el 402 xavier neyt. 24/1/01el 402 2 regulation f why? –stabilize unstable systems u e.g. inverted...

24
EL 402 Xavier Neyt

Upload: jonas-pearson

Post on 29-Jan-2016

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

EL 402Xavier Neyt

Page 2: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 2

Regulation Why?

– Stabilize unstable systems e.g. inverted pendulum

– Modify the dynamic behaviour e.g. car suspension, B747

– Increase the “drive precision” e.g. static error (lift)

Page 3: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 3

Regulation How?

– Combine two systems the actual system S(p) the control system R(p)

– Such that the new system has the desired behaviour

poles at a convenient position

Page 4: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 4

Combination of systems

Serial combination– : F(p) = R(p) S(p)– does not move the poles of S(p)– ! Zeroes of R(p) should NOT cover unstable

poles of S(p)

R(p) S(p)U(p) Y(p)

Page 5: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 5

Combination of systems

Parallel combination–: F(p) = R(p) + S(p)–does not move the poles of S(p)

R(p)

S(p)

U(p) Y(p)+

Page 6: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 6

Combination of systems

Feedback combination–: F(p) = RS/( 1 + RS)– poles of F = zeros of 1+RS

R(p) S(p)U(p) Y(p)

+-

+

Page 7: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 7

Example

S(p): First order system:–: S(p) = 1/( pT - 1)– pole in p = 1/T unstable

R(p): Proportional (constant)–: R(p) = K

F(p) = K/(pT -1 + K)–pole in p = (K-1)/T

Page 8: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 8

Example

Page 9: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 9

Example

Page 10: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 10

Nyquist diagram

Plot of RS(p) in parametric form–: x = Re( RS(p) )–: y = Im( RS(p) )–for p Nyquist contour

Can be deduced from the Bode plot–in the simple cases...

Page 11: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 11

Bode diagram

Page 12: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 12

Nyquist diagram

Page 13: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 13

Stability Aim of the Nyquist theorem

– determine the stability of the closed-loop system

– knowing the stability of the open-loop system

Page 14: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 14

Stability How does it work?

– Need to know the zeros of 1+RS(p)– These zeros need to be located p < 0– 1+RS(p) has the same poles as RS(p)

P1+RS = PRS

– Principle of the argument: T0 = N - P

T-1 = N1+RS - P1+RS = N1+RS - PRS = PF - PRS

Page 15: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 15

Stability Nyquist theorem

– :T-1 = PF - PRS

– La boucle fermee sera stable ssi le contour de Nyquist enlace (ds le sens negatif) autant de fois le point (-1,0) que le systeme en boucle ouverte possede de poles instables

– De gesloten lus zal stabiel zijn als en slechts als het aantal toeren (in negatieve zin) die de Nyquist kromme rond het punt (-1,0) doet gelijk is aan het aantal onstabiele polen van de open lus.

Page 16: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 16

Example: unstable 1st order sys.

Page 17: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 17

Stability Nyquist theorem

– particular case: the open-loop system is stable PRS = 0 T-1 = 0 If the open-loop system is stable, the closed-loop

system will be stable iff the Nyquist curve does not go round the point (-1,0)

Page 18: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 18

Example: stable 4th order sys.

Page 19: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 19

Robustness

Introduces the notion of stability margins– define some kind of distance between the point

(-1,0) and the Nyquist curve.– Most often used distances

gain margin phase margin

Page 20: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 20

Robustness

Most often used distances– gain margin

– Distance to the point having a phase = -180º– Maximum gain allowed in R without compromising the system

stability

maximum & minimum gain

– phase margin– Angle to the first point having unit gain (0dB gain)– How much phase rotation is R allowed to introduce without

compromising the system stability

max phase lag & max phase lead

Page 21: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 21

Gain/Phase margins

Unit Gain circle

Phase margin

Gain margin

Page 22: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 22

Gain/Phase margins

Unit Gain circle

Phase margin

Gain margin

Page 23: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 23

Gain/Phase margins

-180°

Gain margin

Phase margin

Page 24: EL 402 Xavier Neyt. 24/1/01EL 402 2 Regulation F Why? –Stabilize unstable systems u e.g. inverted pendulum –Modify the dynamic behaviour u e.g. car suspension,

24/1/01 EL 402 24

Drive Precision