elec4604 rf electronics experiment 2 microwave … 2.pdf · elec4604 rf electronics experiment 2...

5
ELEC4604 RF Electronics Experiment 2 MICROWAVE MEASUREMENT TECHNIQUES 1. Introduction and Objectives In designing the RF frontend of a microwave communication system it is important to appreciate that the signals received by the antenna can be very, very weak. Thus, any reflection loss caused by mismatch between the antenna input impedance and the characteristic impedance of the feedline (microstrip line, waveguide, etc.) must be kept as small as possible. Similarly, the performance of a microwave amplifier will be affected by the degree of mismatch at its input and output ports. All RF engineers must know how to measure the reflection coefficient, which determines the degree of mismatch when different components are connected together. In this experiment we will learn the basic principle of measuring the reflection coefficient when a particular load is connected to a waveguide/transmission line. From the reflection coefficient we can then determine the load impedance. In addition we will study the performance of a circulator. Circulators are used to isolate the transmit and receive paths when a single antenna is used for transmitting and receiving signals at the same time, especially when the transmitted and received signals have the same frequency. Practical circulators, however, do not provide a perfect isolation, and a small fraction of the transmitted signal may find its way into the receive path with detrimental effects. The second part of this experiment is to study the “leakage’ of a given circulator – the amount of unwanted signal that leaks into the wrong path. The amount of leakage will vary with frequency. From the results you obtain you will be able to assess whether a device/component under test will be suitable for use over a given frequency band. 2. Procedure 2.1 – Calibrate the frequency as a function of micrometer reading, given the plot provided. 2.2 – Over a frequency band from 9 to 10GHz, carry out the following: a. Measure the impedance of: the Horn antenna

Upload: others

Post on 21-Apr-2020

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ELEC4604 RF Electronics Experiment 2 MICROWAVE … 2.pdf · ELEC4604 RF Electronics Experiment 2 MICROWAVE MEASUREMENT TECHNIQUES 1. Introduction and Objectives In designing the RF

ELEC4604

RFElectronics 

Experiment2

MICROWAVEMEASUREMENTTECHNIQUES 

1. IntroductionandObjectives 

In designing the RF front‐end of a microwave communication system it is important to appreciate 

that the signals received by the antenna can be very, very weak. Thus, any reflection loss caused by 

mismatch between the antenna input impedance and the characteristic impedance of the feed‐line 

(microstrip line, waveguide, etc.) must be kept as small as possible. Similarly, the performance of a 

microwave amplifier will be affected by the degree of mismatch at its input and output ports.  

All RF engineers must know how to measure the reflection coefficient, which determines the degree 

of mismatch when different components are connected together. 

In this experiment we will learn the basic principle of measuring the reflection coefficient when a 

particular load is connected to a waveguide/transmission line. From the reflection coefficient we can 

then determine the load impedance.  

In addition we will study the performance of a circulator. Circulators are used to isolate the transmit 

and receive paths when a single antenna is used for transmitting and receiving signals at the same 

time, especially when the transmitted and received signals have the same frequency. Practical 

circulators, however, do not provide a perfect isolation, and a small fraction of the transmitted signal 

may find its way into the receive path with detrimental effects. 

The second part of this experiment is to study the “leakage’ of a given circulator – the amount of 

unwanted signal that leaks into the wrong path. The amount of leakage will vary with frequency. 

From the results you obtain you will be able to assess whether a device/component under test will 

be suitable for use over a given frequency band.  

2. Procedure 

2.1 – Calibrate the frequency as a function of micrometer reading, given the plot provided. 

2.2 – Over a frequency band from 9 to 10GHz, carry out the following: 

  a. Measure the impedance of: 

    ‐ the Horn antenna 

Page 2: ELEC4604 RF Electronics Experiment 2 MICROWAVE … 2.pdf · ELEC4604 RF Electronics Experiment 2 MICROWAVE MEASUREMENT TECHNIQUES 1. Introduction and Objectives In designing the RF

    ‐ a short circuit 

    ‐ a matched load 

  A Smith chart is attached.  

  b. Measure the leakage of a given circulator, and hence calculate the isolation (in dB) 

achievable with this circulator over the frequency band considered. 

2.3 – Explain the function of each piece of equipment or component used in the experiment.  

 

3.Wave‐guideTheory 

Waveguides are metal tubes used to transport microwave signals. Due to the presence of the metal 

conductors, the propagation of electromagnetic waves is considerably more complex than in free 

space.  One of the key differences is that the electric and magnetic fields are not limited to oscillate 

in directions that are mutually perpendicular and also perpendicular to the direction of propagation 

– more complex propagation mode can exist. The simplest modes that exist in waveguides are called 

respectively Transverse Electric (TE) and Transverse Magnetic (TM) waves – modes where the 

Electric and Magnetic fields, respectively, are transverse to the direction of propagation down the 

guide. 

Rectangular Waveguide 

Here we present some important results for a rectangular waveguide, having a cross section of a x b.  

The cut‐off frequency for the (n,m) mode TM wave,  nmTM : 

22,..

2

1

b

n

a

mf mn

oc

 

Electromagnetic waves below the cut‐off frequency cannot propagate down the waveguide. The 

dimensions of the waveguide are typically chosen so that only the mode with the lowest cut‐off 

frequency (called the dominant mode) can propagate.  

When the frequency is larger than the cut‐off frequency, then  nmTM  waves can propagate down the 

waveguide. Its wavelength inside the guide is: 

22

2

nm

gk

 

where

222

b

n

a

mnm

.  

Page 3: ELEC4604 RF Electronics Experiment 2 MICROWAVE … 2.pdf · ELEC4604 RF Electronics Experiment 2 MICROWAVE MEASUREMENT TECHNIQUES 1. Introduction and Objectives In designing the RF

For a rectangular waveguide with a > b, the dominant mode is the  01TE  mode. Its cut‐off frequency 

is 

af oc

2

101..  

Circular Waveguide 

For a circular waveguide of radius r the dominant mode is the  11TE  mode, with cut‐off frequency:  

rf oc

2

841.111..  

The wavelength inside the guide of the  nmTE  mode can be found from: 

2

..1

f

f nmoc

g

 

Note that inside the waveguide, the ratio of the Electric field amplitude to the Magnetic field 

amplitude for the electromagnetic wave, termed the characteristic impedance of the waveguide is: 

 

 

where η = 120π is the characteristic impedance of free space. 

 

g

TE H

EZ

Page 4: ELEC4604 RF Electronics Experiment 2 MICROWAVE … 2.pdf · ELEC4604 RF Electronics Experiment 2 MICROWAVE MEASUREMENT TECHNIQUES 1. Introduction and Objectives In designing the RF

 

Page 5: ELEC4604 RF Electronics Experiment 2 MICROWAVE … 2.pdf · ELEC4604 RF Electronics Experiment 2 MICROWAVE MEASUREMENT TECHNIQUES 1. Introduction and Objectives In designing the RF