged hollow or solid sphere 14

1. Hollow sphere, homogeneously charged

θb

bowl

θe =1800

Correspondence: for thb=0 with

result from “Gauss”.

Result = 0 inside sphere

thb=900: Symmetric around

z=0 for “half sphere”

1st curve, “2/a^2”

(= “Gauss”)

(abs.value)

thb=300 and 1500 :

thb=600 and 1200 :

mutual symm. around

z=0 inside sphere

q

q

s

0

2221

0

11 with ,

2 a

y

yayF

FEz

Page 15: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 15

1. Hollow sphere, homogeneously charged q

q

s

0

2221

0

11 with ,

2 a

y

yayF

FEz

with a= zP /R and y = a2+1-2a.cos θ.

Plot of F for integration limits :

begin θb = 45; end θe =1350 (ring)

θb

ring θe

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-4 -2 0 2 4

F(zP)

a = z(P) / R

a = -1 .. +1 :

inside sphere:

z = -R .. +R

Page 16: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 16

Z

X

Y

er

j

q

. P

r

dQ

dE

dq

dj

ez

R.sinq

result for E in P:

zP < R : E = 0

zP > R :

using σ = Q / (4πR2).

zz eeE2

0

2

0

2

4 PP z

Q

z

R

s

2/322

2

00

2

0])cos.()sin.[(

]cos..[sin.

4 qq

qq

sjq

RzR

RzRddE

P

Pz

1. Hollow sphere, homogeneously charged

With Gauss:

Gauss sphere at radius zP :

2

00 4.

P

encl

z

QE

Q

dAE

dEz

Page 17: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 17

E-field of a charged sphere

Contents:

1. A hollow sphere, homogeneously charged (conducting)

2. Idem., non-homogeneously charged

3. A solid sphere, homogeneously charged

4. Idem., non-homogeneously charged

Page 18: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 18

2/322

2

00

2

0])cos.()sin.[(

]cos..[sin.

4 qq

qq

sjq

RzR

RzRddE

P

Pz

2. Hollow sphere, non-homogeneously charged

Now σ = f (θ,φ)

X and Y-components may be present; ex and ey are ┴ ez

zP

R.sinq

R.sinq

r

q R

er

ez R.cosq

zP - R.cosq

r2=(R.sinq)2 + (zP - R.cosq)2

For Ez : (er .ez)= (zP - R.cosq) / r

Z

X

Y

er

j

q

. P

r

dQ

dE

dq

dj

ez

R.sinq

dEz

dEx dEy

For Ex and Ey we need: R.sinq / r

Page 19: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 19

2/322

2

00

2

0])cos.()sin.[(

]cos..[sin.

4 qq

qq

sjq

RzR

RzRddE

P

Pz

2. Hollow sphere, non-homogeneously charged

Now σ = f (θ,φ)

Z

X

Y

er

j

q

. P

r

dQ

dE

dq

dj

ez

R.sin

q

dEz

dE x dEy

For Ex and Ey we need: R.sinq / r

[

).for (sin

);for (cos)( with

])cos.()sin.[(

)(.sin..sin.

4 2/322

2

00

2

0

,

y

x

P

yx

E

E

RzR

RRddE

j

jj

qq

jqq

sjq

In many situations, e.g. asymmetric

charge distributions, numerical

integration will be necessary.

Page 20: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 20

E-field of a charged sphere

Contents:

1. A hollow sphere, homogeneously charged (conducting)

2. Idem., non-homogeneously charged

3. A solid sphere, homogeneously charged

4. Idem., non-homogeneously charged

Page 21: Electric Field of charged hollow and solid Spheres

21

Derived for a hollow sphere :

2/322

2

00

2

0])cos.()sin.[(

]cos..[sin.

4 qq

qq

sjq

RzR

RzRddE

P

Pz

3. Solid sphere, homogeneously charged

Integration element dR

For a solid sphere we need an extra

integration variable: over varying radius.

Suppose: radius R varies from 0 to R0.

Surface charge element

dQ = σ. dA = σ . R.dθ.R.sinθ.dφ (σ in C/m2 )

has to be replaced by

Volume charge element: (ρ in C/m3 )

dQ= ρ. dV= ρ. dR.R.dθ.R.sinθ.dφ

Z

X

Y

er

j

q

. P

r

dQ

dE

dq

dj

ez

R.sinq R dR

dEz

E-field of a charged hollow or solid sphere

2/322

2

00

2

00])cos.()sin.[(

]cos..[sin.

4

0

qq

qq

jq

RzR

RzRdddRE

P

P

R

z

Page 22: Electric Field of charged hollow and solid Spheres

22

3. Solid sphere, homogeneously charged

2/322

2

00

2

00])cos.()sin.[(

]cos..[sin.

4

0

qq

qq

jq

RzR

RzRdddRE

P

P

R

z

Z

X

Y

er

j

q

. P

r

dQ

dE

dq

dj

ez

R.sinq R dR

Integration over θ and φ resulted in:

with a= zP /R and y = a2+1-2a.cos θ.

q

q

s

0

2221

0

11 with ,

2 a

y

yayF

FEz

dRa

y

yayF

dFdEz

q

q

0

2221

0

11d with ,

2

.

dRz

RdE

P

z 2

0

2

2

0

3

0

0

2

0

2

03

:0

P

R

P

zPz

RdR

z

RERz

dEz

E-field of a charged hollow or solid sphere )!contributenot do shells (sphere

33:

0

2

0

3

0

2

0

2

0

P

P

P

P

z

P

zP

z

z

z

zdR

z

RERz

P

Result for a

hollow sphere:

Page 23: Electric Field of charged hollow and solid Spheres

23

3. Solid sphere, homogeneously charged

Z

X

Y

er

j

q

. P

r

dQ

dE

dq

dj

ez

R.sinq R dR

Result for a solid sphere:

2

0

3

0

2

0

2

03

:0

P

R

P

zPz

RdR

z

RERz

And with Q =ρ. (4/3) . πR03 :

4

.:: inside

4: :outside

3

0

0

2

0

0

R

zQERz

z

QERz

PzP

P

zP

These expression are according to “Gauss”.

dEz

E-field of a charged hollow or solid sphere

0

2

0

3

0

2

0

2

033

:

P

P

P

z

P

zP

z

z

zdR

z

RERz

P

inverse

quadratic

linear

Page 24: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 24

E-field of a charged sphere

Contents:

1. A hollow sphere, homogeneously charged (conducting)

2. Idem., non-homogeneously charged

3. A solid sphere, homogeneously charged

4. Idem., non-homogeneously charged

Page 25: Electric Field of charged hollow and solid Spheres

25

4. Solid sphere, non-homogeneously charged

Z

X

Y

er

j

q

. P

r

dQ

dE

dq

dj

ez

R.sinq R dR

2/322

2

00

2

00])cos.()sin.[(

]cos..[sin.

4

0

qq

qq

jq

RzR

RzRdddRE

P

P

R

z

In general:

Integration has to be performed

numerically.

dEz

E-field of a charged hollow or solid sphere

[

).for (sin

);for (cos)( with

])cos.()sin.[(

)(.sin..sin.

4 2/322

2

00

2

00

,

0

y

x

P

R

yx

E

E

RzR

RRdddRE

j

jj

qq

jqq

jq

dEx

dEy ρ = f (R,θ,φ) : X- and Y-components present.

Page 26: Electric Field of charged hollow and solid Spheres

E-field of a charged hollow or solid sphere 26

for homogeneous charge distribution:

E=0

r > R :

E E

zeE2

04 r

Qtot

total charge seems to be in

center

Conclusion

Hollow: Qtot = σ.4πR2

Solid: Qtot = ρ.4πR3/3

the end

r

R

zeE

E

2

04

.

0

R

rQtot

r < R: hollow:

solid: