elec 2200-002 digital logic circuits fall 2014 boolean...

35
ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering Auburn University, Auburn, AL 36849 http://www.eng.auburn.edu/~vagrawal [email protected] Fall 2014, Sep 22 . . . ELEC2200 - 002 Lecture 3 1

Upload: haquynh

Post on 02-Apr-2018

221 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

ELEC 2200-002Digital Logic Circuits

Fall 2014Boolean Algebra (Chapter 2)

Vishwani D. AgrawalJames J. Danaher Professor

Department of Electrical and Computer EngineeringAuburn University, Auburn, AL 36849http://www.eng.auburn.edu/~vagrawal

[email protected]

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 1

Page 2: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Digital Systems

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 2

DIGITALCIRCUITS

Page 3: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

George Boole, 1815-1864Born, Lincoln, EnglandProfessor of Math., Queen’s College, Cork, IrelandBook, The Laws of Thought, 1853Wife: Mary EverestBoole

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 3

Page 4: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

An Axiom or Postulate

A self-evident or universally recognized truth.An established rule, principle, or law.A self-evident principle or one that is accepted as true without proof as the basis for argument.A postulate – Understood as the truth.

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 4

Page 5: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Boolean AlgebraPostulate 1: Set and Operators

Define a set K containing two or more elements.Define two binary operators:

+, also called “OR”·, also called “AND”Such that for any pair of elements, a and b in K, a + b and a·b also belong to K

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 5

Page 6: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Example

a: {students in “digital circuits” course}b: {students in “computer systems” course}1: {all EE juniors}0: {null set}K: {a, b, 1, 0, a+b, a·b}Postulate 1:

a + b = 1a · b = {full-time EE students}

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 6

Page 7: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Postulate 2: Identity ElementsThere exist 0 and 1 elements in K, such that for every element a in K

a + 0 = aa · 1 = a

Definitions:0 is the identity element for + operation1 is the identity element for · operation

Remember, 0 and 1 here should not be misinterpreted as 0 and 1 of ordinary algebra.

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 7

Page 8: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Postulate 3: Commutativity

Binary operators + and · are commutative.That is, for any elements a and b in K:

a + b = b + aa · b = b · a

Example:a + b = b + a = {all EE students}a · b = b · a = {all full-time EE students}

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 8

Page 9: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Postulate 4: AssociativityBinary operators + and · are associative.That is, for any elements a, b and c in K:

a + (b + c) = (a + b) + ca · (b · c) = (a · b) · c

Example: EE department has three courses with student groups a, b and c

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 9

All EE students: a + (b + c)

a

b

c a c

b

EE students in all EE courses: a · (b · c)

Page 10: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Postulate 5: Distributivity

Binary operator + is distributive over · and · is distributive over +.That is, for any elements a, b and c in K:

a + (b · c) = (a + b) · (a + c)a · (b + c) = (a · b) + (a · c)

Remember dot (·) operation is performed before + operation:

a + b · c = a + ( b · c) ≠ (a + b) · c

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 10

Page 11: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Postulate 6: ComplementA unary operation, complementation, exists for every element of K.That is, for any element a in K:

Where, 1 is identity element for ·0 is identity element for +

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 11

0aa1aa

=⋅

=+

Page 12: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

ExampleA set contains four elements:

x = {φ}, null set y = {1, 2}z = {3, 4, 5} w = {1, 2, 3, 4, 5}

Define two operations: union (+) and intersection (·):

+ x y z wx x y z w

y y y w w

z z w z w

w w w w w

· x y z wx x x x xy x y x yz x x z zw x y z w

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 12

Page 13: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Verify Postulates 1, 2 and 31. Union and intersection, used as binary

operators on a pair of elements, produce a result within the same set.

2. Identity elements are x for union (+) and w for intersection (·). x ≡ 0; w ≡ 1.

3. Commutativity is verified from the symmetry in the function tables for the two operators

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 13

Page 14: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Postulate 4: AssociativityExamine the Venn diagram. For any group of elements, intersections or unions in any order lead to the same result.

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 14

φ 1, 2

3, 4, 5

xy

z

w

Page 15: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Postulate 5: DistributivityTo verify distributivity, examine the Venn diagram for distributivity over union and intersection.

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 15

φ 1, 2

3, 4, 5

x

y

z

w

Page 16: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Postulate 6: ComplementsAny element + its complement = Identity for ·Any element · Its complement = Identity for +Verifiable from Venn diagram.

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 16

φ 1, 2

3, 4, 5

x

y

z

wIdentityElementFor +

IdentityElementFor ·

Page 17: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Conclusion

Because all six postulates are true for our example, it is a Boolean algebra.

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 17

Page 18: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

The Duality Principle

Each postulate of Boolean algebra contains a pair of expressions or equations such that one is transformed into the other and vice-versa by interchanging the operators, + ↔ ·, and identity elements, 0 ↔ 1.The two expressions are called the duals of each other.

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 18

Page 19: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Examples of Duals

PostulateDuals

Expression 1 Expression 21 a, b, a + b ε K a, b, a · b ε K2 a + 0 = a a · 1 = a3 a + b = b + a a · b = b · a4 a + (b + c) = (a + b) + c a · (b · c) = (a · b) · c5 a + (b · c)=(a + b) · (a + c) a · (b + c)=(a · b)+(a · c)

6

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 19

1aa =+ 0aa =•

Page 20: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Examples of Duals

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 20

Expressions: A · B A + B

Equations:duals

A + (BC) = (A+B)(A+C) ↔ A (B+C) = AB + AC

Note: A · B is also written as AB.

A B A B

Page 21: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Properties of Boolean Algebra

Properties stated as theorems.Provable from the postulates (axioms) of Boolean algebra.

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 21

Page 22: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Theorem 1: Idempotency (Invariance)

For all elements a in K: a + a = a; a a = a.Proof:a + a = (a + a)1, (identity element)

= (a + a)(a + ā), (complement)= a + a ā, (distributivity)= a + 0, (complement)= a, (identity element)

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 22

Page 23: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Theorem 1: Idempotency

For all elements a in K: a + a = a; a a = a.Proof:a a = (a a) + 0, (identity element)

= (a a) + (a ā), (complement)= a (a + ā), (distributivity)= a 1, (complement)= a, (identity element)

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 23

Page 24: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Theorem 2: Null Elements Exista + 1 = 1, for + operator.a · 0 = 0, for · operator.Proof: a + 1 = (a + 1)1, (identity element)

= 1(a + 1), (commutativity)= (a + ā)(a + 1), (complement)= a + ā 1, (distributivity)= a + ā, (identity element)= 1, (complement)

Similar proof for a 0 = 0.Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 24

Page 25: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Theorem 2: Null Elements Exista + 1 = 1, for + operator.a · 0 = 0, for · operator.Proof: a + 1 = (a + 1)1, (identity element)

= 1(a + 1), (commutativity)= (a + ā)(a + 1), (complement)= a + ā 1, (distributivity)= a + ā, (identity element)= 1, (complement)

Similar proof for a 0 = 0.Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 25

Page 26: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Theorem 2: Null Elements Exista + 1 = 1, for + operator.a · 0 = 0, for · operator.Proof: a 0 = (a 0) + 0, (identity element)

= 0 + (a 0), (commutativity)= (a ā) + (a 0), (complement)= a(ā + 0), (distributivity)= a ā, (identity element)= 0, (complement)

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 26

Page 27: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Theorem 3: Involution Holds

a = aProof: a + ā = 1 and a ā = 0, (complements)

or ā + a = 1 and ā a = 0, (commutativity)i.e., a is complement of āTherefore, a = a

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 27

=

=

Page 28: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Theorem 4: Absorption

a + a b = aa (a + b) = aProof: a + a b = a 1 + a b, (identity element)

= a(1 + b), (distributivity)= a 1, (Theorem 2)= a, (identity element)

Similar proof for a (a + b) = a.Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 28

Page 29: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Theorems 5, 6 and 7 (p. 86-87)Theorem 5:

Theorem 6:

Theorem 7:

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 29

c)b)(a(a c)b b)(a (aac ab c ba ab

++=++++=+

a)bb)(a(aabaab

=++

=+

abb)aa(babaa

=+

+=+

Page 30: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Proving Theorem 5

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 30

abb)aa(babaa

=+

+=+

a b

Using Venn diagram

Page 31: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Theorem 8: DeMorgan’s Theorem

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 31

88 page see proof, for 88 page see proof, for

,baba ,baba

+=⋅

⋅=+

zbazbazbazba

+++=⋅

⋅=+++

Generalization of DeMorgan’s Theorem:

Page 32: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Martians and VenusiansSuppose Martians are blue and Venusians are pink.An Earthling identifying itself: “I am not blue or pink.”

blue + pink = blue · pinkMeaning: “I am not blue and I am not pink.”Or: “I am not a Martian and I am not a Venusian.”

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 32

Page 33: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Tall, Dark and Handsome“He did not appear to be tall, dark and handsome.”

tall · dark · handsome = tall + dark + handsomeMeaning: “He was not tall or he was not dark or he was not handsome.”Equivalently: “He was short or he was pale or he was ugly.”Perhaps, not the fellow we were looking for.

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 33

Page 34: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Theorem 9: Consensus

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 34

c)ab)((ac)c)(bab)((acaabbccaab

++=+++

+=++

a

b

c

ab

āc

See page 90.First case for union and intersection:

bc

Page 35: ELEC 2200-002 Digital Logic Circuits Fall 2014 Boolean ...agrawvd/COURSE/E2200_Fall14/LECTURES/lec… · Digital Logic Circuits Fall 2014 Boolean Algebra (Chapter 2) Vishwani D. Agrawal

Next, Switching Algebra

Set K contains two elements, {0, 1}, also called {false, true}, or {off, on}, etc.Two operations are defined as, + ≡ OR, · ≡ AND.

Fall 2014, Sep 22 . . . ELEC2200-002 Lecture 3 35

+ 0 1

0 0 1

1 1 1

· 0 1

0 0 0

1 0 1