elec 3105 basic em and power engineering rotating dc motor part 2 electrical

26
ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Upload: beverly-hunt

Post on 06-Jan-2018

214 views

Category:

Documents


0 download

DESCRIPTION

Motor / Generator Action Linear relation between speed and torque Current flows in a direction to charge the battery. Motor Slide extracted from linear motor and modified for loop motor. Stall torque Generator Link

TRANSCRIPT

Page 1: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

ELEC 3105 Basic EM and Power Engineering

Rotating DC MotorPART 2 Electrical

Page 2: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Motor / Generator Action

BrVemf

2

Equivalent circuit

emfVbat

V

R

terminalv

Expression of Vemf

Loop

Slide extracted from linear motor and modified for loop motor.

I

emfbatVIRV

BrRrB

Vbat

22

rBI2

Page 3: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Motor / Generator Action

BrRrB

Vbat 22

Linear relation betweenspeed and torque

rBVbat

loadno 2

RVrB bat2

0

Current flows in a direction to charge the battery.

Motor

Slide extracted from linear motor and modified for loop motor.

Stall torque

GeneratorLink

Page 4: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

E = motor voltageRa = armature resistanceLa = armature inductanceV = Applied motor voltageIa = armature current

= magnetic fluxRf = field resistanceLf = field inductanceVf = Field voltageIf = field current

Page 5: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

In steady state operation: FIELD SIDE

𝐼 𝑓=𝑉 𝑓

𝑅𝑓Φ=

2𝑛𝐼 𝑓𝔑reluctance

Magnetic circuit

Page 6: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

In steady state operation: ARMATURE SIDE

𝐸=π‘˜πΈΞ¦πœ”π‘š

Motor constant

Back emf

Page 7: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Motor / Generator Action

BrVemf

2

Equivalent circuit

emfVbat

V

R

terminalv

Expression of Vemf

Loop

Slide extracted from linear motor and modified for loop motor.

I

emfbatVIRV

BrRrB

Vbat

22

rBI2

Page 8: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

In steady state operation: ARMATURE SIDE

𝐸=π‘˜πΈΞ¦πœ”π‘š

Motor constant

Back emf

Page 9: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

In steady state operation: ARMATURE SIDE

𝑇 𝑑𝑒𝑣=π‘˜π‘‡Ξ¦ πΌπ‘Ž

Motor constant

Developed torque

π‘˜πΈ=π‘˜π‘‡ Same motor constant in emf and developed torque

Page 10: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Motor / Generator Action

BrVemf

2

Equivalent circuit

emfVbat

V

R

terminalv

Expression of Vemf

Loop

Slide extracted from linear motor and modified for loop motor.

I

emfbatVIRV

BrRrB

Vbat

22

rBI2

Page 11: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

In steady state operation: ARMATURE SIDE

𝑇 𝑑𝑒𝑣=π‘˜π‘‡Ξ¦ 𝐼 π‘Ž

Motor constant

Developed torque

π‘˜πΈ=π‘˜π‘‡ Same motor constant in emf and developed torque

𝐸=π‘˜πΈΞ¦πœ”π‘š

Motor constant

Back emf

Page 12: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

Power flow: ARMATURE SIDE; Conservation of energy

𝑉=πΌπ‘Žπ‘…π‘Ž+𝐸KVL

POWER 𝑉 𝐼 π‘Ž= πΌπ‘Ž2 π‘…π‘Ž+𝐼 π‘ŽπΈ

Power in

Armature copper loss

Power developed

Page 13: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Motor / Generator Action

BrVemf

2

Equivalent circuit

emfVbat

V

R

terminalv

Expression of Vemf

Loop

Slide extracted from linear motor and modified for loop motor.

I

emfbatVIRV

BrRrB

Vbat

22

rBI2

Page 14: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

Power flow: ARMATURE SIDE; Conservation of energy

𝑃𝑑𝑒𝑣= πΌπ‘ŽπΈ=πœ”π‘šπ‘‡π‘‘π‘’π‘£

Power developed

𝑃 π‘™π‘œπ‘ π‘ π‘ƒ 𝑖𝑛

𝑃𝑑𝑒𝑣

Electrical Mechanicalcopper

𝑉 𝐼 π‘Ž= πΌπ‘Ž2 π‘…π‘Ž+𝐼 π‘ŽπΈ

Page 15: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

Power flow: ARMATURE SIDE π‘ƒπ‘œπ‘’π‘‘=π‘ƒπ‘‘π‘’π‘£βˆ’π‘ƒπ‘Ÿπ‘œπ‘‘

𝑃 π‘™π‘œπ‘ π‘ π‘ƒ 𝑖𝑛

𝑃𝑑𝑒𝑣

Electrical Mechanical

π‘ƒπ‘Ÿπ‘œπ‘‘

π‘ƒπ‘œπ‘’π‘‘

Rotational lossCopper

Page 16: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Electrical Equivalent

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

Motor sequence π‘ƒπ‘œπ‘’π‘‘=π‘ƒπ‘‘π‘’π‘£βˆ’π‘ƒπ‘Ÿπ‘œπ‘‘

πœ”π‘šπ‘‰ 𝑇 𝑑𝑒𝑣

Speed of rotation limiting loop

πΈπΌπ‘Ž 𝑃𝑑𝑒𝑣

Page 17: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Shunt Connected Field

V

aIπ‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣𝐿 𝑓

𝑅 𝑓R

𝑇 𝑑𝑒𝑣=π‘˜π‘‡Ξ¦ πΌπ‘Ž

𝑉=πΌπ‘Žπ‘…π‘Ž+𝐸

𝐸=π‘˜πΈΞ¦πœ”π‘š

𝑇 𝑑𝑒𝑣=π‘˜Ξ¦π‘‰π‘…π‘Ž

βˆ’ π‘˜2Ξ¦2

π‘…π‘Žπœ”π‘š

Developed torque Rotation rate

Page 18: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Shunt Connected Field

V

aIπ‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣𝐿 𝑓

𝑅 𝑓R

𝑇 𝑑𝑒𝑣=π‘˜Ξ¦π‘‰π‘…π‘Ž

βˆ’ π‘˜2Ξ¦2

π‘…π‘Žπœ”π‘š

Similar type of graph

Page 19: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Shunt Connected Field

V

aIπ‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣𝐿 𝑓

𝑅 𝑓R

𝑇 𝑑𝑒𝑣=π‘˜Ξ¦π‘‰π‘…π‘Ž

βˆ’ π‘˜2Ξ¦2

π‘…π‘Žπœ”π‘š

𝑇 𝑑𝑒𝑣

πœ”π‘š

πΎΞ¦π‘‰π‘…π‘Ž

π‘‰π‘˜Ξ¦

MotorGenerator

Force motor to spin backwards

Generator

Force motor to spin to fast

Page 20: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Series Connected Field

V

aIπ‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓𝑅 𝑓

Universal motor design: works for D.C. and for A.C.

𝑇 𝑑𝑒𝑣=π‘˜π‘‡Ξ¦ 𝐼 π‘Ž

𝑉=𝐼 π‘Ž(π‘…ΒΏΒΏπ‘Ž+𝑅𝑓 )+𝐸 ΒΏ

𝐸=π‘˜πΈΞ¦πœ”π‘š

𝑇 𝑑𝑒𝑣=π‘˜β€² πΌπ‘Ž2 Since Φ∝ πΌπ‘Ž

Page 21: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Series Connected Field

V

aIπ‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓𝑅 𝑓

Universal motor design: works for D.C. and for A.C.

𝑇 𝑑𝑒𝑣=π‘˜β€² [ π‘‰π‘…π‘Ž+𝑅 𝑓+π‘˜β€²πœ”π‘š ]

2

𝑇 𝑑𝑒𝑣

πœ”π‘š

1πœ”π‘š

2

Page 22: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Maximum Power Transfer

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓𝑉=𝐼 π‘Žπ‘…π‘Ž+𝐸

Power developed in the motor 𝑃𝑑𝑒𝑣=𝐸 πΌπ‘Ž

𝑃𝑑𝑒𝑣=𝐸 (𝑉 βˆ’πΈ )/π‘…π‘Ž

𝑃𝑑𝑒𝑣=𝐸𝑉 βˆ’πΈ2

π‘…π‘Ž

Find maximum with respect to the motor voltage

Page 23: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Maximum Power Transfer

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓𝑉=𝐼 π‘Žπ‘…π‘Ž+𝐸

For extremes of a function, take derivatives and set to zero

𝑃𝑑𝑒𝑣=π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š h𝑀 𝑒𝑛𝐸=𝑉2

𝑃𝑑𝑒𝑣 π‘šπ‘Žπ‘₯ = 𝑣2

4 π‘…π‘Ž

Page 24: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Calculation example

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

A 120 volt dc motor has an armature resistance of 0.70 Ξ©. At no-load, it requires 1.1 A armature current and runs at 1000 rpm. Find the output power and torque at 952 rpm output speed. Assume constant flux.

𝑇 𝑑𝑒𝑣=π‘˜π‘‡Ξ¦ πΌπ‘Žπ‘‰=πΌπ‘Žπ‘…π‘Ž+𝐸

𝐸=π‘˜πΈΞ¦πœ”π‘š

Solution provided in class

Page 25: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Calculation example

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

A permanent magnet dc motor has the following information: 50 hp, 200 V, 200 A, 1200 rpm and armature resistance of 0.05 Ξ©. Determine the output power if the voltage is lowered to 150 V and the current is 200 A. Assume rotational losses are proportional to speed. Determine the rotational loss, armature resistance, no-load rpm, machine constant, efficiency?

𝑇 𝑑𝑒𝑣=π‘˜π‘‡Ξ¦ πΌπ‘Žπ‘‰=πΌπ‘Žπ‘…π‘Ž+𝐸

𝐸=π‘˜πΈΞ¦πœ”π‘š

Solution provided in class

Page 26: ELEC 3105 Basic EM and Power Engineering Rotating DC Motor PART 2 Electrical

Calculation example

V

fV

aI π‘…π‘ŽπΏπ‘Ž

E

πœ”π‘š ,𝑇 𝑑𝑒𝑣

𝐿 𝑓

𝑅 𝑓

An 80 V dc motor has constant field flux, separately excited, and a nameplate speed of 1150 rpm with 710 W output power. The nameplate armature current is 10 A and the no-load current is 0.5 A. Assume constant rotational losses.

𝑇 𝑑𝑒𝑣=π‘˜π‘‡Ξ¦ πΌπ‘Žπ‘‰=πΌπ‘Žπ‘…π‘Ž+𝐸

𝐸=π‘˜πΈΞ¦πœ”π‘š

Solution provided in class