electric current and circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... ·...

53
Electric Current and Circuits (1).notebook Electric Current In the late 1700's Luigi Galvani and Alessandro Volta carried out experiements dealing with the contraction of frogs' leg muscles. Volta's work led to the invention of the electric battery (voltaic cell) which produced the first steady flow of charged particles. In honor of his work in the field of electricity, the electrical unit known as the volt, V, was named in his honor. Volta Galvani

Upload: others

Post on 24-Mar-2020

26 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Electric Current

In the late 1700's Luigi Galvani and Alessandro Volta carried out experiements dealing with the contraction of frogs' leg muscles.  

Volta's work led to the invention of the electric battery (voltaic cell) which produced the first steady flow of charged particles.  

In honor of his work in the field of electricity, the electrical unit known as the volt, V, was named in his honor.

VoltaGalvani

Page 2: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

The rate of flow of electric charge is called electric current.  

Electric current in a wire can be defined as the amount of charge that passes through it per unit time at any point.  

Electric current is measured in coulombs per second.  One coulomb per second is called an ampere (amp).

Current is often measured in mA (milliamps) and μA (microamps).

I   is electric current  q  is quantitiy of charge t   is time interval

Electric Current

1 mA = 1 x 10­3 A       1μA = 1 x 10-6 A

Page 3: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Conventional Current vs. Electron Flow

+

­ Conventional Current vs. Electron Flow

http://www.youtube.com/watch?v=IpaEGhjpZgc&feature=related

http://www.youtube.com/watch?v=nZjMARe6APs&feature=relmfu

Page 4: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Sample Problems

1.  A steady current of 3.5 A flowed in a wire for     2.0 minutes.  How much charge passed through      the circuit?

Page 5: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

2.  A battery was charged using a current of 5.7 A.      How long did it take to charge the battery if      1.2 x 105 C of charge passed through it?

Page 6: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

3.  What is the current if 2000 Na+ ions were to flow      across a cell membrane in 9.8 μs?  The charge on      a sodium ion is the same as a proton.

Page 7: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Electric Circuits

An electric circuit is a closed loop or continuous path that consists of a device that will increase the poten­tial energy of electric charges, such as                                       

 

generators

 batteries

photovoltaic cells

that reduces the potential energy of the charges while converting the electrical energy into a form of "useful" energy (sound, light, heat).  

In order to keep the charge flowing, a potential difference must be maintained. 

connected to a device (radio, lamp, toaster)

 

(devices that change sunlight directly into electricity)

Page 8: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

D

q

high potential

low potential

D

q

D

Electric Potential in Circuits

A battery powered electric circuit has locations of high and low potential.  Within the battery, there is an electric field established between the two terminals, directed from the positive towards the negative terminal.

Work is required to move a positive charge through the battery from the negative terminal to the positive terminal, thus increasing the potential energy of the charge.  (The charge is moving against the electric field.) 

It is for this reason that the positive terminal is des­cribed as the high potential terminal.

The movement of the positive charge through the wires from the positive terminal to the negative terminal would occur naturally. (No work is required to move the chargein the direction of the electric field.)  

The charge loses potential energy as it moves through the wires.  It is for this reason that the negative termi­nal is described as the low potential terminal.

This assignment of high and low potential to the terminals of the battery presumes that we are using

conventional current.

D

q

high potential

Page 9: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

An electric circuit is nothing more than an energy conversion system.

The reaction of the chemicals inside a battery pro­duces chemical energy that is used to do work on positive charge to move it from the low potential terminal to the high potential terminal.

Chemical energy is transformed into electric potential energy within the internal circuit (the battery).

Once at the high potential terminal, the positive charge will then move through the external circuit and do work on a light bulb, a motor, heater coils, etc., transforming its electric potential energy into useful forms for which the circuit was designed. 

Page 10: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Charge flows all the way around the circuit. The battery pushes the charge around the circuit.  As the charge passesthrough the lamp, it makes it light up.

Below is a simple electric circuit. It has a switch, a bulb and a battery.  These components are connected togetherwith metal connecting wires. 

A Simple Circuit

A simple switch is made of a metal lever that can join up with a metal contact. When you press the switch, the two pieces of metal touch and the current can flow through it. When you open it, this breaks the circuit.

Page 11: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Resistance and Ohm's Law

The relationhsip between the current,I, in a metal wire and the potential dif­ference, V, applied to its ends, was ex­perimentally determined by Georg Ohm.

Ohm

He found that current is directly proportional to potential difference. 

I α V

This means that if you connect a wire to a 9 V battery, the current will be three times what it would be if the wire were connected to a 3 V battery.

The amount of current that flows in a circuit is also dependent on the resistance offered by the circuit.  

Imagine you are walking down the hall during first period.  You might meet a few people along the way, but you won't encounter much opposition.

Compare that situation to walking down the hall a few seconds after the lunch bell rings ­ you will encounter a lot of resistance! 

Current, I is inversely proportional to resistance, R.

I α 1      R

Example

Page 12: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

If we combine the two relationships, we get:

The unit of resistance is the ohm.  The symbol for ohm is the Greek letter omega, Ω.

The equation is usually written as V = IR and it is referred to as "Ohm's Law."

1 Ω = 1 V             A

Not all materials obey the law, but we will assume the materials invovled in 

our problems do.

I  =  V         R

I    is current  V   is potential difference R   is resistance 

Page 13: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Connecting wires generally have very low resistance compared to the coils or filaments in some electrical devices like heaters and light bulbs.

Resistors are devices designed to have a specific resis­tance and are often used in electronic devices to control the amount of current that flows.

Some resistors have their resistance values written ontheir exteriors.  Others have a color code that allows us to calculate their resistance.

Resistors

Page 14: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Four­band identification is the most commonly used for color coding resistors.   It consists of four colored bands that are painted aorund the body of the resistor.

The first two numbers are the first two significant digitsof the resitance value, the third is a mulitplier and the fourth is the tolerance of the value. 

Each color corresponds to a certain number, shown inthe chart below.  The tolerance for a 4­band resistor will be 2%, 5% or 10%.

  

A useful mnemonic for remembering the first ten color codes matches the first letter of the color code, by order of increasing magnitude. There are many variations:

• Bright Boys Rave Over Young Girls But Veto Getting Wed • B. B. R O Y of Great Britain has a Very Good Wife • Better Be Right Or Your Great Big Venture Goes West 

Page 15: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Page 16: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Sample Problems

1.  What is the resistance of a toaster       if 1.10 x 102 V produces a current      of 3.1 A?

Page 17: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

2.  A 4.5 V battery is connected to a bulb      whose resistance is 2.5 Ω.  What is the      current?

Page 18: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

3.  A hair dryer draws 11.0 A when      plugged into a 1.20 x 102 V line.       How much charge passes through      in 10.0 minutes? 

Page 19: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Experimentally it has been found that the resistance, R, of a metal is directly proportional to its length, L, and inversely proportional to its cross­sectional area, A.

R = ρL       A

R   resistanceρ   resistivityL  lengthA  cross­sectional area

Material                           Resistivity                                              (Ωm)

silver                                 1.59 x 10­8  copper                               1.68 x 10­8  aluminum                           2.65 x 10­8tungsten                             5.6 x 10­8  iron                                    9.71 x 10­8 platinum                            10.6 x 10­8 

The resistivities of some metals are listed below.

 ρ is the Greek letter rho and it is a proportionality constant called resistivity that depends on 

the material from whichthe wire is made.  

           

Page 20: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

To find the cross­sectional area of the the wire,use the following formula:

where  d represents the diameter of the wire

Page 21: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Sample Problems

1.  What is the resistance of a 3.5 m length of aluminum       wire 1.5 mm in diameter?

Page 22: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

2.  What is the length of a copper wire that has a cross­      sectional area of 3.4 x 10­6 m2 and a resistance of       7.1 x 10­2  Ω? 

Page 23: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

3.  What is the radius of a 1.00 m length of tungsten      wire whose resistance is 0.25 Ω?

Page 24: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Electric PowerElectric power measures the rate at which electric energyis transformed into another form of energy such as light or heat.

The energy transformed when a charge, Q, moves through a potential difference, V, is QV.  Powercan be calculated as follows:

  

P = QV        t

Remember that I = Q/t, so the formula becomes:

P = IVP   powerI    electric currentV   potential difference

The unit of electric power is the watt, W. 

1W = 1 J             s

Page 25: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

By substituting V/R for I, or IR for V, we can get two more equations for electric power.

P = IV P = IV

P = V (V)       R

P = V2

       R

P = I (IR)

P = I2R

Page 26: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

1.  Calculate the resistance of a 60.0 W bulb      designed for 12 V?

Sample Problems

Page 27: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

2.  What is the maximum power       consumption of a 6.0 V tape       player that draws a maximum       of 4.50 x 102 mA of current?

Page 28: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

3.  An 8.00 x 102 W hair dryer has a      resistance of 18 Ω.  What is the      current throught the hair dryer? 

Page 29: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

If you look at an electric bill, you will see that you pay for energy not power.  We can calculate the electric energy used by a device by multiplying power consumption by thetime the device is on.

E  = PtE   energy  P   power   t    time       

We could write the units of energy as Ws.  The electric company uses a larger unit, the kilowatt­hour (kWh).

1 kWh = 1000 W x 3600 s = 3.60 x 106 J

Another equation that is often used to calculateelectric energy is: 

E = I2Rt 

Page 30: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

1.  An electric heater draws 15.0 A on a 1.20 x 102 V      line.  How much does it cost to operate the heater for     30.0 days if the heater is used for 3.00 h per day and     the electric company charges 10.5 cents per kWh?

Sample Problem

t = 3.00 hours per day x 30.0 days = 90.0 hours

P = IVP = 15.0 x 1.20 x 102P = 1.80 x 103 WP = 1.80 kW 

Determine the total number of hours the heateris used. 

Determine the amount of power that is used.

Calculate the amount of energy that was used.

E = PtE = 1.80 kW x 90.0 hE = 1.62 x 102 kWh

Now calculate cost. 

Cost = (1.62 x 102 kWh)($0.105)                                                kWh  Cost = $17.00

Page 31: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

2.  A small electric furnace operating on 1.00 x 102 V,      expends 2.0 kW of power.

a)  What current is in the circuit?b)  What is the resistance of the furnace?c)  What is the cost of operation for 24 h       at $0.05/kWh?

Page 32: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Diagramming Circuits

There are standard symbols that are used to representthe elements of a circuit.  The diagram that you end up with is called a circuit schematic or circuit diagram. 

We will be using the following symbols:

ReminderAlthough electricity is the flow of electrons, called electron flow, it was originally thought 

that positive charge flowedin a circuit.  The flow of positive charge is called 

conventional urrent. 

 

Arrows are used to show the direction of the current. 

+ ­

connector (wire)

battery

resistor

ammeter

voltmeter

(or           )

Page 33: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

In a circuit, resistors can either be arranged in series with one another or parallel to another.

Resistors in Series All the resistors are connected one after the other.There is only one path for the charge to follow.

IT = I1 = I2 = I3 

V

R1

R2

R3

+

­

Since it is one continuous loop, the current through­out the loop is the same.  The total current is equal tothe current in resistor 1, resistor 2 and resistor 3.

Page 34: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

To find the total resistance of a series circuit, sum the resistances in each resistor.

RT = R1 + R2 + R3 

The increase in potential across the battery, is equalto the sum of the potential drops at each resistor.   

VT = V1 +V2 + V3

Total resistance is also referred to asthe effective or equivalent resistance. 

Page 35: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Sample Problem

A 45.0 V potential difference is place across a 5.0 Ωresistor and a 10.0 Ω resistor connected in series.

a)  What is the eqivalent resistance of the circuit?b)  What is the current through the circuit?c)  What is the voltage drop across each resistor?d)  What is the total voltage drop across the circuit?

We can use a V­I­R chart to keep track of our values.

Fill in the known values.

5.010.0

45.0

a)  equivalent resistance = total resistance

RT = R1 + R2 

(add the values in the third column!)

Fill this value into the chart.

5.010.0

45.0 15.0

Page 36: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

We now have two values in the "Total" row. Using Ohm's law, we can determine the third, the total current.

b)  current through the circuit = total current 

IT = VT/RT

Fill the values of IT, I1 and I2 into the chart.

IT = I1 = I2  Reminder

5.0

10.045.0 15.03.00

3.003.00

5.010.0

45.0 15.0

Page 37: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

We now have two values in the "R1" row and the"R2" row.  Using Ohm's law, we can determine the third value, V, for each resistor.  

c)  voltage drop across each resistor

Fill these values into the chart.

5.0

10.045.0

3.003.003.00 15.0

5.0

10.045.0

3.003.003.00 15.0

15.030.0

Page 38: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

d)  total voltage drop across the resistor

This value was given!  Verify to make sure that:

VT = V1 +V2 

5.0

10.045.0

3.003.003.00 15.0

15.030.0

Page 39: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Resistors in Parallel

Parallel circuits are made by connecting resistors in such a way that you create several paths/branches through which current can flow.  For the resistors tobe truly in parallel, the current must split, then come back together. 

In the example given below, the current has threepossible paths it can take. 

VR1 R2 R3

+

­

current splits here

current comes together here

Path 1 Path 2 Path 3

Page 40: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

The total current in the circuit is equal to the sum of the currents in each path.

IT = I1 + I2 + I3

The battery provides the source of potential differencefor the circuit.   Each path acts as if the other paths are not present.  All the potential drops are the same.     

VT = V1 = V2 = V3 

Page 41: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

The equivalent resistance of a parallel circuit canbe found using the following formula,

Placing a resistor in parallel with an existing resistor always decreases the resistance of the circuit.  The resistance decreases because each new resistor pro­vides an additional path for the current to flow.

The equivalent resistance is always less that the resistance of any resistor in the circuit.

NOTE

Page 42: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Derivation of the formula for the equivalent resistance of a parallel circuit.

The total current in the circuit is the sum of the currents through the branches of the circuit.

I = I1 + I2 + I3

The total current through the equivalent resistance, R, is given by I = V/R, but all the potential drops in the circuit are the same.

V  =  V  +  V  + VR       R1     R2    R3 

Dividing both sides of the equation by V gives an equation for the equivalent resistance of the paralle resistors.

Page 43: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Sample ProblemThree resistors of 60.0 Ω, 30.0 Ω and 20.0 Ω are connected in parallel across a 90.0 V difference inpotential.

a)  Find the equivalent resistance of the circuit.b)  Find the current in the entire circuit.c)  FInd the current through each branch of the circuit.

We will use a V­I­R chart to keep track of our values.

Fill in the known values.

a)  equivalent resistance

Fill this value into the chart.

10.0

Note that the equivalent resistance is less than resistance of any resistor

 in the circuit.

Page 44: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

10.0

b)  current in the entire circuit

We now have two values in the "Total" row. Using Ohm's law, we can determine the third, the total current.

IT = VT/RT

Fill this value into the chart.

10.09.00 

Page 45: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

We now have two values in the "R1" row, the"R2" row and the "R3" row.  Using Ohm's law,we can determine the third value, V, for eachresistor.  

c)  voltage drop across each resistor

10.09.00 

Fill these values into the chart.

10.09.00 

1.503.004.50

Verify to make sure that:

IT = I1 + I2 + I3

Page 46: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Fill in the known values.  

Combination Circuits

Find the total resistance and current, then find the individual voltages and currents for each of the resistors in this circuit:

R1 5 ΩR2 7 Ω

R3 10 Ω+

­12 V

Fill in the known values.

Page 47: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Next, simplify the circuit.  Calculate the equivalent resistance for the parallel part of the circuit.  We will call this resistance, RA.

R1 5 ΩR2 7 Ω

R3 10 Ω+

­12 V

R1 5 Ω RA

+

­12 V

Page 48: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Now, calculate the equivalent resistance of the entire circuit, RT.  Do this by following the rule for resistors in series.

Fill this value into the chart.

R1 5 Ω RA

+

­12 V

Page 49: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

We now have two values in the "Total" row.  Using Ohm's law, we can determine the third, the total current, IT.

IT =  VT / RT

Fill this value into the chart.

Page 50: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

All the current that flows through the circuit will also flow through R1 because it is in series with the battery.  

Fill this value into the chart.

V1 = I1R1

We now have two of the three values in the R1 row.  We can find V1 using Ohm's law.

Page 51: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

If VT is 12 V and the drop in potential at R1 is 6.5 V, then there is still    

                              12 V ­ 6.5 V = 5.5 V   

to be used up.

We know that the voltage drops at R2 and R3 are equal because they are connected in parallel.  Therefore,  

V2 = 5.5 V and  V3 = 5.5 V 

Fill these values into the chart. 

Page 52: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

Determine I2 and I3 using Ohm's Law. 

Complete the chart.

Note that the sum of  I2 and I3 is ~1.3 A.

Page 53: Electric Current and Circuits (1).notebooksshs216felix.weebly.com/uploads/2/2/...electricity... · Electric Current and Circuits (1).notebook The rate of flow of electric charge is

Electric Current and Circuits (1).notebook  

R1 2 Ω

R3

1 Ω

R2

5 Ω

+

­9 V

R4

3 Ω