egeneration economic development plan npbs

60
Proposed Private Sector Economic Development at NASA Plum Brook Station, Sandusky, Ohio Draft 06/08/2015 eGeneration Economic Development Corporation is a 501(c) 4 Nonprofit organization Contributions to the eGeneration Economic Development Corporation are not deductible for federal income tax purposes. [email protected] www.eGenEDC.org eGeneration Economic Development Corporation 1768 E 25 th Street . Suite 301 . Cleveland, Ohio 44114

Upload: the-e-generation

Post on 22-Jul-2016

221 views

Category:

Documents


2 download

DESCRIPTION

 

TRANSCRIPT

Page 1: eGeneration Economic Development Plan NPBS

 

 

   

Proposed Private Sector Economic Development at NASA Plum Brook Station, Sandusky, Ohio  

Draft  

06/08/2015  

eGeneration  Economic  Development  Corporation  is  a  501(c)  4  Non-­‐profit  organization  Contributions  to  the  eGeneration  Economic  Development  Corporation  are  not  deductible  for  federal  income  tax  purposes.  

[email protected]  

www.eGenEDC.org  

eGeneration  Economic  Development  Corporation  

1768  E  25th  Street    .    Suite  301    .    Cleveland,  Ohio  44114  

Page 2: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    1    

TABLE OF CONTENTS PREFACE ................................................................................................................................ 3  

Executive Summary ............................................................................................................... 4  

Medical Isotope Production: Time for Change .................................................................... 5  

Mo-99 as "The Queen Mother" .............................................................................................. 6  

Technetium 99 production .................................................................................................... 7  

The U.S. Mo-99 Supply Chain ................................................................................................ 8  

Tectonic Shifts ...................................................................................................................... 10  

The Two Track Approach to Mo-99 Production ................................................................. 11  

Table of Potential Irradiators in the United States ............................................................ 12  

Challenges of HEU-free Mo-99 Production ........................................................................ 13  

Preferential Treatment of HEU-free Mo-99 ......................................................................... 14  

Future of Medical Isotope Production ................................................................................ 15  

Molybdenum-99 Research Reactors .................................................................................. 17  

NASA’s Isotope Crisis: Plutonium-238 .............................................................................. 17  

Plutonium-238 is vital to NASA’s Space Exploration ....................................................... 18  

NASA’s Stirling Radiosiotope Generator ........................................................................... 20  

NASA and a Radiosisotope Production Facility ................................................................ 21  

The Impact of Davis-Besse Nuclear Power Plant .............................................................. 23  

A History of Ohio’s Nuclear Heritage ................................................................................. 26  

The Nuclear Powered Aircraft Experiment ........................................................................ 32  

NASA and the Atoms for Peace Program .......................................................................... 34  

The Economic Impact of A Large Manufacturing Facility ................................................ 36  

Reviving an Old Idea with a New Purpose ......................................................................... 38  

Reviving and Re-envisioning a Mass Assembly Plant ..................................................... 39  

Why Produce Molten Salt Reactors in Ohio? .................................................................... 42  

NASA Plum Brook Station, Producing Medical Isotopes, and a Runway ....................... 45  

Page 3: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    2    

A Runway May lead to a Business Park ............................................................................ 46  

Perry II Nuclear Power Plant, a Test Facility in the Making ............................................. 50  

Piketon Uranium Enrichment Facility................................................................................. 52  

Financing Molten Salt Reactor Development .................................................................... 54  

Rare Earth Elements ............................................................................................................ 55  

Conclusions .......................................................................................................................... 57  

Seeking Alliance Members .................................................................................................. 58    

Page 4: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    3    

PREFACE

The  economic  development  plan  proposed  in  this  document  is  developed  with  the  intent  to  create  an  actionable  pathway  for  producing  clean,  reliable,  and  renewable  energy,  while  producing  much-­‐needed  medical  isotopes.  This  would  preserve  current  NASA  Plum  Brook  Station  jobs  and  would  allow  for  the  creation  of  thousands  of  new  jobs  in  Northern  Ohio  and  surrounding  areas.    The  development  of  Molten  Salt  Reactors  at  the  NASA  Plum  Brook  Station  would  pave  the  way  for  an  economic  boom  and  energy  revolution  that  would  strengthen  our  nation,  provide  a  domestic  source  for  medical  isotopes,  provide  power  for  future  space  exploration,  and  expand  our  energy  influence  around  the  world.  

There  are  other  sites  in  Ohio  conducive  to  development  and  commercialization  of  Molten  Salt  Reactors,  such  as  the  Piketon  Gaseous  Diffusion  Facility  in  Portsmouth  and  Wright  Patterson  Air  Force  Base  in  Dayton,  but  we  believe  the  strongest  business  case  for  development  is  at  NASA  Plum  Brook  Station.  

Six  small  desktop  sized  Molten  Salt  Research  Reactors  (MSRRs)  can  produce  all  of  the  medical  isotopes  required  for  North,  Central,  and  South  America  from  this  proposed  facility.  The  facility  would  initially  create  more  than  8,000  jobs,  and  would  support  the  construction  of  a  runway  used  for  the  air  transport  distribution  of  medical  isotopes.    The  research  reactors  could  be  the  pre-­‐cursors  for  a  full-­‐scale  reactor  that  would  one  day  replace  electricity  production  that  will  be  lost  with  the  2037  shutdown  of  the  aging  Davis-­‐Besse  Nuclear  Power  Plant,  located  in  Oak  Harbor,  Ohio.    In  addition,  Molten  Salt  Reactors  show  promise  to  be  the  next  generation  rocket  propulsion  to  take  us  to  Mars  and  beyond.      

Total  job  creation  in  Ohio  could  exceed  44,000  within  a  decade,  with  the  adoption  of  the  entire  NASA  Plum  Brook  Economic  Development  Plan.    

Page 5: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    4    

EXECUTIVE SUMMARY

This  document  describes  a  three-­‐pronged  economic  development  effort  at  NASA  Plum  Brook  Station,  located  in  Sandusky,  Ohio.  

v (Short-­‐term  economic  development)  A  Medical  Isotope  Production  Facility  utilizing  proven  Molten  Salt  Reactor  technology  to  efficiently  produce  Molybdenum-­‐99.  

v (Mid-­‐term  economic  development)  A  power  generation  facility  utilizing  Gen  IV  Molten  Salt  Reactor[s]  to  replace  the  electricity  production  which  will  be  lost  to  the  area  at  the  end  of  life  of  Davis-­‐Besse  Nuclear  Power  station  in  2037.  

v (Long-­‐term)  A  small  modular  Molten  Salt  Reactor  mass  assembly  plant.  

This  economic  development  plan  focuses  upon  three  aspect  areas:  health  and  life  sciences,  energy  and  environmental  industries,  and  national  security  interests.  This  plan  is  not  comprehensive  and  is  not  meant  to  touch  all  the  positive  benefits  the  development  of  Molten  Salt  Reactors  (MSRs)  potentially  can  provide.  For  a  more  comprehensive  look  at  the  benefits  of  MSR  development  please  visit  www.eGeneration.org  .  

Key  takeaways  from  this  development  plan  are:  

v Development  of  advanced  Molten  Salt  Reactors  will  enhance  Ohio’s  and  America’s  other  energy  industries,  through  better  development  and  utilization  of  resources.  

v There  is  a  worldwide  medical  isotope  production/supply  crisis  looming  in  the  very  near  future,  and  the  development  of  MSR  technology  in  Ohio  could  solve  this  crisis  and  produce  revenue.  

v Davis-­‐Besse  nuclear  power  station  is  not  expected  to  operate  after  2037.  NASA  Plum  Brook  Station  could  be  an  ideal  candidate  for  a  power  generation  facility  to  replace  Davis-­‐Besse.  

v Many  other  sites  and  businesses  around  Ohio  have  been  identified  as  potential  support  facilities  to  these  proposed  efforts  at  Plum  Brook  Station.  

Key  Potential  Stakeholders  include,  but  are  not  limited  to:  

NASA,  First  Energy,  Duke  Energy,  Fluor,  Chicago  Bridge  and  Iron,  The  Ohio  Chamber  of  Commerce,  Battelle  Memorial  Institute,  The  Greater  Cleveland  Partnership,  the  Ohio  Aerospace  Institute,  The  Ohio  State  University,  Cleveland  State  University,  Case  Western  Reserve  University,  JobsOhio,  Ohio’s  Third  Frontier  Program,  The  Cleveland  Foundation,  The  Cleveland  Clinic,  The  Ohio  Industrial  Energy  Users  Group,  The  Ohio  Manufacturing  Policy  Alliance,  The  Marcellus  Shale  Coalition,  The  Ohio  Coal  Association,  Ohio  Oil  and  Gas  Association,  REDI  Cincinnati,  and  the  Mound  Development  Corporation,  Battelle  Memorial  Institute,  Wright  Patterson  Air  Force  Base,  Wright  Centers  for  Innovation,  Columbus  Partnership.    

Page 6: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    5    

MEDICAL ISOTOPE PRODUCTION: TIME FOR CHANGE

Every  year,  medical  professionals  worldwide  carry  out  more  than  30  million  diagnostic  imaging  procedures  using  the  medical  isotope  technetium-­‐99m  (Tc-­‐99m),  over  half  of  these  in  the  United  States.  A  radioisotope  that  decays  over  six  hours,  Tc-­‐99m  is  injected  into  the  human  body  to  assess  the  presence  and  progress  of  ailments  such  as  heart  disease  and  cancer.  In  a  hospital  setting,  Tc-­‐99m  is  derived  from  special  generators  that  incorporate  its  parent,  molybdenum-­‐99  (Mo-­‐99).  But  because  Mo-­‐99  has  a  relatively  short  half-­‐life  of  66  hours,  these  generators  cannot  be  stockpiled  and  must  be  replaced  on  a  weekly  basis.  

The  United  States  does  not  produce  commercial  quantities  of  Mo-­‐99.  Most  of  the  Mo-­‐99  supplied  to  the  domestic  market  is  produced  abroad  through  fission  using  highly-­‐enriched  uranium  (HEU)  in  a  handful  of  research  and  test  reactors.  “These  foreign  reactors  (or,  irradiators)  irradiate  dozen  of  kilograms  HEU  targets  acquired  from  either  the  United  States  or  Russia.”  The  facilities  that  process  the  targets  after  irradiation  in  order  to  extract  Mo-­‐99  (or,  processors)  also  house  waste  containing  HEU  materials.  

For  over  three  decades,  U.S.  policy  has  aimed  at  minimizing  the  use  of  HEU  in  the  civilian  sphere  because  of  purported  proliferation  and  nuclear  terrorism  concerns.  The  U.S.  government  has  worked  with  international  partners  to  convert  research  reactors  from  HEU  to  low  enriched  uranium  (LEU),  shut  down  HEU-­‐powered  facilities,  and  secure  HEU  during  transport,  processing,  and  storage.  More  recently,  the  U.S.  government  has  advocated  replacing  aging  reactors  that  use  HEU  for  Mo-­‐99  production  with  new  facilities  that  utilize  LEU,  or  alternative  Mo-­‐99  production  methods.  

Between  2005  and  2010,  lengthy  irradiator  outages  and  several  other  incidents  caused  severe  shortages  of  Mo-­‐99  for  medical  procedures  worldwide,  demonstrating  the  fragility  of  the  radioisotope's  supply  chain.  Moreover,  a  Canadian  and  a  European  reactor  that  have  been  mainstays  of  the  medical  isotope  production  fleet  intend  to  shut  down  within  the  next  decade.  The  European  reactor  is  scheduled  for  replacement.  The  Canadian  reactor  was  scheduled  to  be  shutdown  this  year,  but  its  life  has  been  extended  to  2018  because  of  a  lack  of  medical  isotope  supply.  Meanwhile,  the  global  demand  for  Mo-­‐99  for  medical  procedures  is  projected  to  continue  to  rise  steadily.  

 

Page 7: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    6    

MO-99 AS "THE QUEEN MOTHER"

Discovered  by  two  scientists  at  Lawrence  Berkley  National  Laboratory  in  1938,  the  Technetium-­‐99  medical  isotope  (Tc-­‐99m)  is  today  the  most  widely  used  radioisotope  in  nuclear  medicine.  Introduced  into  the  body  of  a  patient,  Tc-­‐99m  emits  energy  that  can  be  observed  through  special  cameras.  The  demand  for  Tc-­‐99m,  vital  for  non-­‐invasive  diagnostic  procedures,  is  projected  to  rise  steadily  through  2030.  

The  use  of  Tc-­‐99m  became  widespread  in  the  1960s,  and  initially,  research  and  test  reactors  at  U.S.  national  laboratories  and  universities  provided  enough  Mo-­‐99  to  satisfy  domestic  demand.  The  Atomic  Energy  Commission,  a  predecessor  of  the  Department  of  Energy  (DOE),  produced  Mo-­‐99  at  Brookhaven  and  Oak  Ridge  National  Laboratories.  The  University  of  Missouri  Research  Reactor  (MURR)  produced  Mo-­‐99  on  a  smaller  scale  starting  in  1967.  When  demand  outstripped  supply,  private  industry  stepped  in  to  both  produce  and  distribute  Mo-­‐99.  

Private  industry  was  the  first  to  use  HEU  for  Mo-­‐99  production;  earlier  producers  had  relied  on  neutron  absorption  in  molybdenum  targets.  In  1980,  Cintichem,  Inc.  began  to  produce  the  medical  isotope  through  neutron-­‐induced  fission  reactions  with  HEU  targets.  This  process  allowed  for  more  efficient  recovery  of  Mo-­‐99  than  the  previous  techniques.  However,  the  Cintichem,  Inc.  reactor  in  Tuxedo,  New  York  was  forced  to  shut  down  in  1989  due  to  tritium  contamination  concerns,  ending  all  U.S.  Mo-­‐99  production.  

In  the  1990s,  private  industry  in  the  United  States  "was  not  willing  to  assume  the  financial  and  regulatory  risks  associated  with  building  and  operating  a  new  reactor  facility."  Cintichem,  Inc.  instead  arranged  for  a  Canadian  company,  Nordion,  to  supply  Tc-­‐99m  generators  to  the  U.S.  market.  The  Mo-­‐99  for  these  generators  was  produced  at  the  Chalk  River  facility's  NRU  reactor  that  utilized  HEU  for  both  fuel  (through  1993,  when  it  converted  to  LEU  fuel)  and  targets.  

In  response  to  security  of  supply  concerns  of  U.S.  isotope  users,  the  DOE  purchased  the  Cintichem,  Inc.  technology  and  then  initiated  studies  of  several  potential  Mo-­‐99  irradiators,  including  reactors  at  Los  Alamos  and  Sandia  National  Laboratories.  Despite  the  conversion  of  a  facility  at  Sandia  for  this  purpose  in  1999,  the  domestic  production  of  Mo-­‐99  was  never  initiated.  The  DOE  also  briefly  funded  a  joint  U.S.-­‐Russian  study  on  Mo-­‐99  production  that  envisioned  that  U.S.-­‐based  company  Technology  Commercialization  International  (TCI)  Medical  would  cooperate  with  Russia's  Kurchatov  Institute  on  developing  an  alternative  production  method  using  an  aqueous  homogenous  reactor  (AHR)  fueled  with  uranyl  nitrate  for  Mo-­‐99  production.  

Page 8: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    7    

Despite  all  of  these  efforts,  by  the  end  of  the  1990s  the  United  States  firmly  relied  on  foreign  producers,  all  using  HEU,  to  supply  its  domestic  Mo-­‐99  needs.  

TECHNETIUM 99 PRODUCTION

The  weekly  delivery  of  Tc-­‐99m/Mo-­‐99  generators  to  hospitals  hinges  on  the  continuous  operation  of  irradiators  and  processors,  and  a  complex  supply  chain  that  relies  on  express  shipments  of  radioactive  cargo  across  borders.  The  shipments  to,  and  within,  the  United  States  are  carried  out  by  passenger  and  cargo  aircraft  (and,  less  frequently,  trucks).  All  aspects  of  these  deliveries,  from  packaging  to  the  carrier's  transport  routes,  are  guided  by  national  and  international  regulations.  

The  Mo-­‐99  production  process  begins  with  the  advance  supply  of  HEU  fuel  and  targets  to  the  irradiators  (and  target  manufacturers)  abroad.  The  United  States  and,  less  frequently,  Russia  have  been  the  major  suppliers  of  this  HEU.  Annually,  approximately  45  kilograms  of  HEU  are  expended  in  Mo-­‐99  production.  

Mo-­‐99  production  process  Source:  TRIUMF,  inspired  by  graphics  from  Nordion  

A  research  and  test  reactor  irradiates  the  targets  for  approximately  seven  days.  The  neutrons  in  the  reactor  bombard  the  targets,  causing  the  split  of  U-­‐235  atoms.  The  irradiated  targets  are  then  cooled  and  rushed  to  a  processing  facility.  In  hot  cells  at  this  facility  the  targets  

Page 9: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    8    

are  dissolved  and  the  Mo-­‐99  is  recovered,  then  subsequently  purified  and  made  into  a  bulk  Mo-­‐99  solution.  This  processing  takes  up  to  a  day  to  complete.  

Because  of  the  targets'  relatively  short  irradiation  time,  more  than  90%  of  the  HEU  remains  in  target  waste  after  the  completion  of  Mo-­‐99  production.  This  waste  is  not  considered  to  be  "self-­‐protecting"  after  a  certain  cooling  period,  which  means  that  a  would-­‐be  thief  could  handle  it  without  risking  immediate  incapacitation.  Target  waste  could  also  be  converted  into  HEU  metal  to  produce  a  gun-­‐type  nuclear  explosive  device.  Because  of  this  "proliferation-­‐sensitivity,"  the  International  Atomic  Energy  Agency  (IAEA)  outlines  secure  storage  procedures  for  this  waste.  

After  processing,  the  bulk  Mo-­‐99  is  sent  to  companies  that  manufacture  the  Tc-­‐99m/Mo-­‐99  generators.  The  generators,  which  are  essentially  shielded  cartridges  containing  Mo-­‐99  solution  adsorbed  into  an  alumina  column,  are  then  rushed  to  nuclear  pharmacies  and  hospitals.  This  urgency  is  necessary  because  the  activity  of  Mo-­‐99  begins  to  decline  from  the  point  at  which  irradiated  targets  are  removed  from  a  reactor,  and  continues  its  decrease  through  processing.  Upon  receiving  the  generator,  a  hospital  can  extract  Tc-­‐99m  from  the  generator  for  about  a  week  by  passing  saline  through  the  alumina  column.  

Like  any  complex  network,  the  production,  processing,  and  delivery  of  Mo-­‐99  may  fail  to  work  as  planned.  Between  2005  and  2010,  a  product  recall  at  a  major  generator  producer  and  lengthy  reactor  outages  caused  severe  shortages  of  Mo-­‐99  for  medical  procedures  in  the  United  States  and  elsewhere.  These  outages  had  a  dramatic  impact  on  the  Mo-­‐99  supply  chain  and  have  spurred  the  U.S.  government  and  the  international  community  into  action.  

THE U.S. MO-99 SUPPLY CHAIN

Through  2014,  the  U.S.  supply  chain's  peculiar  structure  included  five  major  reactors,  four  major  processors,  and  two  generator  manufacturers.  The  irradiators,  all  using  HEU  targets  and  some  also  using  HEU  fuel,  were  spread  across  three  different  continents.  They  included  Canada's  NRU,  Belgium's  BR-­‐2,  France's  OSIRIS,  the  HRF  in  the  Netherlands,  and  South  Africa's  SAFARI.  The  processors  included  Canada's  MDS  Nordion,  Belgium's  IRE,  Covidien  (known  as  Mallinckrodt)  in  the  Netherlands,  and  South  Africa's  NTP.  The  international  companies  Covidien  (Mallinckrodt)  and  Lantheus  manufactured  the  Tc-­‐99m/Mo-­‐99  generators  and  supplied  them  to  hospitals.  

The  cascading  failures  in  the  supply  chain  began  in  2005.  That  year,  Mallinckrodt  halted  its  production  of  generators  due  to  a  product  recall,  triggering  a  shortage  that  lasted  through  

Page 10: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    9    

April  2006.  In  November  2007,  the  NRU  shut  down  for  over  a  month  and  the  HFR  followed  with  an  extensive  outage  between  August  2008  and  February  2009.  During  this  time,  an  IRE  processing  facility  was  also  shut  down  briefly  because  of  an  industrial  accident.  The  worst  of  the  outages,  however,  began  when  Canada's  NRU  shut  down  in  January  2009.  This  shutdown  took  place  through  August  2010  and  coincided  with  maintenance  of  the  HRF.  

Combined,  these  events  triggered  massive  supply  disruptions,  initially  forcing  hospitals  to  ration  care  and  cancel  procedures.  Eventually,  hospitals  found  ways  to  cope  with  the  shortages  by  scheduling  procedures  more  efficiently,  reducing  patient  doses  of  Tc-­‐99m,  and  increasing  the  use  of  alternative  imaging  modalities  such  as  PET.  

Current  U.S.  Mo-­‐99  supply  chain  

Producers  also  began  to  better  coordinate  supplies.  For  example,  when  one  reactor  shut  down  for  maintenance,  others  filled  its  orders.  Additional  irradiator  capacity  also  came  online.  Of  the  eight  large-­‐scale  irradiators  currently  online,  three  are  newcomers:  Poland's  MARIA  reactor  (currently  converting  to  LEU  and  utilizing  HEU  targets  processed  by  Covidien);  the  LVR-­‐

Page 11: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    10    

15  reactor  in  the  Czech  Republic  (recently  converted  to  LEU  fuel  and  using  HEU  targets  also  processed  by  Covidien);  and  Australia's  OPAL  (using  LEU  for  both  fuel  and  targets,  and  relying  on  target  processing  provided  by  ANSTO).  

However,  these  new  irradiators  offer  only  a  short-­‐term  solution.  The  NRU  and  the  OSIRIS  reactors  are  expected  to  shut  down  within  the  next  five  years.  The  need  to  deal  with  the  possible  supply  fallout  of  these  pending  closures  has  forced  the  United  States  to  actively  support  the  establishment  of  new  Mo-­‐99  producers,  efforts  in  turn  tailored  to  support  the  longstanding  U.S.  goal  of  civilian  HEU  minimization,  both  at  home  and  for  export  to  foreign  reactors.  

 

TECTONIC SHIFTS

Since  1978,  the  United  States  has  worked  to  minimize  the  amount  of  HEU  in  civilian  use.  These  efforts  have  included  the  conversion  of  HEU-­‐powered  research  and  test  reactors  to  low-­‐enriched  uranium  (LEU),  the  repatriation  of  fresh  HEU  fuel  and  irradiated  HEU  in  waste,  the  consolidation  of  HEU  at  fewer  sites,  and  security  improvements  to  facilities  housing  these  materials.  And  for  over  two  decades,  there  was  some  focus  on  the  conversion  of  LEU  targets  in  Mo-­‐99,  a  complicated  project  because  of  differences  in  target  design  and  processing  techniques  worldwide.  

In 1992, Congress passed the Schumer Amendment to curb U.S. HEU exports to foreign research reactors, including those for Mo-99 production. This amendment placed several conditions, including a commitment by producers to convert to LEU fuel and targets, on any continued U.S. exports of HEU. But supply security concerns precipitated a shift in Congressional priorities. In 2005, Congress passed the Burr Amendment exempting Canadian and European irradiators from Schumer's strictures and calling for a National Academy of Sciences study to de-conflict the two goals.

Prior  to  2011,  executive  policy  had  shown  greater  consistency  than  Congressional  policy.  A  longstanding  DOE  National  Nuclear  Security  Administration's  (NNSA)  program  has  promoted  technical  cooperation  among  reactor  operators  worldwide,  scientists  in  U.S.  national  laboratories,  and  IAEA  experts.  As  part  of  these  efforts  (consolidated  under  the  Global  Threat  Reduction  Initiative  in  2004),  many  research  and  test  reactors  (including  the  NRU)  converted  to  the  use  of  LEU  fuel,  some  Mo-­‐99-­‐producing  reactors  (such  as  the  SAFARI)  converted  to  LEU  fuel  and  targets,  and  new  LEU-­‐based  irradiators  (such  as  the  OPAL)  came  online.  

In  2009,  the  National  Academy  of  Sciences  finally  released  the  report  requested  under  the  Burr  Amendment.  This  study  concluded  that,  there  were  "no  technical  reasons  that  adequate  

Page 12: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    11    

quantities  cannot  be  produced  from  LEU  targets  in  the  future"  and  that  LEU  target  use  was  feasible  with  an  acceptable  cost  increase.  The  report  also  recommended  that  the  Mo-­‐99  producers,  the  DOE,  the  Department  of  State,  the  Food  and  Drug  Administration  (FDA),  and  the  U.S.  Congress  actively  move  toward  the  conversion  of  Mo-­‐99  production  away  from  HEU  use.  

The  NAS  report  fit  well  with  President  Barack  Obama's  2009  call  to  secure  all  of  the  world's  vulnerable  nuclear  materials  within  four  years.  NNSA  accelerated  its  nuclear  security  efforts  and  adopted  a  two-­‐track  strategy  for  Mo-­‐99  production.  The  first  track  promoted  the  development  of  sufficient  HEU-­‐free  indigenous  production  to  supply  the  U.S.  market  by  2016,  helping  to  finance  the  research  and  development  (R&D)  stage  of  four  domestic  private  industry  Mo-­‐99  projects.  The  second  track  aimed  to  boost  foreign  HEU-­‐free  Mo-­‐99  production  and  to  promote  the  goal  of  eliminating  HEU-­‐based  Mo-­‐99  production  through  cooperation  with  international  organizations  and  high-­‐level  diplomatic  meetings,  such  as  the  Nuclear  Security  Summit.  

THE TWO TRACK APPROACH TO MO-99 PRODUCTION

The  official  policy  of  the  U.S.  government  seeks  to  "end  subsidies  and  establish  an  economically-­‐sound  industry"  producing  Mo-­‐99  in  the  United  States.  Since  2009,  the  NNSA  has  supported  the  development  of  four  private  industry  projects  utilizing  a  variety  of  technologies.  The  financial  support  for  each  varies,  but  is  limited  to  $25  million,  and  involves  a  50/50  cost-­‐sharing  agreement  with  the  DOE  as  well  as  technical  assistance  from  the  U.S.  national  laboratories.  

The  NNSA  has  concluded  cooperative  agreements  with  General  Electric-­‐Hitachi  (GEH);  Babcock  and  Wilcox  (B&W);  NorthStar  Medical  Radioisotopes,  LLC;  and  SHINE/Morgridge  Institute  for  Research  (MIR),  with  two  of  the  projects  currently  underway.  In  February  2012  GEH  suspended  its  project  due  to  concerns  about  market  conditions,  but  also  noted  that  it  may  reevaluate  this  decision.  

Two  projects  outside  the  NNSA  cooperative  agreements,  by  Coqui  RadioPharmaceuticals  Corp.  and  American  Medical  Isotope  Corporation  (AMIC),  are  seeking  investors  and  expect  to  go  through  the  regulatory  approval  process.  (See  the  following  table  of  domestic  producers.)  

Page 13: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    12    

TABLE OF POTENTIAL IRRADIATORS IN THE UNITED STATES

The  future  of  all  of  these  projects  remains  uncertain.  Each  will  need  to  acquire  and  sustain  funding  as  its  technology  and  product  undergoes  the  approvals  processes  of  the  Nuclear  Regulatory  Commission  and  the  Food  and  Drug  Administration.  Because  the  projects  do  not  turn  a  profit  until  they  begin  supplying  customers  with  Mo-­‐99,  U.S.  government  support  for  market  

Page 14: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    13    

entry  has  been  critical.  There  are,  however,  medium-­‐term  uncertainties  about  the  projects'  competitive  viability  after  government  subsidies  end.  

The  NNSA  has  also  sought  to  increase  the  supply  of  foreign  HEU-­‐free  isotopes  on  the  U.S.  market  until  domestic  production  is  established.  The  NNSA  announced  in  2010  its  financial  and  regulatory  support  for  a  consortium  of  producers  from  South  Africa  and  Australia  to  supply  LEU-­‐based  Mo-­‐99  to  the  United  States.  This  consortium  has,  at  times,  supplied  as  much  as  a  third  of  the  Mo-­‐99  market  for  diagnostic  procedures  in  the  United  States  (when  other  major  reactors  have  been  shut  down).  The  NNSA  has  also  worked  with  the  IAEA  to  develop  small-­‐scale  regional  production  capabilities  based  on  alternative  technologies  in  Eastern  Europe,  Latin  America,  and  elsewhere,  and  used  its  control  over  HEU  supplies  to  persuade  European  producers  to  commit  to  conversion.  

The  Nuclear  Security  Summit  process  has  been  critical  in  promoting  action  on  the  challenge  of  minimizing  civilian  HEU.  At  the  2012  Summit,  European  Mo-­‐99  producers  pledged  to  convert  to  non-­‐HEU  processes  in  return  for  continued  shipments  of  U.S.  HEU  until  conversion  is  completed.  In  addition,  the  United  States,  Belgium,  France,  and  the  Netherlands  also  announced  a  study  to  facilitate  the  development  of  high-­‐density  LEU  fuel  and  target  material  to  make  conversion  more  economical.  

CHALLENGES OF HEU-FREE MO-99 PRODUCTION

Established  HEU-­‐based  producers  have  argued  that  conversion  to  the  use  of  LEU  targets  is  uneconomical  given  existing  technologies  and  could  also  "leave  them  at  a  competitive  disadvantage  relative  to  producers  who  refused  to  convert."  If  LEU  were  simply  substituted  for  HEU  in  existing  HEU  target  designs,  the  process  would  produce  less  Mo-­‐99  per  target.  Therefore,  producers  who  converted  to  LEU  have  generally  had  to  irradiate  and  process  a  much  greater  number  of  targets  and  cope  with  a  much  greater  volume  of  nuclear  waste.    

     Resolving  these  issues  involves  substantial  up-­‐front  investments  and,  the  established  producers  posit,  raises  production  costs.  The  newer  higher-­‐density  targets  under  development  aim  to  end  this  discrepancy,  but  they  are  not  anticipated  to  become  available  for  commercial  use  for  several  years  (and  likely  after  the  2015  conversion  date  currently  set  for  European  Mo-­‐99  producers.)  

The  difficulties  faced  by  established  producers  pale  in  comparison,  however,  with  the  economic  challenges  faced  by  new  producers.  Established  producers  use  facilities  and  equipment  constructed  and  purchased  by  their  governments  decades  ago.  Government  subsidies  

Page 15: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    14    

for  costs  related  to  capital  replacement  and  waste  disposition,  among  others,  have  enabled  established  producers  to  undervalue  irradiation  services  and  pass  subsidy-­‐derived  cost  savings  along  to  consumers.  

Washington  and  the  OECD's  Nuclear  Energy  Agency  have  sought  to  make  the  market  more  transparent  and  competitive  by  implementing  "full  cost  recovery."  If  successfully  implemented,  this  approach  would  force  established  HEU-­‐based  producers  to  raise  their  prices  in  order  to  account  for  government  subsidies.  

Both  new  and  established  producers  also  face  regulatory  barriers  to  HEU-­‐free  production.  When  a  producer  successfully  converts  to  LEU,  it  faces  re-­‐certification  costs.  For  example,  the  South  African  producer  NECSA  has  noted  that  delays  in  licensing  by  European  and  other  governments  have  slowed  down  its  conversion  process  by  two  years.  The  transition  to  LEU-­‐based  Mo-­‐99  must  therefore  be  gradual  in  order  to  preserve  producers'  existing  market  shares.  

A  more  problematic  layer  of  competition  involves  new  market  entrants  that  intend  to  use  HEU,  notably  in  Russia.  The  introduction  of  these  actors  to  the  market—before  established  producers  complete  conversion  and  before  new  market  entrants  begin  production—has  the  potential  to  negatively  impact  the  emerging  HEU-­‐free  Mo-­‐99  industry.  

PREFERENTIAL TREATMENT OF HEU-FREE MO-99

Faced  with  the  looming  shutdown  of  its  NRU  reactor  and  lacking  alternative  irradiation  capacity  in  Canada,  MDS  Nordion  has  turned  to  a  cooperative  venture  with  Russia's  RIAR  in  order  to  retain  its  market  share  in  the  United  States.  This  venture,  JSC  Isotope,  plans  to  utilize  HEU  fuel  and  targets  for  Mo-­‐99  production  at  the  RIAR  reactors  in  Dimitrovgrad.  The  Russian  facility  expected  to  initiate  production  in  2013  and  more  than  double  it  by  2015.  

In  May  2011,  U.S.  representatives  Edward  Markey  and  Jeff  Fortenberry  expressed  concerns  in  a  letter  to  the  DOE  regarding  the  use  by  MDS  Nordion  of  Russia's  HEU  to  produce  Mo-­‐99  for  the  U.S.  market,  but  these  concerns  were  not  followed  up  with  legislative  action  at  that  time.  

A  January  2012  letter  to  these  lawmakers  signed  by  public  health  and  nuclear  experts  called  on  Congress  to  enact  a  "preferential  procurement"  clause  that  would  include  provisions  to  "halt  the  import  of  HEU-­‐based  versions  of  these  isotopes  when  a  sufficient  supply  of  the  alternatives  is  available,"  a  "requirement  for  U.S.  health  authorities  to  terminate  authorization  for  use  of  HEU-­‐  based  versions  when  a  sufficient  supply  of  the  alternatives  is  available,"  and  the  

Page 16: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    15    

"imposition  of  a  tax  on  HEU-­‐based  versions  of  these  isotopes,  channeling  any  resulting  revenue  to  support  production  without  HEU."    

MDS  Nordion  has  been  completing  quality  tests  of  the  Russian-­‐sourced  Mo-­‐99.  In  order  to  enter  the  U.S.  market,  this  radioisotope  must  be  certified  by  the  U.S.  FDA.  Recently,  Russian  officials  have  noted  the  possibility  of  converting  to  LEU  targets  but  they  have  not  committed  to  converting  the  targets  or  the  RIAR  reactors  to  LEU  or  using  "full  cost  recovery."  

Meanwhile,  the  U.S.  government  is  working  to  make  "preferential  procurement"  a  reality.  In  June  2012,  the  White  House  announced  that  it  was  committed  to  eliminating  the  use  of  HEU  in  medical  isotopes  while  assuring  the  reliability  of  supply.  In  order  to  achieve  these  goals,  official  U.S.  policy  would  encourage  the  purchase  of  HEU-­‐free  Mo-­‐99  at  home  and  abroad,  phase  out  HEU  exports  when  sufficient  quantities  of  non-­‐HEU  Mo-­‐99  became  available,  and  continue  to  support  domestic  production  and  foreign  producers'  conversions.  

Washington  also  called  on  industry  to  develop  labeling  that  would  allow  users  to  distinguish  between  LEU-­‐  and  HEU-­‐based  Mo-­‐99  and  unveiled  other  incentives  aimed  at  isotope  users.  In  July  2012,  the  White  House  proposed  a  new  Health  and  Human  Services  department  regulation  that  would  incentivize  medical  facilities  to  use  HEU-­‐free  Mo-­‐99  by  paying  an  additional  $10  for  each  procedure  performed  on  Medicare  and  Medicaid  patients  using  HEU-­‐freeMo-­‐99.    

FUTURE OF MEDICAL ISOTOPE PRODUCTION

In  June  2012,  the  Obama  Administration  announced  "the  United  States  is  committed  to  

eliminating  the  use  of  HEU  in  all  civilian  applications  because  of  its  direct  significance  for  potential  use  in  nuclear  weapons,  acts  of  nuclear  terrorism,  or  other  malevolent  purposes."  Toward  this  end,  focused  efforts  on  eliminating  HEU  from  Mo-­‐99  production  are  an  important  step  in  promoting  the  security  and  well  being  of  publics  in  the  United  States  and  worldwide.  

The  leadership  of  key  countries,  and  especially  those  involved  in  conversion  or  new  HEU-­‐free  production,  has  been  essential  in  building  the  emerging  HEU-­‐free  Mo-­‐99  production  consensus.  This  international  commitment  could  be  further  strengthened  through  continued  rigorous  technical  cooperation  and  high-­‐level  dialogues  such  as  the  Nuclear  Security  Summit.  If  global  conversion  to  LEU  is  to  take  place,  other  countries  will  also  need  to  use  their  power  as  Mo-­‐99  consumers  and  health  regulators  to  help  shape  demand  for  HEU-­‐free  radioisotopes  through,  for  example,  incentives  and  speedy  licensing  processes.  Russia's  recent  hints  that  it  

Page 17: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    16    

may  convert  to  LEU  targets  suggest  it  is  reconsidering  policy  in  response  to  the  emerging  international  consensus  against  the  use  of  HEU.  

Recent  radioisotope  shortages  have  highlighted  the  importance  of  pursuing  nuclear  security  objectives  in  a  manner  that  aids  supply  security  rather  than  undermines  it.  The  role  of  government  incentives  for  private  industry  aimed  at  restructuring  the  domestic  Mo-­‐99  market  has  been  critical  to  mitigating  future  shortages.  But  it  remains  to  be  seen  whether  one  or  more  of  the  HEU-­‐free  producers  will  succeed  in  passing  all  regulatory  hurdles,  achieving  full  cost  recovery,  and  actually  beginning  to  supply  Mo-­‐99  to  hospitals.  It  is  also  too  soon  to  know  whether  user-­‐based  incentives  will  yield  the  desired  outcomes.  At  the  international  level,  OECD  NEA  studies  have  argued  in  favor  of  leveling  the  playing  field  for  new  Mo-­‐99  producers  as  well  as  the  creation  of  a  reserve  capacity  that  would  be  "transparent  and  verifiable  to  ensure  trust"  for  all.  

Despite  substantial  progress  to  date,  success  in  balancing  supply  and  security  concerns  has  been  inadequate  in  producing  a  supply  of  medical  isotopes  capable  of  eliminating  foreign  importation.  A  "rosy"  scenario  depicts  a  future  with  an  abundance  of  Mo-­‐99,  all  of  which  is  produced  without  the  use  of  weapons-­‐grade  materials.  However,  a  worst-­‐case  scenario  still  involves  a  world  with  shortages  of  Mo-­‐99  that  continues  to  rely  on  exports  of  nuclear  weapons-­‐suitable  materials.  Thus,  finding  a  timely  solution  to  the  dual  challenge  of  making  the  Mo-­‐99  supply  chain  reliable  and  HEU-­‐free  is  critical.  

On January 2, 2013, as part of the National Defense Authorization Act for fiscal year 2013,

President Obama signed into law the American Medical Isotope Production Act of 2011 (S. 99). The law was to establish a technology-neutral program to support the production of Mo-99 for medical uses in the United States by non-federal entities. It also called for the United States to phase out the export of highly enriched uranium for the production of medical isotopes over a period of seven years [thus by 2020]. Frederic H. Fahey, DSc, president of the Society of Nuclear Medicine and Molecular Imaging (SNMMI), stated, “In order for our patients to receive the best medical care, it’s essential that a reliable supply of Mo-99 be available in the United States. We greatly appreciate [the bill’s sponsors’] efforts in seeing this bill come to fruition.”

However, although the bill became law over two years ago, we still do not have an adequate supply of Mo-99.

Page 18: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    17    

MOLYBDENUM-99 RESEARCH REACTORS

Six  small  Molten  Salt  Research  Reactors  (MSRs)  can  produce  all  of  the  medical  isotopes  for  North  America,  Central  America,  and  South  America  from  a  facility  based  in  Sandusky,  Ohio.  Such  a  facility  would  create  more  than  8,000  jobs  and  would  support  the  construction  of  a  runway  used  for  the  distribution  of  medical  isotopes  by  air  transport.  Additionally,  such  research  reactors  could  pave  the  way  for  a  full-­‐scale  reactor  that  would  one  day  replace  the  electricity  production  that  will  be  lost  with  the  2037  shutdown  of  the  aging  Davis-­‐Besse  Nuclear  Power  Plant  located  in  Oak  Harbor,  Ohio.  

 

NASA’S ISOTOPE CRISIS: PLUTONIUM-238

In  1977,  The  Voyager  1  spacecraft  left  Earth  on  a  five-­‐year  mission  to  explore  Jupiter  and  Saturn.  Thirty-­‐six  years  later,  the  car-­‐size  probe  is  still  exploring,  still  sending  its  findings  home.  It  has  now  put  more  than  19  billion  kilometers  between  itself  and  the  sun.  Voyager  1  has  become  the  first  man-­‐made  object  to  reach  interstellar  space.  

The  distance  this  craft  has  covered  is  almost  incomprehensible.  It’s  so  far  away  that  it  takes  more  than  17  hours  for  its  signals  to  reach  Earth.  Along  the  way,  Voyager  I  gave  scientists  their  first  close-­‐up  looks  at  Saturn,  took  the  first  images  of  Jupiter’s  rings,  discovered  many  of  the  moons  circling  those  planets  and  revealed  that  Jupiter’s  moon  Io  has  active  volcanoes.  Now  the  spacecraft  is  discovering  what  the  edge  of  the  solar  system  is  like,  piercing  the  heliosheath  where  the  last  vestiges  of  the  sun’s  influence  are  felt  and  traversing  the  heliopause  where  cosmic  currents  overcome  the  solar  wind.  Voyager  I  is  expected  to  keep  working  until  2025  when  it  will  finally  run  out  of  power.  

None  of  this  would  be  possible  without  the  spacecraft’s  three  batteries  (Radioisotope  Thermoelectric  Generator)  filled  with  plutonium-­‐238.  (This  is  not  the  material  used  to  make  bombs.  That  is  plutonium-­‐239).  In  fact,  most  of  what  humanity  knows  about  the  outer  planets  came  back  to  Earth  on  plutonium  power.  Cassini’s  ongoing  exploration  of  Saturn,  Galileo’s  trip  to  Jupiter,  Curiosity’s  exploration  of  the  surface  of  Mars,  and  the  2015  flyby  of  Pluto  by  the  New  Horizons  spacecraft  are  all  fueled  by  the  plutonim-­‐238  isotope.  The  characteristics  of  this  metal’s  radioactive  decay  make  it  a  super-­‐fuel.  Most  importantly,  there  is  no  other  viable  power  option  for  deep  space  probes.  Solar  power  is  too  weak  at  those  vast  distances  from  the  Sun,  chemical  batteries  don’t  last,  nuclear  fission  systems  are  too  heavy.  So,  we  depend  on  plutonium-­‐

Page 19: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    18    

238,  a  fuel  largely  acquired  as  by-­‐product  of  making  nuclear  weapons.  And  therein  lies  the  problem.  

    We  have  enough  plutonium-­‐238  to  last  to  the  end  of  this  decade.  There  is  no  more.  And  it’s  not  just  the  U.S.  reserves  that  are  in  jeopardy.  The  entire  planet’s  stores  of  plutonium-­‐238  are  nearly  depleted.  

 

PLUTONIUM-238 IS VITAL TO NASA’S SPACE EXPLORATION

The  country’s  scientific  stockpile  of  plutonium-­‐238  has  dwindled  to  around  36  pounds.  To  put  that  in  perspective,  the  battery  that  powers  NASA’s  Curiosity  rover,  which  is  studying  the  surface  of  Mars,  contains  roughly  10  pounds  of  plutonium-­‐238,  and  what’s  left  in  our  stockpile  has  already  been  spoken  for,  and  then  some.  The  implications  for  space  exploration  are  dire:  No  more  plutonium-­‐238  means  not  exploring  perhaps  99  percent  of  the  solar  system.  In  effect,  much  of  NASA’s  $1.5  billion-­‐a-­‐year  (and  shrinking)  planetary  science  program  is  running  out  of  fuel  and  time.  This  nuclear  crisis  is  so  bad  that  affected  researchers  know  it  simply  as  “The  Problem.”  

It  doesn’t  have  to  be  that  way.  The  required  materials,  reactors,  and  infrastructure  are  all  in  place  to  create  plutonium-­‐238  (which,  unlike  plutonium-­‐239,  is  practically  impossible  to  use  for  a  nuclear  bomb).  In  fact,  the  U.S.  government  has  approved  spending  about  $20  million  per  year  to  reconstitute  production  capabilities  the  nation  shuttered  almost  two  decades  ago.  The  DOE  has  even  produced  a  tiny  amount  of  fresh  plutonium-­‐238  inside  the  High  Flux  Isotope  Reactor  (HFIR)  at  Oak  Ridge  National  Laboratory.  

It’s  a  good  start,  but  the  crisis  is  far  from  solved.  Political  shortsightedness  and  squabbling,  along  with  false  promises  from  Russia,  and  penny-­‐wise  management  of  NASA’s  ever-­‐thinning  budget  still  stand  in  the  way  of  a  robust  plutonium-­‐238  production  system.  The  result:  Meaningful  exploration  of  the  solar  system  has  been  pushed  to  a  cliff’s  edge.  One  ambitious  space  mission  could  deplete  remaining  plutonium  stockpiles,  and  any  hiccup  in  a  future  supply  chain  could  undermine  future  missions.  

The  only  natural  supplies  of  plutonium-­‐238  vanished  eons  before  the  Earth  formed,  some  4.6  billion  years  ago.  Exploding  stars  forge  the  silvery  metal,  but  its  half-­‐life,  or  time  required  for  50  percent  to  disappear  through  decay,  is  just  under  88  years.  

Like  other  radioactive  materials,  plutonium-­‐238  decays  because  its  atomic  structure  is  unstable.  When  an  atom’s  nucleus  spontaneously  decays,  it  fires  off  a  helium  core  at  high  speed,  

Page 20: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    19    

while  leaving  behind  a  uranium  atom.  These  helium  bullets,  called  alpha  radiation,  collide  en  masse  with  nearby  atoms  within  a  lump  of  plutonium  —  a  material  twice  as  dense  as  lead.  The  energy  can  cook  a  puck  of  plutonium-­‐238  to  nearly  1,260  degrees  Celsius.  To  turn  that  into  usable  power,  the  puck  is  wrapped  with  thermoelectrics  that  convert  heat  to  electricity.  Voila:  A  battery  that  can  power  a  spacecraft  for  decades.  

Fortunately  for  us,  John  Birden  and  Ken  Jordan,  working  at  Monsanto’s  Mound  Laboratory,  in  Miamisburg,  Ohio,  in  the  1950’s  developed  the  Radioisotope  Thermoelectric  Generator  (RTG),  a  self-­‐contained  power  source  that  obtains  its  power  from  the  radioactive  decay  of  plutonium-­‐238.  Mound-­‐fueled  RTGs    were  patented  in  1959  and  have  powered  most  of  the  spacecraft  and  planetary  probes  the  United  States  has  launched  into  deep  space,  where  the  sun’s  intensity  is  not  sufficient  to  generate  electricity  with  solar  cells.  These  space  projects  included  electrical  power  for  the  instruments  placed  on  the  Moon  by  Apollo  astronauts  (SNAP  or  Systems  for  Nuclear  Auxiliary  Power),  Pioneer  (planetary  exploration),  Voyager  (study  of  the  planetary  systems  of  Jupiter  and  Saturn),  Viking  (Mars  surface),  Ulysses  (exploration  of  the  Sun),  Galileo  (exploration  of  Jupiter  and  its  moons)  and  Cassini  (exploration  of  Saturn  and  its  moons).    

U.S.  production  of  plutonium-­‐238  came  primarily  from  two  nuclear  laboratories  as  a  byproduct  of  making  bomb-­‐grade  plutonium-­‐239.  The  Hanford  Site  in  Washington  state  left  the  plutonium-­‐238  mixed  into  a  cocktail  of  nuclear  wastes.  The  Savannah  River  Site  in  South  Carolina,  however,  extracted  and  refined  more  than  360  pounds  during  the  Cold  War  to  power  espionage  tools,  spy  satellites,  and  dozens  of  NASA’s  pluckiest  spacecraft.  

By  1988,  with  the  fall  of  the  Soviet  Union  only  three  years  in  the  future,  the  U.S.  and  Russia  began  to  dismantle  wartime  nuclear  facilities.  Hanford  and  Savannah  River  no  longer  produced  any  plutonium-­‐238.  But  Russia  continued  to  harvest  the  material  by  processing  nuclear  reactor  fuel  at  a  nuclear  industrial  complex  called  Mayak.  The  Russians  sold  their  first  batch,  weighing  36  pounds,  to  the  U.S.  in  1993  for  more  than  $45,000  per  ounce.  Russia  had  become  the  planet’s  sole  supplier,  but  it  soon  fell  behind  on  orders.  In  2009,  it  reneged  on  a  deal  to  sell  22  pounds  to  the  U.S.  

Whether  or  not  Russia  has  any  material  left  or  can  still  create  some  is  uncertain.  What  we  do  know  is  that  they’re  not  willing  to  sell  it  anymore.    

By  2005,  according  to  a  Department  of  Energy  report  ,  the  U.S.  government  owned  87  pounds,  of  which  roughly  two-­‐thirds  was  designated  for  national  security  projects,  likely  to  power  deep-­‐sea  espionage  hardware.  The  DOE  will  not  disclose  what  is  left  today,  but  scientists  close  to  the  issue  say  just  36  pounds  remain  earmarked  for  NASA.  

Page 21: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    20    

That’s  enough  for  the  space  agency  to  launch  a  few  small  deep-­‐space  missions  before  2020.  A  twin  of  the  Curiosity  rover  is  planned  to  lift  off  for  Mars  in  2020  and  will  require  nearly  a  third  of  the  stockpile.  After  that,  NASA’s  interstellar  exploration  program  is  left  staring  into  a  void  —  especially  for  high-­‐profile,  plutonium-­‐hungry  missions,  like  the  proposed  Jupiter  Europa  Orbiter.  To  seek  signs  of  life  around  Jupiter’s  icy  moon  Europa,  such  a  spacecraft  could  require  more  than  47  pounds  of  plutonium.  

Many  of  the  eight  deep-­‐space  robotic  missions  that  NASA  had  envisioned  over  the  next  15  years  have  already  been  delayed  or  canceled.  Even  more  missions  —  some  not  yet  even  formally  proposed  —  are  silent  casualties  of  NASA’s  plutonium-­‐238  poverty.  Since  1994,  scientists  have  pleaded  with  lawmakers  for  the  money  to  restart  production.  The  DOE  believes  a  relatively  modest  $10  to  20  million  in  funding  each  year  through  2020  could  yield  an  operation  capable  of  making  between  3.3  and  11  pounds  of  plutonium-­‐238  annually  —  plenty  to  keep  a  steady  stream  of  spacecraft  in  business.  

In  2012,  a  line  item  in  NASA’s  $17-­‐billion  budget  fed  $10  million  in  funding  toward  an  experiment  to  create  a  tiny  amount  of  plutonium-­‐238.  The  goals:  gauge  how  much  could  be  made,  estimate  full-­‐scale  production  costs,  and  simply  prove  the  U.S.  could  pull  it  off  again.  It  was  half  of  the  money  requested  by  NASA  and  the  DOE,  the  space  agency’s  partner  in  the  endeavor  (the  Atomic  Energy  Act  forbids  NASA  to  manufacture  plutonium-­‐238).  The  experiment  may  last  seven  more  years  and  cost  between  $85  and  $125  million.  

A  fully  reconstituted  plutonium  program  described  in  the  DOE’s  latest  plan,  would  also  utilize  a  second  reactor  west  of  Idaho  Falls,  called  the  Advanced  Test  Reactor.  

 

NASA’S STIRLING RADIOSIOTOPE GENERATOR

At  NASA  Glenn  Research  Center  in  Cleveland,  Ohio,  metal  cages  and  transparent  plastic  boxes  house  a  menagerie  of  humming  devices.  Many  look  like  stainless-­‐steel  barbells  about  a  meter  long  and  riddled  with  wires;  others  resemble  white  crates  the  size  of  two-­‐drawer  filing  cabinets.  

The  unpretentious  machines  are  prototypes  of  NASA’s  next-­‐generation  nuclear  power  system,  called  the  Advanced  Stirling  Radioisotope  Generator.  It’s  shaping  up  to  be  a  radically  different,  more  efficient  nuclear  battery  than  any  before  it.  

On  the  outside,  the  machines  are  motionless.  Inside  is  a  flurry  of  heat-­‐powered  motion  driven  by  the  Stirling  cycle,  developed  in  1816  by  the  Scottish  clergyman  Robert  Stirling.  

Page 22: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    21    

Gasoline  engines  burn  fuel  to  rapidly  expand  air  that  pushes  pistons,  but  Stirling  converters  need  only  a  heat  gradient.  The  greater  the  difference  between  a  Stirling  engine’s  hot  and  cold  parts,  the  faster  its  pistons  hum.  When  heat  warms  one  end  of  a  sealed  chamber  containing  helium,  the  gas  expands,  pushing  a  magnet-­‐laden  piston  through  a  tube  of  coiled  wire  to  generate  electricity.  The  displaced,  cooling  gas  then  moves  back  to  the  hot  side,  sucking  the  piston  backward  to  restart  the  cycle.  

“Nothing  is  touching  anything.  That’s  the  whole  beauty  of  the  converter,”  said  Lee  Mason,  one  of  several  NASA  engineers  crowded  into  the  basement.  Their  pistons  float  like  air  hockey  pucks  on  the  cycling  helium  gas.  

NASA AND A RADIOSISOTOPE PRODUCTION FACILITY

Abundant  and  valuable  Molybdenum-­‐99  and  Plutonium-­‐238  radioisotopes  could  be  provided  as  a  consequence  of  producing  electricity  with  small  multipurpose  liquid-­‐fueled  Molten  Salt  Reactors  (MSRs).  A  fleet  of  as  few  as  three  1GW(th)  MSRs  could  produce  all  needed  Plutonium-­‐238  requirements.  This  enterprising  means  would  satisfy  high-­‐priority  national  production  and  nonproliferation  goals  consistent  with  global  threat  reduction.  It  would  conform  to  Congressional  legislation  requiring  domestic,  affordable,  and  proliferation-­‐resistant  radioisotope  supplies  for  medical  use,  as  well  as  meet  increasing  requirements  having  national-­‐security  and  space  exploration  applications.  Even  a  single  10-­‐100  MW(th)  reactor,  based  on  proven  American  technology,  would  fulfill  growing  deficiencies  at  a  profit.    

Compared  to  other  reactors  and  to  accelerators,  an  MSR  is  demonstrably  the  most  efficient  means  of  production:  Fuel  preparation  is  minimal;  no  solid-­‐fuel  or  target  fabrication  is  required;  and  nearly  100%  duty  cycle  is  achievable  for  irradiation  and  maximum  efficiency  in  product  extraction.    

Alternative  technologies  are  much  less  efficient  and  much  more  expensive  per  gram  of  isotope  produced.  Accelerators  and  accelerator-­‐driven  sub-­‐critical  reactors  have  inherent  foil  or  sample  irradiation  target-­‐density  limitations;  nevertheless,  they  have  an  indispensable  and  complementary  role  in  producing  other  rare  isotopes.    

The  MSR  would  yield  two-­‐to-­‐three  orders  of  magnitude  higher  radioisotope  yield,  with  a  smaller  fissile  loading,  minimal  cost,  rapid  production  time,  high  efficiency,  and  for  each  curie  of  Mo-­‐99  generated  in  a  liquid-­‐fueled  reactor,  there  is  less  uranium  waste  (by  a  factor  of  about  100)  compared  to  yields  from  foil  irradiation  or  solid-­‐fuel  reactors.  All  processes  related  to  

Page 23: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    22    

fabrication,  irradiation,  disassembly,  and  dissolution  of  solid-­‐target  foils  are  eliminated;  therefore,  radioactive  waste  management  for  the  MSR  is  straightforward  and  less  expensive,  with  comparatively  low  capital  outlays  and  operating  costs.    

A  domestically-­‐built  MSR  would  offer  several  other  important  benefits:  high  capacity  and  timely  availability  (five  years  or  so,  if  given  government  priority  and  siting).  It  could  have  comparatively  low  construction  cost,  reduce  government  funding  for  national-­‐security  isotopes,  and  yield  net  income  for  the  government  and  the  facility  operator,  while  not  itself  contributing  to  proliferation  concerns.    

Methods  that  do  not  involve  fluidized-­‐fuel  reactors  are  necessarily  much  less  efficient  and  much-­‐more  costly  per  unit  of  radioisotope  produced,  even  taking  into  account  amortized  cost.  Liquid-­‐fueled  reactor  systems  would  minimize  or  eventually  eliminate  the  need  for  proliferation-­‐susceptible,  highly-­‐enriched  fissile  targets.    

Product  yields  of  radioisotopes  in  solid-­‐fuel  reactors  are  limited  by  the  means  by  which  fission  products  can  be  extracted  in  a  timely  manner.    

Irradiation  of  uranium  foils  or  fuel  in  nuclear-­‐reactors,  while  the  predominant  means  currently  in  use,  is  highly  inefficient  because  of  interim  decay  (loss  of  product)  during  removal  and  processing  cycles.    

Accelerator  generation  is  another  order-­‐of-­‐magnitude  less  efficient  because  of  the  comparatively  weak  flux  of  neutrons.  Accelerator-­‐driven  sub-­‐critical  reactors,  lacking  continuous  processing  of  circulated  solutions,  would  still  have  low  yield.  Accelerator-­‐driven  solution  reactors  might  be  better,  but  never  as  productive  as  the  MSR.    

All  alternatives,  however,  potentially  have  useful  and  convenient  roles  for  some  specialized  rare  radioisotope  creation.    

 

 

 

   

Page 24: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    23    

Davis-­‐Besse  Nuclear  Power  Plant  

THE IMPACT OF DAVIS-BESSE NUCLEAR POWER PLANT

The  Davis-­‐Besse  Nuclear  Power  Station  (Davis-­‐Besse),  located  in  Oak  Harbor,  Ohio,  has  been  a  vital  part  of  Ohio’s  energy  portfolio,  providing  100  percent  carbon-­‐free  electricity  since  it  began  commercial  operation  in  1978.  In  addition  to  the  reliable,  emission-­‐free  electricity  that  the  station  generates  and  the  jobs  and  economic  stimulus  it  provides,  the  plant’s  involvement  in  the  local  communities  makes  Davis-­‐Besse  a  significant  economic  contributor  to  the  region  and  Ohio.    

Davis-­‐Besse  employs  about  700  full-­‐time  workers  and  is  one  of  the  largest  and  highest-­‐paying  employers  in  Ottawa  County.  The  annual  payroll  is  more  than  $60  million  (excluding  benefits).  Most  jobs  at  nuclear  power  plants  require  technical  training  and  are  typically  among  the  highest-­‐paying  jobs  in  the  areas  in  which  they  are  located.  Nationwide,  nuclear  energy  jobs  pay  36  percent  more  than  average  salaries  in  a  plant’s  local  area.    

In  2013,  Davis-­‐Besse’s  operation  prevented  the  emission  of  7.1  million  metric  tons  of  carbon  dioxide  that  would  otherwise  have  been  produced  by  fossil  fuel  electric  generation  plants.    This  is  about  the  same  amount  released  by  more  than  1.4  million  cars  each  year.  Overall,  Ohio’s  

Page 25: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    24    

electric  sector  emits  more  than  100  million  metric  tons  of  carbon  dioxide  annually.  Davis-­‐Besse  also  prevents  the  emissions  of  more  than  6,200  tons  of  nitrogen  oxide,  equivalent  to  that  released  by  nearly  325,000  cars,  and  17,000  tons  of  sulfur  dioxide.  Sulfur  dioxide  and  nitrogen  oxide  are  precursors  to  acid  rain  and  urban  smog.    

Perhaps  the  best  way  to  appreciate  the  value  of  Davis-­‐Besse  is  to  examine  what  will  happen  when  it  is  gone.  When  the  Kewaunee  nuclear  power  facility  in  Wisconsin  closed  in  2013,  Kewaunee  County  lost  15  percent  of  its  employment  and  30  percent  of  its  revenue  —  in  addition  to  556  megawatts  of  reliable,  affordable  electricity.  In  California,  1,500  jobs  were  lost  when  two  reactors  at  the  San  Onofre  nuclear  facility  were  closed.  Recent  analysis  shows  that  California’s  carbon  dioxide  emissions  then  increased  by  more  than  35  percent,  due  in  large  part  to  the  closure  of  the  two  reactors  and  replacing  their  energy  with  power  from  fossil  fuel  plants.    

When  a  productive  facility  ceases  operations,  the  economic  loss  effects  local,  state  areas,  and  the  nation,  for  decades.  A  nuclear  power  plant  shutdown  has  a  greater  economic  impact  than  merely  loss  of  its  operation.  These  greater  impacts  are  primarily  due  to  the  migration  of  workers  and  families  away  from  the  area  in  search  of  new  jobs.    

A  Nuclear  Energy  Institute  (NEI)  report  shows  that  in  Year  1  after  Davis-­‐Besse  is  shut  down,  the  lost  output  in  Ohio  would  be  $1.3  billion.  The  losses  increase  each  year  until  Year  3,  when  the  lost  output  peaks  at  $1.5  billion  for  the  state.  Over  that  period,  Ottawa  County  and  the  surrounding  Ohio  economies  (including  Erie,  Lucas,  Seneca,  and  Huron  Counties)  would  shrink  because  of  lost  output  that  cascades  across  virtually  all  sectors,  taking  years  to  filter  completely  through  the  economy.  

Davis-­‐Besse’s  operating  license  is  due  to  expire  in  2017,  and  it  is  expected  that  the  nuclear  power  plant  will  be  approved  for  a  20  year  extended  license.  It  is  doubtful  if  the  power  generator  will  operate  beyond  2037,  so  there  should  be  a  transition  plan  in  place  now  to  deal  with  either  replacing  Davis-­‐Besse  or  coping  with  the  loss  of  nearly  $800  million  in  annual  economic  activity.  

Davis-­‐Besse’s  transmission  lines  actually  traverse  a  site  that  was  once  home  to  a  nuclear  reactor,  NASA  Glenn’s  6,400  acre  Plum  Brook  Station  in  Sandusky,  Ohio.  Plum  Brook  is  the  field  laboratory  of  NASA  Glenn  Research  Center.  Five  world-­‐class  test  facilities  (Space  Power  Facility,  Spacecraft  Propulsion  Research  Facility,  Cryogenic  Propellant  Tank  Facility,  Cryogenic  Components  Laboratory,  and  it’s  Hypersonic  Tunnel  Facility)  are  available  to  customers  to  test  mission  critical  components,  assemblies,  and  a  multitude  of  aerospace  and  industrial  projects.  

Page 26: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    25    

Could  NASA  Plum  Brook  be  a  replacement  site  for  Davis-­‐Besse  in  2037?  The  fact  that  it  was  once  licensed  for  a  nuclear  reactor  may  make  obtaining  a  new  site  license  potentially  less  difficult  and  costly.  The  licensing  process  for  a  traditional  light  water  reactor  similar  to  Davis-­‐Besse  can  take  20  years  or  more.  If  there  is  any  intention  to  replace  Davis-­‐Besse  with  its  same  technology,  business  leaders  and  legislators  need  to  start  that  process  now.  

This  document  lays  a  more  ambitious,  yet  practical  path,  to  leverage  Ohio’s  nuclear  heritage,  expertise,  and  drive  for  technological  innovation,  together  with  Ohio’s  various  research  centers  and  programs  such  as  the  Ohio  Third  Frontier  program,  to  develop  a  better  fourth  generation  reactor.    

The  United  States,  and  Ohio  in  particular,  can  and  should  lead  the  world  in  this  endeavor.    We  should  lead,  rather  than  follow,  India,  Russia,  and  China  in  the  development  of  newer  and  safer  nuclear  technology.    

While  there  is  always  a  patriotic  reason  to  lead  in  any  field  of  endeavor,  there  is  a  sound  business  case  for  Ohio  to  do  so  in  the  short-­‐term  and  the  long  term.    Our  failure  to  act  could  have  dire  economic  consequences  for  the  State  of  Ohio  and  the  United  States,  both  for  our  economy  and  for  our  national  security.  

 

Page 27: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    26    

A HISTORY OF OHIO’S NUCLEAR HERITAGE

NASA  Plum  Brook  Station:  NASA  turned  on  its  first,  last,  and  only  nuclear  fission  test  reactors  in  1961  to  research  nuclear-­‐powered  airplanes  (the  Aircraft  Nuclear  Propulsion  (ANP)  program  and  the  Nuclear  Energy  for  Propulsion  of  Aircraft  (NEPA)  program).    Research  then  turned  to  nuclear-­‐powered  space  rockets.  But  the  mounting  cost  of  the  Vietnam  War  and  waning  interest  in  manned  space  exploration  led  President  Richard  Nixon  to  mothball  the  NASA  Plum  Brook  Station’s  two  test  reactors  in  1973.    

Battelle  Memorial  Institute:  Built  in  1954,  Battelle’s  West  Jefferson,  Ohio  facility  housed  the  first  scale  nuclear  reactor  ever  owned  by  a  private  organization.  Battelle  became  best  known  for  its  nuclear  research  because  of  its  role  in  the  Manhattan  Project  during  WWII,  the  program  to  build  the  first  atomic  bombs.  The  Institute  also  provided  the  U.S.  military  with  improved  lighter  and  stronger  armor  for  tanks  and  other  military  vehicles.  Battelle  scientists  developed  fuel  for  the  U.S.  Navy's  first  nuclear-­‐powered  submarine,  the  Nautilus,  in  1949.  Battelle  was  envisioned  by  Congress  to  develop  the  nuclear  fuel  for  the  ANP  and  NEPA  projects.    

Today,  Battelle  is  the  world’s  largest  nonprofit  research  and  development  organization,  with  over  22,000  employees  at  more  than  60  locations  globally.  Battelle  manages  the  world’s  leading  national  laboratories  (including  America’s  premier  nuclear  energy  research  laboratory:  Oak  Ridge  National  Laboratory)  and  maintains  a  contract  

Page 28: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    27    

research  portfolio  of  expertise  spanning  consumer  and  industrial,  energy  and  environment,  health  and  pharmaceutical,  and  national  security.  Coincidentally,  this  NASA  Plum  Brook  Economic  Development  Proposal  touches  upon  every  aspect  of  Battelle’s  expertise,  making  the  Institute  a  prime  candidate  to  manage  this  project  when  it  comes  to  fruition.  

Wright  Patterson  AFB:  The  Air  Force  Nuclear  Engineering  Center  at  Wright-­‐Patterson  Air  Force  Base  today  consists  of  a  decommissioned  nuclear  reactor  entombed  in  concrete.    

The  Nuclear  Engineering  Center  was  conceived  in  the  mid  1950’s  as  an  in-­‐house  research  &  development  facility  for  engineering  testing  of  components  and  assemblies  for  envisioned  intercontinental  range,  nuclear  propelled  Air  Force  aircraft.  Congress  envisioned  the  Center  as  developing  the  nuclear  powered  jet  engines,  and  to  provide  maintenance  to  a  future  nuclear  bomber  fleet  that  potentially  might  have  been  based  at  Wright  Patterson.  

Construction  of  the  research  reactor  at  Wright-­‐Patterson  was  initiated  in  1958.  By  the  time  the  Air  force  accepted  the  building  in  1960,  the  Air  Force  had  terminated  its  nuclear  powered  aircraft  engine  development  program  in  favor  of  aerial  refueling,  but  elected  to  pursue  other  nuclear  research  at  the  center.  Funding  constraints  prevented  completion  of  the  project  for  several  more  years.  In  July  1963,  the  Air  Force  continued  construction  of  the  facility,  and  it  was  completed  in  April,  1965.  The  reactor  was  checked  out  over  a  two-­‐year  period  in  preparation  for  full  operational  support  of  Air  Force  research.  At  the  beginning  of  this  development  period,  the  facility  was  transferred  from  the  Air  Force  Flight  Dynamics  Laboratory  (under  Air  Force  Systems  Command)  to  the  Air  Force  Institute  of  Technology  (under  Air  University).  The  Secretary  of  the  Air  Force  approved  the  AF  Nuclear  Engineering  Center  as  an  educational  tool  for  nuclear  experiments  operating  under  AFIT.    

The  reactor  operated  for  five  years  before  it  was  approved  for  deactivation  in  1970  due  to  high  operating  costs.  On  June  12,  1970  the  center's  nuclear  reactor  was  operated  for  the  last  time.  At  1:30  p.m.  that  afternoon  the  fission  process  in  the  core  was  terminated  and  the  last  experiment  accomplished  at  the  facility  was  withdrawn  from  the  experiment  cavity.  It  marked  the  end  of  a  long  series  of  experimental  research  in  such  scientific  disciplines  as  activation  analysis,  radio-­‐chemistry,  neutron  radiography,  radiation  effects  studies,  isotope  productions,  neutron  diffractions  and  biomedicine.  

Mound  Laboratory:  Construction  of  the  Mound  Laboratory  site  near  Dayton  began  in  1946,  under  the  Manhattan  Engineering  District  of  the  War  Department.  Completion  of  

Page 29: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    28    

the  site,  and  the  start  up  of  production  of  polonium  initiators  began  under  the  Atomic  Energy  Commission.  The  site  became  operational  in  1949.  Mound  was  the  nation’s  first  post-­‐war  Atomic  Energy  Commission  site  to  be  constructed.  

In  a  nuclear  weapon,  polonium  provides  a  catalyst  for  the  reaction  that  detonates  the  plutonium.  The  plutonium  itself  will  not  initiate  the  chain  reaction  necessary  to  achieve  detonation.  It  requires  a  neutron  source  that  gives  off  neutrons  faster  than  the  plutonium.  In  earlier  nuclear  weapons,  the  initiator  was  a  beryllium  metal  and  polonium  mixture  where  the  polonium  gave  off  alpha  particles  that  irradiated  the  beryllium.  Irradiated  beryllium  gives  off  the  necessary  neutrons  to  initiate  the  chain  reaction  in  the  plutonium.  

As  indicated  in  War  Department  and  early  Atomic  Energy  Commission  (AEC)  documents,  Mound  was  established  to  consolidate  and  continue  the  polonium-­‐related  work.  Congress  envisioned  Mound  Laboratory  as  being  necessary  to  actively  service  nuclear  warheads  carried  by  a  new  fleet  of  nuclear  bombers.  Because  of  polonium’s  relative  short  half-­‐life,  the  AEC  realized  it  would  be  necessary  to  change  the  polonium  in  the  initiators  frequently.  Because  of  this,  the  AEC  began  exploring  alternate  fuels  for  the  initiator.  One  element  of  interest  was  actinium-­‐227.  In  response  to  this  interest,  the  AEC  charged  Mound  with  activities  related  to  the  development  and  research  in  actinium.    Work  at  Mound  evolved  and  grew  to  include  additional  radionuclides  (e.g.,  radium  and  actinium,  thorium,  plutonium),  research  in  and  the  manufacture  of  explosives  for  initiators  in  weapons,  development  of  radio  isotopic  thermoelectric  generators,  and  other  non-­‐nuclear  research  and  development  activities.  

Piketon,  Ohio  (Portsmouth)  Gaseous  Diffusion  Uranium  Enrichment  Plant:  The  Portsmouth  Gaseous  Diffusion  Plant  was  constructed  by  the  United  States  Atomic  Energy  Commission  to  provide  enriched  uranium  for  the  nation’s  nuclear  defense  system,  and  later  for  use  in  commercial  nuclear  power  reactors.  The  plant  enriched  uranium  from  1954  until  2001  through  a  process  called  gaseous  diffusion.  The  3,700-­‐acre  site  in  southern  Ohio  is  currently  owned  and  managed  by  the  U.S.  Department  of  Energy  (DoE).  This  plant  was  the  last  American  owned  Uranium  Enrichment  facility.  To  date,  no  American  company,  or  the  United  States  Government,  owns  an  operational  uranium  enrichment  facility.    

The  gaseous  diffusion  process  is  no  longer  operational,  and  the  DoE  is  conducting  an  extensive  environmental  cleanup  of  the  Piketon  site.  A  small  number  of  inactive  facilities  have  been  removed,  and  remaining  structures,  including  the  gaseous  diffusion  process  buildings  and  support  facilities,  are  being  considered  for  demolition  through  a  project  called  Decontamination  and  Decommissioning  (D&D).    

Page 30: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    29    

In  1992,  the  Energy  Policy  Act  of  1992  created  the  United  States  Enrichment  Corporation,  a  government  corporation,  out  of  the  U.S.  Department  of  Energy’s  Uranium  Enrichment  Enterprise  with  plans  to  privatize  the  government’s  uranium  enrichment  organization.  The  new  government  corporation  began  operations  in  July  1993.  

The  U.S.  government  sold  the  United  States  Enrichment  Corporation  in  an  initial  public  offering  in  1998,  and  USEC  Inc.,  a  private  investor-­‐owned  company,  began  trading  on  the  New  York  Stock  Exchange.  Proceeds  from  the  sale  provided  more  than  $3  billion  to  the  U.S.  Treasury.  

After  a  financial  restructuring  in  2014,  USEC  Inc.  re-­‐emerged  as  Centrus  Energy  Corp.  The  United  States  Enrichment  Corporation  remains  as  one  of  Centrus’  subsidiaries  and  continues  serving  customers.  

As  an  investor-­‐owned  company,  Centrus  continues  a  50-­‐year  tradition  of  reliability:  all  customer  shipments  have  been  made  on  time  and  within  specification.  

Since  2002,  Centrus  has  been  developing  and  demonstrating  a  highly  efficient  uranium  enrichment  gas  centrifuge  technology  called  the  American  Centrifuge.  Centrus  is  working  to  deploy  this  technology  in  its  American  Centrifuge  Plant,  an  advanced  uranium  enrichment  facility  in  Piketon,  Ohio,  which  will  produce  low  enriched  uranium,  a  key  component  for  the  fabrication  of  commercial  nuclear  fuel.  The  American  Centrifuge  Plant’s  capacity  will  be  equal  to  about  one-­‐fourth  of  the  fuel  requirements  of  the  commercial  power  reactors  in  the  United  States,  which  provide  approximately  20%  of  the  U.S.  electricity  supply  today.  As  the  only  domestic  enrichment  facility  using  U.S.  technology,  the  American  Centrifuge  Plant  will  be  critical  to  the  long-­‐term  energy  security  and  national  security  interests  of  the  United  States.  

The  American  Centrifuge  Plant  will  utilize  Centrus’  AC100  centrifuge  machine,  which  has  been  developed,  engineered  and  manufactured  in  the  United  States.  The  AC100  design  is  a  disciplined  evolution  of  classified  U.S.  centrifuge  technology  originally  developed  by  the  U.S.  Department  of  Energy  (DoE)  and  successfully  demonstrated  during  the  1980s.  The  DoE  invested  $3  billion  over  10  years  to  develop  the  centrifuge  technology,  built  approximately  1,500  machines,  and  accumulated  more  than  10  million  machine  hours  of  run  time.  

Centrus  has  improved  the  DoE  technology  through  use  of  advanced  materials,  updated  electronics  and  design  enhancements  based  on  highly  advanced  computer  modeling  capabilities.  Due  to  these  improvements,  the  AC100  can  produce  four  times  the  

Page 31: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    30    

output  per  machine  of  any  other  centrifuge  in  existence  today.  Centrus  has  operated  centrifuges  for  more  than  2.1  million  machine  hours  in  demonstration  cascades  since  August  2007,  demonstrating  that  the  machines  can  be  successfully  manufactured  and  installed  for  commercial  use  and  national  security  purposes.    

Congress  had  envisioned  the  Piketon,  Ohio  facility  to  provide  enriched  uranium  for  both  the  nuclear  powered  aircraft  and  the  nuclear  bombs  it  would  carry.  

The  Ohio  State  University’s  Nuclear  Engineering  program:  The  Nuclear  Engineering  (NE)  graduate  program  at  Ohio  State  is  designed  to  prepare  students  for  successful  careers  in  a  variety  of  specialty  areas  associated  with  the  application  of  radiation,  radioactive  materials,  and  nuclear  fission.  The  program  is  housed  within  the  Department  of  Mechanical  and  Aerospace  Engineering  and  located  in  Scott  Lab,  a  building  with  state-­‐of-­‐the-­‐art  teaching  and  research  facilities.  OSU’s  research  is  further  strengthened  by  the  presence  of  the  Ohio  State  University  Nuclear  Reactor  Lab  (OSU-­‐NRL).  

Congress  had  envisioned  that  OSU  would  have  a  hand  in  training  the  workforce  needed  to  support  the  infrastructure  necessary  to  build,  operate,  and  maintain  a  nuclear  bomber  program.  

Materion:  Materion  Brush  Resources  Inc.  of  the  USA,  wholly-­‐owned  subsidiary  of  Materion  Corporation,  is  the  only  known  fully-­‐integrated  beryllium  company  in  world  and  the  leading  producer  of  all  forms  of  beryllium  products.  Bertrandite  ore  from  the  company’s  mines  is  used  as  the  feedstock  to  produce  beryllium  hydroxide  at  the  company’s  Delta  plant  in  Utah.  The  hydroxide  is  then  used  to  produce  beryllium  metal  and  alloys  in  Elmore,  Ohio,  ceramic  grade  powder  at  Lorain,  Ohio,  and  strip  and  wire  products  at  Reading,  Pennsylvania.  The  Elmore  plant  produces  finished  goods  for  the  Alloy  Products  and  Beryllium  Products  businesses,  as  well  as  materials  for  further  processing  by  these  units  and  its  Technical  Materials  Inc.  subsidiary  

Beryllium  is  a  lightweight  metal  with  unique  properties  that  make  it  very  desirable  for  certain  nuclear  applications.  Being  one  of  the  lightest  known  structural  metals  has  contributed  to  beryllium  being  used  in  a  wide  variety  of  both  nuclear  and  non-­‐nuclear  applications.  Its  light  weight  makes  it  an  obvious  candidate  for  consideration  in  aerospace  components,  especially  if  certain  nuclear  characteristics  are  also  desired.    

 

It  is  not  the  relatively  low  density  of  beryllium,  however,  that  causes  it  to  be  of  interest  in  nuclear  reactor  applications.  It  is  the  combination  of  properties  exhibited  by  

Page 32: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    31    

beryllium  that  result  in  it  being  a  very  attractive  material  for  use  as  a  neutron  reflector.  Physically  small  nuclear  reactors,  such  as  test/research  reactors  and  those  used  in  space  applications,  typically  include  neutron  reflectors  to  utilize  more  efficiently  the  neutrons  that  are  produced  during  reactor  operation.    

In  addition  to  being  an  excellent  neutron  reflector  material,  beryllium  is  also  an  attractive  material  as  a  neutron  moderator,  i.e.,  it  effectively  “moderates”  or  reduces  the  energy  of  neutrons.  In  many  nuclear  reactor  designs,  it  is  desirable  not  only  to  retain  the  neutrons  within  the  reactor  core,  but  also  to  reduce  the  energy  of  the  neutrons  so  they  more  effectively  sustain  the  fission  process.  Beryllium  has  been  the  material  of  choice  for  the  neutron  reflectors  (and/or  for  some  neutron  moderation)  for  a  number  of  nuclear  reactors.    

The  unique  physical  properties  of  beryllium  make  it  ideal  for  x-­‐ray  and  nuclear  applications.  Beryllium  is  transparent  to  x-­‐rays,  so  it  is  used  as  window  material  for  x-­‐ray  tubes.  Beryllium  and  its  oxide,  beryllia,  are  also  used  as  a  blanket  around  the  core  of  nuclear  reactors  because  beryllium  slows  down  or  captures  neutrons.    

When  small  amounts  are  added  to  copper  to  produce  copper  beryllium  alloys,  the  results  include  high  heat  resistance,  improved  corrosion  resistance,  greater  hardness,  greater  insulating  properties,  and  better  casting  qualities.  Copper  beryllium  alloys  are  used  in  demanding  applications  such  as  aerospace,  oil  and  gas  drilling  equipment,  defense,  satellites,  and  consumer  electronics.  

Babcock  and  Wilcox:  The  Babcock  &  Wilcox  Company  Van  Buren  office  complex  in  Barberton,  Ohio  was  established  in  1955,  with  the  opening  of  the  first  phase  of  its  Van  Buren  office  building.    

The  company  is  a  major  employer  in  northeast  Ohio.  The  complex  houses  the  executive,  administrative,  legal,  engineering,  and  support  staff  for  the  B&W  Power  Generation  Group  which  designs,  builds  and  services  nuclear  reactors.  

The  entire  complex,  which  includes  nearly  400,000  sq.  feet  of  office  and  warehouse  space,  employs  approximately  1,100  salaried,  clerical  and  temporary  workers.  

The  complex  serves  as  the  engineering  and  project  management  headquarters  for  the  most  of  the  groups'  products  and  services.  

Page 33: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    32    

THE NUCLEAR POWERED AIRCRAFT EXPERIMENT In  the  near  future  NASA  Glenn  and  NASA  Plum  Brook  Station  could  potentially,  help  not  

just  Ohio’s  economy,  but  also  America’s  economy,  by  assisting  in  the  development  of  new  nuclear  technologies  that  will  improve  the  environment  and  aid  in  the  creation  of  thousands  of  good  paying  jobs.  This  is  made  possible  because  of  the  infrastructure  put  in  place  for  the  Aircraft  Nuclear  Propulsion  (ANP)  program  and  the  Nuclear  Energy  for  the  Propulsion  of  Aircraft  (NEPA)  project.  

One  specific  aim  for  NASA’s  Plum  Brook  Station’s  research  reactor  was  to  build  a  nuclear-­‐powered  airplane  (bomber)  capable  of  staying  aloft  for  months  at  a  time.  To  support  this  effort,  in  1956  NASA’s  predecessor,  the  National  Advisory  Committee  for  Aeronautics  (NACA),  began  to  design  and  build  the  largest  test  reactor  of  its  day  at  Plum  Brook  Station  in  Sandusky,  OH.  In  1958,  NACA  became  NASA,  the  National  Aeronautics  and  Space  Administration,  to  lead  the  American  space  effort.  By  the  time  the  reactor  was  completed  in  1961,  President  Kennedy  had  suspended  the  nuclear  aircraft  program  in  favor  of  inflight  refueling.  However,  in  its  place  he  advocated  an  even  bolder  plan  —  a  nuclear  powered  rocket.  The  Plum  Brook  Reactor  Facility  became  one  of  the  primary  nuclear  research  facilities  to  test  materials  for  this  rocket.  Working  with  contractors  from  Lockheed,  Westinghouse,  General  Dynamics,  and  General  Electric,  scientists  and  engineers  conducted  many  groundbreaking  nuclear  experiments.    

Despite  the  promise  of  their  work,  many  of  the  valuable  experiments  were  never  concluded.  In  1973,  just  over  a  decade  after  President  Kennedy  first  extolled  the  nuclear  rocket’s  importance,  the  project  shared  the  fate  of  the  nuclear  airplane.  In  the  post-­‐Apollo  era,  NASA  terminated  costly,  long-­‐term,  non-­‐reusable  projects  like  the  nuclear  rocket  in  favor  of  programs  that  appeared  to  have  greater  immediate  payoff,  such  as  the  Space  Shuttle.  Two  weeks  after  Apollo’s  last  mission,  Plum  Brook  was  ordered  to  shut  down  its  reactor.  The  entire  facility  was  

US  Air  Force’s  Bomber  to  be  used  for  Airborne  Testing  

Page 34: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    33    

maintained  in  a  standby  mode  (under  a  “possess  but  do  not  operate”  license)  for  nearly  a  quarter  century.  In  1998,  a  decommissioning  plan  was  formulated  to  dismantle  and  remove  the  reactors  and  to  make  the  land  suitable  once  again  for  farming.  $253  million  taxpayer  dollars  later,  the  area  now  has  achieved  Greenfield  status  with  the  EPA.    

   

Page 35: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    34    

NASA AND THE ATOMS FOR PEACE PROGRAM

In  1953,  President  Dwight  D.  Eisenhower  delivered  a  speech  called  “Atoms  for  Peace”  to  the  United  Nations  General  Assembly.  He  described  the  emergence  of  the  atomic  age  and  the  weapons  of  mass  destruction  that  were  piling  up  in  the  American  and  Soviet  nations.  Although  neither  side  was  aiming  for  global  destruction,  Eisenhower  wanted  to  “move  out  of  the  dark  chambers  of  horrors  into  the  light,  to  find  a  way  by  which  the  minds  of  men,  the  hopes  of  men,  the  souls  of  men  everywhere,  can  move  towards  peace  and  happiness  and  well-­‐being.”  One  way  Eisenhower  hoped  this  could  happen  was  by  transforming  the  atom  from  a  weapon  of  war  into  a  useful  tool  for  civilization.    

Many  believed  that  there  were  opportunities  for  peaceful  nuclear  applications.  These  included  hopeful  visions  of  atomic  powered  cities,  cars,  airplanes,  space  bases,  and  interplanetary,  and  possibly  even  interstellar,  spaceships.  Eisenhower  wanted  to  provide  scientists  and  engineers  with  “adequate  amounts  of  fissionable  material  with  which  to  test  and  develop  their  ideas.”  But  in  attempting  to  devise  ways  to  use  atomic  power  for  peaceful  purposes,  scientists  realized  how  little  they  knew  about  using  reactors  for  propulsion.  As  a  result,  the  United  States  began  constructing  nuclear  test  reactors  to  enable  scientists  to  conduct  research  on  the  atom.    

Page 36: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    35    

American  scientists  and  engineers  carried  out  the  “atoms  for  peace”  initiative  at  the  nearly  200  research  and  test  reactors  built  in  the  1950s  and  1960s.  Test  and  research  reactors  are  very  different  from  power  reactors,  which  are  built  to  produce  power  by  converting  the  heat  produced  from  nuclear  fission  into  electricity.  In  contrast,  research  and  test  reactors  are  used  for  scientific  and  technical  investigations.  Research  reactors  help  engineers  design  experiments  to  enable  them  to  build  better  reactors  with  desirable  characteristics.  Though  some  private  commercial  and  academic  institutions  built  some  research  and  test  reactors  (such  as  Battelle,  headquartered  in  Columbus,  Ohio),  the  federal  government  supported  the  large  majority  of  them.  One  of  the  most  powerful  research  reactors  in  the  world  (60MWth)  was  the  National  Aeronautics  and  Space  Administration  (NASA)  test  reactor,  located  at  Plum  Brook  Station  in  Sandusky,  Ohio.  From  1961  to  1973,  this  reactor  was  home  to  some  of  the  most  advanced  nuclear  experimentation  in  the  United  States.  The  facility  also  supported  a  second  test  reactor,  though  much  less  powerful  (110  KWth.).  

  In  addition  to  the  nuclear  reactors,  many  of  the  test  facilities  constructed  at  NASA  Plum  Brook  are  nuclear  capable,  meaning  that  the  facility  is  designed  to  withstand  exposure  to  radiation.    

NASA  Plum  Brook  Nuclear  Hot-­‐Cell  Laboratory  

Page 37: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    36    

Lordstown,  Ohio  GM  Manufacturing  Facility  

 

THE ECONOMIC IMPACT OF A LARGE MANUFACTURING FACILITY The  original  impetus  for  building  NASA  Plum  Brook  Station  (NPBS)  was  the  Aircraft  

Reactor  Experiment  that  started  after  WWII  (May,  28th  1946).  The  facility  was  envisioned  to  carry  out  the  experiments  necessary  to  engineer,  build,  and  put  a  fleet  of  nuclear  powered  bombers  in  the  skies  that  could  stay  aloft  for  months  on  end  without  refueling,  to  protect  America  from  an  attack  by  the  Soviet  Union.  

Plum  Brook  was  to  be  a  modern  test  facility  to  do  all  the  testing  that  Oak  Ridge  National  Laboratories  (ORNL),  Argonne  National  Laboratories,  Los  Alamos  National  Laboratories,  and  Idaho  National  Laboratories  could  not  do,  in  order  to  commercialize  the  production  of  the  envisioned  nuclear  powered  bombers.  ORNL  was,  and  still  is,  America’s  premier  nuclear  testing  facility.  

At  its  inception,  the  purpose  of  the  NPBS  facility  was  to  test  and  commercialize  nuclear  power  systems,  though  its  focus  has  changed  as  the  missions  of  NASA  and  the  Nuclear  Regulatory  Commission  (NRC)  have  changed.  While  initially,  the  NPBS  mission  was  of  a  terrestrial  nature  (a  nuclear  powered  bomber),  one  week  after  NPBS’s  reactor  went  critical  John  

Page 38: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    37    

F.  Kennedy  cancelled  the  nuclear  powered  bomber  program.  NPBS  eventually  transitioned  to  a  Nuclear  Space  Power  laboratory.  

NPBS  was  not  used  for  its  intended  purpose.  The  building  of  a  fleet  of  nuclear  powered  bombers  would  have  employed  thousands  of  persons  in  very  well-­‐paying  manufacturing  jobs.  A  production  facility  at  Plum  Brook  was  envisioned  that  would  have  been  larger  than  the  Lordstown  General  Motors  manufacturing  facility.  

 

“Why  was  Sandusky,  Ohio  chosen  to  develop  a  nuclear  powered  bomber  fleet?”  

One  of  the  most  prominent  reasons  for  selecting  Sandusky  was  that  the  U.S.  Congress  wanted  the  facility  to  be  close  to  a  workforce  experienced  in  the  type  of  manufacturing  and  assembly  that  could  produce  a  bomber  fleet.  This  requirement  ruled  out  most  of  our  other  national  laboratories,  such  as  ORNL,  at  the  time.  Sandusky  is  directly  in  the  middle  of  Ohio’s  automotive  mass  assembly  capitals  of  Cleveland  and  Toledo  and  just  across  Lake  Erie  from  Detroit,  Motor  City.  The  thought  was,  when  it  came  time  to  build  a  prototype  nuclear  bomber,  many  new  manufacturing  techniques  would  have  to  be  developed,  and  it  made  sense  to  develop  a  mass  assembly  plant  for  producing  nuclear  bombers  on  the  same  grounds  where  the  prototype  was  to  be  developed.  The  size  of  NASA  Plum  Brook  Station  (NPBS)  was  right  for  a  runway  for  the  takeoff  and  landing  of  bombers  needing  service  and  refueling.  Sandusky  ports  on  Lake  Erie  could  be  made  capable  of  accommodating  ships  that  would  deliver  materials  necessary  for  construction  of  the  bombers.  The  facility  had  access  to  a  modern  highway  system  and  was  close  to  the  Lake  Erie,  a  water  source  that  may  have  been  needed  for  cooling  future  test  reactors.  The  state  of  Ohio  also  had  its  own  aluminum  industry  at  the  time,  capable  of  supporting  such  a  plant.  

Couple  the  Plum  Brook  facility  with  the  rest  of  the  infrastructure  already  in  place  in  Ohio,  and   it   is   easy   to   see  why   the   federal   government   saw   Sandusky   as   the   ideal   location   for   the  development  and  commercialization  of  a  state  of  the  art  nuclear  bomber  production  facility.  Sub-­‐assemblies   and   fuel-­‐assemblies   built   and   developed   elsewhere   in   Ohio   would   feed   the  envisioned  Sandusky  production  facility,  with  many  of  those  facility’s  workers  trained  at  OSU’s  nuclear  reactor  facility.  A  massive  number  of  machine  and  tool  shops  and  other  manufacturers  would  have  been  engaged  in  the  manufacture  of  these  bombers.  

Page 39: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    38    

Boeing  747  Mass  Assembly  Plant  

 

REVIVING AN OLD IDEA WITH A NEW PURPOSE Think  of  the  potential  benefits  that  5,000  high  paying  assembly  jobs  would  have  meant  to  

Sandusky  and  to   the  State  of  Ohio.  Think  of  what   the  potential  20,000  direct  and   indirect   jobs  would   have   meant   to   the   State   of   Ohio   and   to   the   United   States.   [Job   numbers   have   been  estimated  from  a  Ford  Mass  Assembly  study]  A  nuclear  bomber  mass  assembly  plant  would  have  had  the  potential   for  massive  economic   impacts  across  all   industry  and  professional  sectors   in  Sandusky,  Ohio,  its  surrounding  townships,  and  for  Cleveland  to  the  east  and  Toledo  to  the  west,  and  for  the  State  of  Ohio  and  other  states.  

Ohio  has  a   large  nuclear  presence.     Its  nuclear  reactors   include  two  commercial  civilian  nuclear  power  plants,  one  in  Northeast  Ohio  and  the  other  in  Northwest  Ohio,  both  on  the  shore  of  Lake  Erie;  and  a  test  reactor  at  the  Ohio  State  University.    Additionally,  Ohio  is  home  to  many  technology  and  aerospace  industries  that  service  the  nuclear  sector.  

 

Page 40: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    39    

France’s  Mass  Assembly  reactor  core  containment  vessel  plant  

 

REVIVING AND RE-ENVISIONING A MASS ASSEMBLY PLANT All  of  the  positive  factors  of  an  envisioned  nuclear  oriented  mass  assembly  plant  continue  

to  be  applicable  today,  but  towards  a  different  end  than  a  nuclear  bomber.    During  the  aircraft  reactor  experiment,  the  Molten  Salt  Reactor  (MSR)  was  conceived  as  the  best  reactor  to  power  an  aircraft  because  it  could  be  made  very  small  and  did  not  utilize  water  as  a  coolant.  Alvin  Weinberg,  who  was  the  director  of  Oak  Ridge  National  Laboratory  at  that  time,  owned  the  patent  for  today’s  light  water  reactors,  the  kind  in  use  at  Davis-­‐Besse  and  Perry  nuclear  power  plants.  Dr.  Weinberg  became  a  strong  proponent  of  MSR  technology,  seeing  it  as  the  future  of  civilian  nuclear  power  for  producing  electricity.  

MSRs  produce  no   long-­‐lived  nuclear  waste,   cannot  melt   down,   are   inherently   safe,   and  can  most  easily  be  designed  for  construction  on  an  assembly  line.  Additionally,  these  MSRs  can  

Page 41: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    40    

be  designed  to  consume  current  nuclear  waste  stockpiles  as  a  fuel,  or  use  uranium,  plutonium,  or  thorium  as  a  fuel.  According  to  many  studies,  MSRs  will  produce  electricity  at  half  the  cost  of  coal  (a  very  conservative  estimate).    Because  of   their   low  production  costs,  and  because  MSRs  will  produce  no  carbon  emissions,   they  will  not  only   improve  our  environment,   they  will  give  us  a  leg-­‐up  on  manufacturing  competition  in  the  world  market  place  by  lowering  energy  costs.    This  will  help  to  bring  back  a  myriad  of  American  jobs  that  have  gone  overseas.    

MSRs   can   also   produce   energy   cheaply   enough   to   economically   transform  our  massive  reserves  of  coal  into  environmentally  friendly  synthetic  gasoline  and  synthetic  diesel  fuel.  MSR  technology  and  coal  can  potentially  make  America  energy  independent,  and  make  the  OPEC  (Oil  Producing  and  Exporting  Countries)  irrelevant  in  determining  the  price  we  pay  to  fill  our  tanks  at  the  gas  pump.  

Additionally,   Molten   Salt   Reactors   (MSRs)   can   produce   medical   isotopes   that   we  currently   import   to  America.  We  are   almost   entirely  dependent  upon   the   rest   of   the  world   to  create   and   provide   the   medical   radioisotope   Molybdenum-­‐99   (Mo-­‐99)   and   its   daughter  Technetium-­‐99m  that  are  used  in  over  320,000  medical  imaging  procedures  per  week  in  the  U.S.  alone.   These   imaging   procedures   allow   doctors   to   peer   inside   the   body   rather   than   perform  exploratory   operations,   saving   time   and   lives   while   reducing   healthcare   costs.   Domestic  production  would   alleviate  periodic   shortages   of  medical   isotopes   that   raise   costs,   impact   the  quality  of  care  and  treatment,  and  potentially  cost  lives.  A  domestic  medical  isotope  supply  can  be  produced  with  just  a  few  small  (desktop  size)  Molten  Salt  Research  Reactors.    

A   fleet  of  commercial  scale  utility  MSRs  could  also  produce  the  radioisotopes  Actinium-­‐225  and  Bismuth-­‐213  for  large-­‐scale  research  and  treatment  of  cancer  and  HIV  AIDS.    Currently,  there  are  not  enough  of  these  isotopes  in  the  world  for  any  large-­‐scale  research  or  clinical  trials.  

America   is   helping   China   develop   and   commercialize   our   MSR   technology.   This   is   a  proven   technology,   A   molten   salt   reactor   was   built   and   successfully   operated   at   Oak   Ridge  National  Laboratory,  without  incident,  for  more  than  four  years  in  the  late  1960s  –  early  1970s.  America   just   never   commercialized   the   technology.   This   is   the   very   same   technology   (MSR  technology)  that  was  envisioned  to  be  commercialized  and  mass-­‐produced  in  Ohio  at  NASA  Plum  Brook  for  the  nuclear  bomber  fleet.  

Many  organizations  and  American  startup  companies  such  as  Flibe  Energy,  TransAtomics,  and  ThorCon    are  encouraging  American  legislators  to  jump  back  into  the  Molten  Salt  Reactor  race  as  China,  Russia,  and  India  have  stepped  up  their  efforts  to  commercialize  this  American-­‐developed  technology.  With  support  from  Ohio  legislators  at  the  state  and  federal  level,  Ohio  could  be,  and  arguably  should  be,  the  “heart  of  it  all”  for  a  MSR  program  revival.  

Page 42: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    41    

 

In  the  short  term,  within  5  years,  NASA  Plum  Brook  could  be  home  to  a  medical  isotope  production,  distribution,  and  processing  facility  that  could  supply  all  of  the  Western  Hemisphere  with  Molybdenum-­‐99  and  Technetium-­‐99m.  

A  more  long-­‐term  use  for  NASA  Plum  Brook  would  be  as  a  replacement  site  for  the  Davis-­‐Besse  Nuclear  Power  Station.  If  Molten  Salt  Reactor  (MSR)  research  and  development  can  move  forward  in  the  form  of  medical  isotope  reactors,  then  producing  full  size  pilot  power  generating  reactors,  built  onsite,  could  be  part  of  a  larger  MSR  commercialization  program.  

A  very  positive  use,   in  the  long  term  (within  15  years),  would  be  the  NASA  Plum  Brook  Station   (NPBS)   facility   serving  as   a   testing  and   research   facility   for  development  of   an  on-­‐site  mass  assembly  plant  for  production  of  small  modular  Molten  Salt  Reactors  that  could  be  shipped  around  the  United  States  by  truck,  rail,  or  ship,  and  potentially  to  other  countries.  Such  a  mass  assembly  plant  would   still   be   on   the  order   and   scale   of   a   Lordstown  assembly  plant,   creating  5,000  direct   jobs   in  northern  Ohio,   and   indirectly   employing  20,000.   [Job  numbers  have  been  estimated  from  a  Ford  Mass  Assembly  study].  

During  2015,  Egeneration  Economic  Development  Corporation,  based  in  Cleveland,  Ohio  will  be  promoting  NPBS  and  Sandusky  as  the  best  place  for  the  U.S.  government  to  partner  with  private  industry  to  base  a  Molten  Salt  Reactor  commercialization  program.  We  will  educate  our  state   and   federal   legislators   to   step   forward   and   openly   embrace   the   development   of   MSR  technology  in  Ohio.      

   

Page 43: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    42    

 

WHY PRODUCE MOLTEN SALT REACTORS IN OHIO?  

At   the   2005   general   election   in   Ohio,   voters   approved   an   amendment   to   the   Ohio  Constitution   to   authorize   general   obligation   bonds   to   fund   research   and   development   of   new  technologies.  This  bond  program  became  part  of  the  Ohio  Third  Frontier  economic  development  program  to  create  and  preserve  jobs.  

The   purpose   of   the   Ohio   Third   Frontier   program   is   to   attract   and   promote   private  technology  investment  and,  consequently,  to  create  jobs  and  enhance  educational  opportunities.  The   Ohio   Third   Frontier   program   seeks   to   promote   investments   to   support   technology   areas  that  represent  economic  growth  for  Ohio,  particularly  in  energy,  biomedical,  advanced  materials,  electronics  and  advanced  propulsion.  The  proceeds  from  bonds  fund  research  and  development  efforts  by  Ohio  businesses,  in  cooperation  with  universities  and  research  institutions,  to  create  and  bring  to  market  new  products  and  services.  

JobsOhio   is   a   private,   non-­‐profit   corporation   designed   to   drive   job   creation   and   new  capital   investment   in   Ohio   through   business   attraction,   retention,   and   expansion   efforts.  JobsOhio  works  closely  with  the  technology  driven  Third  Frontier  Program.  The  Third  Frontier  program  is  a  major  component  of  the  Office  of  Technology  Investments  and  is  an  internationally  

Page 44: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    43    

recognized  technology-­‐based  economic  development  initiative  that  is  successfully  changing  the  trajectory  of  Ohio's  economy.    

The   $2.1   billion   initiative   supports   existing   industries   and   new   entrepreneurs   that   are  transforming   the  State  of  Ohio  with  globally  competitive  products  and   fostering   the   formation  and  attraction  of  new  companies   in  emerging   industry  sectors.  Ohio’s  Third  Frontier  program,  with  the  help  of  JobsOhio,  provides  funding  to  Ohio’s  technology-­‐based  companies,  universities,  nonprofit   research   institutions,   and   other   organizations   to   create   new   technology-­‐based  products,  companies,  industries,  and  jobs.  

Energy   development   is   nothing   new   to   Ohio,   and   this   state   has   opened   its   arms   and  embraced  a  multitude  of  energy  industries.  

Ohio  is  one  of  the  most  energy  abundant  states  in  the  country,  rich  with  a  diverse  array  of  energy   resources   ranging   from   fossil   fuels   to   nuclear   based   civilian   power   plants.   Ohio’s  economy  also  ranks  among  the  most  energy-­‐intensive  in  the  nation,  home  to  energy-­‐dependent  industries  ranging  from  agriculture  to  manufacturing.    

At   the   turn  of   the  20th   century,  Ohio  was   the   largest  oil  producer   in   the  United  States.  With  the  Appalachian  Basin,  which  crosses  the  eastern  part  of  Ohio,  and  with  recent  oil  and  gas  formation  discoveries,   the  state  may  return   to  being  a   large  oil   and  natural  gas  producer.  The  Basin’s   Marcellus   shale   formation   contains   shale   gas,   and   the   Utica   shale   formation   contains  both  tight  oil  locked  in  shale,  and  gas.  

In   addition   to   oil   and   natural   gas   production,   Ohio   has   long   been   a   perennial   coal  producer,  as  well.  Ohio  is  currently  the  10th  largest  coal  producing  state  in  the  nation.  

Because  of  Ohio’s  energy  resources,  the  state  has  always  supported  and  benefited  from  a  heavily   industrialized  economy.  Today,  Ohio’s  energy  consumption  is  among  the  highest   in  the  nation.   The   industrial   sector   dominates   Ohio’s   energy   consumption   largely   due   to   several  energy-­‐intensive  industries,  including  chemicals,  glass,  metal  casting,  and  steel.  

Ohio’s   energy   prices   have   been   steadily   rising   in   comparison   to   its   foreign   economic  competitors   in   the  same   industrial   sectors,   such  as,  China,   India,  and  South  Korea.  This  rise   in  energy   costs   has   primarily   been   caused   by   federal   Environmental   Protection   Agency   (EPA)  regulations  and  the  early  closure  of  many  coal-­‐fired  plants  that  supply  power  to  Ohio’s  economy.  As   energy   costs   rise,   products   produced   in   Ohio   become   less   competitive   in   the   world  marketplace,   and   that   results   in   less   revenue,   less   business,   fewer   jobs,   and   ultimately   a  lackluster  Ohio  economy.  Additionally,  Renewable  Portfolio  Standards  (RPS)  put  in  place  by  the  

Page 45: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    44    

State  of  Ohio,  mandate  purchase  of  electricity  from  high-­‐cost  clean  energy  sources.    These  costs,  combined  with  federal  regulations,  create  a  trying  atmosphere  of  competition  for  manufacturers.  

Molten   Salt   Reactors   are   able   to   produce   electricity   at   about   half   the   cost   of   coal,   and  supply  cheap  heat  to  industry,  which  should  lower  energy  costs  for  Ohio  utilities  and  industries,  thus  enhancing  their  competitiveness  in  the  world  marketplace.  

eGeneration   Economic   Development   Corporation   is   promoting   and   pursuing   the  development   of   a   Department   of   Energy-­‐envisioned   Clean   Energy   Parks   initiative   for   the  development  of  Generation  IV  Molten  Salt  Reactors.  NASA  Plum  Brook  Station’s  6,400  acres  has  high-­‐tension   lines   running   across   its   property   (Davis-­‐Besse   Nuclear   Power   Plant’s   primary  transmission  lines),  making  it  a  very  promising  location  for  a  joint  NASA/Department  of  Energy  –  Clean  Energy  Park  initiative.  

 

Ohio  knows  Mass  Assembly!  

 

   

Page 46: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    45    

NASA PLUM BROOK STATION, PRODUCING MEDICAL ISOTOPES, AND A RUNWAY To  boost  NASA  Plum  Brook's  opportunity  to  lure  business  to  the  region  and  create  more  

jobs,  civic  leaders  in  the  facility's  home  base  of  Erie  County,  and  in  Cleveland,  where  NASA  Glenn  is  located,  have  in  the  past,  tried  without  success  to  raise  funds  to  build  a  9,000-­‐foot  runway  at  Plum  Brook  Station.  

A   long   runway   at   Plum   Brook   Station,   capable   of   accommodating   large   transport   jets,  would   make   it   much   easier   to   transport   large,   bulky   spacecraft   components   and   sensitive  satellites  for  testing.  

Currently,  such  items  are  flown  into  airports  in  Cleveland  or  Mansfield  and  trucked  50  to  60  miles   to   the  NASA   facility,   requiring   police   escorts   and   special   traffic   arrangements.   Some  potential  Plum  Brook  Station  customers  opt   to   test  bits  and  pieces  of   their   space  hardware  at  smaller  government  or  private  facilities  individually,  rather  than  transport  the  full-­‐sized  article  to  Ohio  for  testing.  This  piecemeal  testing  is  a  costlier  process  and  does  not  accurately  simulate  real  world  conditions.      

United   Launch   Alliance,   a   Denver-­‐based   commercial   space   launch   company,   tested   the  nosecone  of  its  Atlas  V  rocket  in  Plum  Brook's  Space  Power  Facility’s  vacuum  chamber  in  2002  after  flying  it  into  Cleveland  Hopkins  International  Airport  aboard  a  giant  Russian  cargo  jet.  

"Certainly   having   a   runway   out   there  would   have  made   that   a   lot   easier,"   said   United  Launch  vice  president  George  Sowers.  

Page 47: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    46    

Further,   some  satellites   are   too   sensitive   to  be   transported  by   road  and  must  be   flown  directly  to  their  test  site.    Due  to  the  lack  of  a  runway  at  Plum  Brook,  such  satellites  cannot  be  tested  there  at  present.  

NASA's  budget  for  Plum  Brook  doesn't  include  the  estimated  $40  million  the  Plum  Brook  runway  would  cost,  nor  the  additional  $40  million  or  more  for  roads  and  other  infrastructure  to  support   it.    However,  production  of  medical   isotopes  by  Molten  Salt  Research  Reactors  on-­‐site  will  produce  a  revenue  stream,  which  would  pay  for  the  runway  and  finance  a  base  for  aircraft  to  distribute  medical  isotopes  continent-­‐wide  in  a  timely  manner.    

 

A RUNWAY MAY LEAD TO A BUSINESS PARK

Economic  development  experts  and  NASA  officials  believe  the  runway,  in  turn,  would  be  a  catalyst  for  development  of  a  1,200-­‐acre  high-­‐tech  business  park  on  Plum  Brook  land  that  NASA  is  willing  to  lease.  The  site  has  railroad  and  highway  access,  and  ample  cheap  water,  electricity  and  sewer  service.  

Erie  County  Commissioner,  Patrick  Shenigo,  foresees  a  cluster  of  spacecraft  and  satellite  company  tenants  who  would  want  to  take  advantage  of  the  proximity  to  Plum  Brook's  facilities  for  quick-­‐turnaround  tests.  

Such  business  clusters  already  exist  near  NASA  centers  in  Florida,  Alabama,  and  Texas.  

Currently,   about   25   NASA   employees   work   at   Plum   Brook.   If   a   runway   brings   more  testing   work   to   the   center   as   expected,   and   its   NASA   workforce   rises   to   100,   that   should  generate  475  new  commercial  jobs  in  the  area  and  an  economic  boost  of  $45  million,  according  to  a  2009  study  cited  by  Commissioner  Shenigo  in  the  Sandusky  Register.  

If   only   two   desktop   sized   Molten   Salt   Research   Reactors   were   to   be   built   onsite   (six  would   be   needed   for   reliability   and   a   competitive   business   and   research   model),   they   could  produce   enough  medical   isotopes   to   supply   all   of  America’s  Molybdenum-­‐99  medical   imaging  isotope   needs.   Currently,   America   depends   upon   other   countries   for   a   vast   majority   of   its  Molybdenum-­‐  99.  

A  medical  isotope  production  facility  at  NASA  Plum  Brook  would  generate  a  large  amount  of  economic  activity  and  an  income  stream  more  than  sufficient  to  pay  for  the  construction  and  operation   of   a   runway   necessary   for   the   facility’s   operations   in   distributing  medical   isotopes.  Isotopes  produced  at  the  facility  would  be  placed  in  medical  isotope  generators  and  then  flown  

Page 48: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    47    

to   cities   all   over   the   continent   for   delivery   to   local   hospitals   and   nuclear   pharmacies.   Such   a  medical   isotope   facility   would   potentially   create   5,000   to   8,000   direct   and   indirect   jobs,  including  logistic  professionals.    

(Chart  used  with  permission  of  eGeneration  Foundation)  

Congress   and   the   Nuclear   Regulatory   Commission   (NRC)   have   suspended   rules   that  would   otherwise   prohibit   a   test   or   research   reactor   from  making   a   profit   by   allowing   such   a  reactor  to  produce  medical  isotopes  (Molybdenum-­‐99),  in  part  because  the  federal  government  has  recognized  an  impending  Molybdenum-­‐99  shortage  crisis.  

 

The  two  major  reactors  supplying  America  with  radioisotopes  are  Canada’s  Chalk  River  Reactor  (51  years  old)  and  the  Netherland’s  Petten  Reactor  (47  years  old).  Relative  to  the  human  lifespan   in   reactor   years   Chalk   River   is   equivalent   to   102   years   old   and   the   Petten   reactor   is  equivalent   to  being  94  years  old.  The  Chalk  River  Reactor  was  slated   for  end  of   life  shutdown  operations   in   July   of   2015,   but   a   replacement   for   the  world  medical   isotope  market   failed   to  materialize,  and  so  its  end  of  life  was  extended  to  2018,  when  in  relative  terms  the  reactor  will  be   108   years   old.   A   Plum  Brook  Medical   Isotope  Production   facility   could   be   the   answer   to   a  worldwide  nuclear  medicine  and  molecular  imaging  dilemma.  

NASA  Plum  Brook  Economic  Development  Corporation  advocates   for  an  NRC  permit   to  allow  up  to  six  research  size  Molten  Salt  Reactors  to  be  constructed  on  site  at  NASA  Plum  Brook  

Page 49: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    48    

Station  for  the  purposes  of  research  and  materials  testing,  and  for  the  simultaneous  production  of  medical  isotopes.  

One  group  of   three   reactors  would  produce  Molybdenum-­‐99.    These   reactors  would  be  heavily  outfitted  with  instrumentation  to  monitor  their  internal  operational  characteristics.    This  will   serve   as   an   information   gathering   and   development   tool   depicting   the   behavior   of   these  reactors  in  normal  operation  with  a  high  fidelity,  which  will  provide  data  for  the  design  of  future  prototype  commercial  Molten  Salt  Reactors.      

In  addition  to  the  three  MSRs  for  Molybdenum-­‐99  production,  three  additional  reactors  will  be  built.    One  will  be  built  to  study  Uranium  Molten  Salt  fuel,  a  second  reactor  will  be  built  to  study  Thorium  Molten  Salt  fuel,  and  a  third  will  be  built  to  study  the  use  of  traditional  nuclear  waste  as  a  fuel  to  produce  energy.  Concurrent  with  testing  and  research  being  conducted,  all  of  America’s   Molybdenum-­‐99   needs   could   be  met   by   such   a   NASA   Plum   Brook  medical   isotope  facility.     There   will   be   a   $5.5   billion   and   growing   medical   isotope   market   by   2017   that   will  provide  a  revenue  stream  for  the  project.  

 

 

Page 50: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    49    

 

Artist  rendering  of  a  NASA  Plum  Brook  Airfield  and  Medical  Isotope  facility  

Page 51: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    50    

PERRY II NUCLEAR POWER PLANT, A TEST FACILITY IN THE MAKING

 

The  Clean  Energy  Park  concept  builds  on  a  DoE  initiative  to  transform  DoE  sites  formerly  used   to   support   national   defense   missions   into   energy   parks   (research   and   development  facilities  focused  on  future  clean  energy  production).  Such  initiatives  will  allow  reuse  of  existing  assets,  aid  in  the  clean  up  of  these  sites,  and  support  sustainable  economic  development  for  their  respective  regions.    

Northern   Ohio,   where   NASA   Plum   Brook   Station   is   located,   is   the   location   of   a   major  portion  of  Ohio’s  manufacturing  base.    The  Plum  Brook  site,  in  fact,  sits  directly  in  the  middle  of  Northern  Ohio,   and   energy   production   facilities,   if   created   there,  would   be   easily   shared  with  high-­‐energy  use  manufacturing  centers  to  the  west  (Toledo,  OH)  and  to  the  east  (Cleveland,  OH).  

 

Notice  the  second  cooling  tower  is  not  active.  This  is  due  to  the  second    power  plant  at  the  Perry  facility  never  being  completed.  There  is  a  lot  of  infrastructure  still  in  place  to  support  a  second  nuclear  reactor.  

Page 52: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    51    

Molten   Salt   Reactor   (MSR)   development   at   Plum   Brook   will   initially   focus   on   the  environmental  analysis  that  will  be  required  to  support  deployment  of  Generation  IV  Molten  Salt  Reactors,   as   well   as   development   of   licensing   documents   for   submittal   to   the   U.S.   Nuclear  Regulatory  Commission  (NRC).    

NASA   Plum   Brook   Economic   Development   Corporation   believes   that   a   Generation   IV  Molten  Salt  Reactor,  providing  very  cheap  carbon-­‐free  electricity  to  millions  of  homes,  creates  a  compelling  Clean  Energy  Park  narrative.  MSRs  have  the  potential  to  significantly  reduce  energy  costs  for  both  industrial  and  private  consumers.      

At  the  FirstEnergy  Perry  Nuclear  Power  Plant  in  northeast  Ohio,  Perry  I  is  one  of  the  most  powerful  reactors  ever  built.    The  utility  owner  at  the  time,  the  Cleveland  Electric  Illuminating  Company,  had  plans  to  build  a  second  reactor  on  site,  but  Perry  II  was  only  partially  completed.  With   Perry’s   infrastructure   and   its   current   connections   to   the   electrical   grid,   the   Perry   II   site  would  be  a  very  attractive  placement  for  a  ¼  to  half  scale  pilot  MSR  producing  electricity  for  the  grid.  

 

 

 

Page 53: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    52    

PIKETON URANIUM ENRICHMENT FACILITY

 

Piketon,  Ohio  envisioned  Duke  Energy  and  Areva  -­‐  Clean  Energy  Park  

Piketon,   Ohio   is   very   close   to   Ohio’s   coal   country.     It   is   within   the   Marcellus   shale  formation,  is  in  close  proximity  to  many  old  and  non-­‐producing  oil  wells,  and  is  close  to  the  Utica  shale  oil  formation.  The  Piketon  Uranium  enrichment  facility,  presently  in  shutdown  status,  is  a  3,777  acre  complex  in  Southern  Ohio,  now  operated  by  the  Department  of  Energy.  It  is  the  last  American  owned  facility  capable  of  producing  commercial  quantities  of  Low  Enriched  Uranium  for  use  in  civilian  reactors.  

This  facility  has  a  long  history  of  working  with  nuclear  materials,  and  a  Duke  Energy-­‐led  alliance   is   already   working   to   establish   a   Clean   Energy   Park   and   build   an   Areva-­‐designed  Generation  III+  reactor  there.    It  makes  sense  to  base  a  high-­‐temperature  full-­‐scale  pilot  Molten  Salt  Reactor  at  this  location,  as  well.    

One   of   the   most   compelling   business   cases   for   the   MSR   is   its   ability   to   economically  transform,  at  very  low  cost,  trash,  sewage,  and  fossil   fuel  sources,  such  as  coal,   into  ultra  clean  synthetic  gasoline,  diesel  fuel,  and  other  valuable  chemicals  used  in  manufacturing.  

There  will  be  a  need  for  quite  a  bit  of  research  and  development  into  harnessing  the  heat  and  electricity  produced  by  an  MSR  to  convert  coal  into  liquid  transportation  fuels.  The  Piketon  facility  could  provide  the  perfect  testing  grounds  for  a  full-­‐scale  pilot  reactor  with  applications  in  the   coal   and   oil   industry.   Excess   carbon  dioxide,   easily   captured   from   the   production   of   coal-­‐derived  synthetic  fuels,  can  be  pumped  by  pipeline  to  many  of  Ohio’s  thousands  of  “played  out”  

Page 54: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    53    

oil  wells  where  carbon  dioxide  is  needed  to  enable  Enhanced  Oil  Recovery  (EOR).  Additionally,  the  electricity  produced  by  a   full   size  pilot  Molten  Salt  Reactor  plant  could  be  used   to  convert  natural  gas  produced  from  the  Marcellus  shale  formation  into  synthetic  gasoline  or  methanol.    

  If  the  federal  government  allows  the  export  of  America’s  natural  gas  to  other  countries,  one  way  to  ensure  maintaining  an  attractive  price  for  natural  gas  in  the  face  of  this  increased  demand  is  to  use  MSR  technology  to  produce  Synthetic  Natural  Gas  from  coal,  trash,  and  sewage.  

There   is   a   natural   synergy   in   many   respects   for   the   Piketon,   Ohio   facility   and   the  production  of  energy  and   fuel,  and   the   facility   is  already  owned  by   the  Department  of  Energy,  which  will  facilitate  the  elimination  of  much  red  tape.  

 

 

Proposed  Areva  EPR  Reactor  at  Piketon,  Ohio’s  Gaseous  Diffusion  Facility  

Page 55: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    54    

FINANCING MOLTEN SALT REACTOR DEVELOPMENT

 

Molten   Salt   Reactors   (MSRs)   can   be   adapted   to   consume   traditional   nuclear   waste.    Producing   electricity   from   nuclear  waste   provides   a   practical   use   for  waste  material,   a  much  better  solution  than  storing  it  for  hundreds  of  thousands  of  years.  It  will  no  longer  be  waste.    It  will  be  fuel.    The  federal  Nuclear  Waste  Fund  has  in  excess  of  $28  billion  and  earns  $750  million  in   interest   every   year.   Legislators   could   properly   authorize   the   use   of   these   funds   to   develop  commercial  MSR  technology  in  Ohio  with  the  intent  to  reduce  our  nuclear  waste  stockpiles  and  produce  energy.  

Small   commercial   MSRs,   envisioned   to   be   constructed   on   an   assembly   line   at   a   mass  assembly  plant  at   the  NASA  Plum  Brook  site,  would   fulfill  all  of   the  site  criteria   for  a  business  wanting  build  an  MSR  mass  assembly  plant.  Such  a  plant  on  the  grounds  of  NASA  Plum  Brook  would  directly  employ  5,000  workers  of  various  skill  sets.    

Additionally,  there  are  technologies  available  to  transform  oil  shale  (kerogen),  coal,  other  heavy   oil   deposits,   and   Municipal   Solid   Waste   (MSW)   into   synthetic   oil   and   synthetic   liquid  transportation  fuels.  These  technologies  are  currently  not  economically  competitive  (viable)  due  to  the  cost  of  the  massive  amounts  of  energy  required  to  transform  these  feedstocks,  as  well  as  environmental   concerns:   at   present,   the   energy   to   power   the   processes   would   have   to   be  provided  by  burning  coal  or  natural  gas.  MSRs  can  provide   the  cheap  clean  energy  needed   for  the  economic  development  of  these  fuel  sources.    

 

Dry  Storage  Above  Ground  Nuclear  Waste  Casks  

Nuclear  waste  can  be  used  as  a  fuel  for  a  Molten  Salt  Reactor  

Page 56: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    55    

RARE EARTH ELEMENTS

There  are  17  rare  earth  elements  (REEs),  15  within  the  chemical  group  called  lanthanides,  plus  yttrium  and  scandium.  The  lanthanides  consist  of  the  following:  lanthanum,  cerium,  praseodymium,  neodymium,  promethium,  samarium,  europium,  gadolinium,  terbium,  dysprosium,  holmium,  erbium,  thulium,  ytterbium,  and  lutetium.  Rare  earths  are  moderately  abundant  in  the  earth’s  crust,  some  even  more  abundant  than  copper,  lead,  gold,  and  platinum.  While  some  are  more  abundant  than  many  other  minerals,  most  REEs  are  not  concentrated  enough  to  make  them  easily  exploitable  economically.    

The  United  States  was  once  self-­‐reliant  in  domestically  produced  REEs,  but  over  the  past  15  years  has  become  100%  reliant  on  imports,  primarily  from  China,  due  to  lower-­‐cost  operations.  The  lanthanides  are  often  broken  into  two  groups:  light  rare  earth  elements  (LREEs)—lanthanum  through  europium  (atomic  numbers  57-­‐63)  and  the  heavier  rare  earth  elements  (HREEs)—gadolinium  through  lutetium  (atomic  numbers  64-­‐71).  Yttrium  is  typically  classified  as  a  heavy  element.    

There  is  a  close  relationship  between  thorium  (a  potential  fuel  for  Molten  Salt  Reactors)  and  rare  earths;  they  often  come  together  in  nature.  In  fact,  monazite  was  first  mined  to  produce  Thorium  rather  than  rare  earths.  In  the  19th  century,  Thorium  was  used  to  make  gas  mantles.  Later,  with  the  development  of  technology  that  required  rare  earths  to  function,  monazite  started  to  be  mined  for  elements  other  than  Thorium.    

During  monazite  or  other  type  mining  Thorium  separates  easily,  through  gravity  and  at  almost  no  cost,  such  that  Thorium  can  be  said  to  be  produced  practically  free  of  charge.    

The  United  States  was  the  leading  supplier  of  monazite,  which  was  the  main  source  of  rare  earths  in  the  first  decades  of  the  rare  earths  industry  (the  post  WW2  period).  Brazil  was  also  an  important  supplier,  and  China,  ironically,  tried  to  become  a  world  supplier  but  failed  to  meet  Western  standards  and  “so  they  weren’t  able  to  pursue  it.”  However,  in  the  1980’s,  international  classification  changes  concerning  Thorium  changed  the  way  the  market  saw  monazite.    

The  International  Atomic  Energy  Association  (IAEA)  placed  monazite  in  the  category  of  source  material.  After  representing  the  major  source  for  the  world’s  rare  earth  supply,  nobody  in  America  wanted  to  deal  with  monazite  any  longer,  wondering  what  to  do  with  the  residual  Thorium  (which  now  had  to  be  treated  like  a  low  level  nuclear  waste,  an  expensive  process).  China  stepped  in  and  took  advantage,  deciding  that  it  would  dominate  the  rare  earth  industry,  which  was  understood  to  be  critically  important  to  the  development  of  aerospace  and  the  

Page 57: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    56    

electronics  industry.  Western  companies  that  had  mined  monazite  until  that  point,  abandon  the  industry  through  competition.    

Under  pressure  from  environmental  agencies  and  groups,  mines  were  shut  down  simply  for  having  Thorium  discharges  in  their  tailings.  Such  is  the  context  in  which  companies  like  Molycorp  in  the  USA  or  Lynas  Corp  in  Australia  have  put  the  West  back  into  the  contest  for  rare  earth  production;  and  what  a  costly  contest  it  is  proving  to  be,  especially  because  neither  one  of  these  two  companies  has  been  able  to  produce  even  moderate  quantities  of  the  high-­‐demand  Heavy  Rare  Earth  Elements  (HREE)  .  The  fact  that  REEs  are  found  mixed  with  Thorium  has  hampered  the  growth  of  REE  mining  in  USA  and  Europe  as  REE  miners  seek  to  avoid  ores  that  are  Thorium  rich  to  make  the  process  easier.  In  the  meanwhile,  China  has  grown  a  large  REE  industry  and  is  a  virtual  monopoly  dominating  the  international  market  today.  

Seventy  percent  of  China’s  rare  earths  come  from  the  by-­‐product  production  of  an  iron  ore  mine.  The  Chinese  focuses  on  the  high  value  elements,  which  suggests  that  if  the  West  is  really  going  to  compete,  it  will  have  to  refocus  its  efforts  on  developing  low-­‐cost  byproduct  resources.  In  many  cases  these  have  high  Thorium  content  and,  “In  the  United  States  alone,  Thorium-­‐bearing  rare  earth  phosphates  and  other  Thorium-­‐bearing  mineralization  could  easily  meet  50%  percent  of  world  demand  for  rare  earths.”    

Currently,  the  dominant  end  uses  for  rare  earth  elements  in  the  United  States  are  for  automobile  catalysts  and  petroleum  refining  catalysts,  use  in  phosphors  in  color  television  and  flat  panel  displays  (cell  phones,  portable  DVDs,  and  laptops),  permanent  magnets  and  rechargeable  batteries  for  hybrid  and  electric  vehicles,  and  numerous  medical  devices.  There  are  important  defense  applications  such  as  jet  fighter  engines,  missile  guidance  systems,  antimissile  defense,  and  satellite  and  communication  systems.  Permanent  magnets  containing  neodymium,  gadolinium,  dysprosium,  and  terbium  (NdFeB  magnets)  are  used  in  numerous  electrical  and  electronic  components  and  new-­‐generation  generators  for  wind  turbines.    

If  you  ever  wondered  why  so  many  electronics  are  produced  in  China  and  not  in  the  United  Sates,  a  strong  factor  in  determining  China’s  dominance  in  the  electronic  industry  is  due  to  America’s  treatment  of  the  element  Thorium.  

  If  there  were  a  market  for  Thorium  as  a  fuel  for  MSRs,  it  is  very  likely  that  America  would  once  again  re-­‐engage  China  in  competition  for  the  electronics  market.  This  could  mean  the  return  of  many  jobs  in  the  high  tech  sector  in  the  United  States.    

A  NASA  Plum  Brook  Isotope  and  Power  Generation  facility  featuring  Thorium  fueled  Molten  Salt  Reactors  could  lead  a  revival  of  America’s  economy.  

Page 58: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    57    

CONCLUSIONS

v Advocating  for  NASA  Plum  Brook  Station  to  host  very  small  research  Molten  Salt  Reactors  for   the   purpose   of   Molybdenum-­‐99   production,   while   researching   MSR   engineering  issues,  makes  sense  from  a  security  standpoint,  not  only  for  America,  but  for  the  world.  

v Why  NASA  Plum  Brook   in  particular,   and  not  another   secure  site?  Many  of  NASA’s   test  facilities   can   be   utilized   in   commercializing  MSR   technology.   A  medical   isotope   facility  will   need   a   runway,  which   NASA   Plum   Brook’s   immense   size  will   accommodate.   Plum  Brook’s  location  puts  it  in  helicopter  range  to  service  Ohio’s  largest  hospitals  and  largest  consumers  of  medical  isotopes.  

v A  medical  isotope  facility  at  NASA  Plum  Brook  could  benefit  research  efforts  by  The  Ohio  State  University’s  nuclear  pharmacology  department.  

v Medical  Isotopes  (Molybdenum-­‐99)  produced  from  such  reactors  need  to  be  distributed  across   North,   Central,   and   South   America.   This   business   model   can   support   the  construction   of   an   $80   million   runway   and   the   infrastructure   required   for   such  distribution.  

v A   runway   at   NASA   Plum   Brook   means   access   to   more   business   for   the   NASA   testing  facilities.  

v The   NASA   Plum   Brook   grounds   are   large   enough   to   incorporate   a   business   park   that  would  support  the  mass  assembly  of  Molten  Salt  Reactors.  

v A  power  generation  facility  utilizing  Gen  IV  Molten  Salt  Reactor[s]  can  be  constructed  to  replace  the  electricity  production,  which  will  be  lost  to  the  area  at  the  end  of  life  of  Davis-­‐Besse  Nuclear  Power  station  in  2037.  

v Battelle’s  West  Jefferson,  Ohio  site  could  potentially  be  utilized  for  Lithium-­‐7  enrichment,  a  necessary  component  for  MSRs.  

v The  old  Mound  Laboratory  site  near  Dayton,  Ohio  could  conceivably  be  used  to  fabricate  Fluoride,  Lithium,  and  Beryllium  Salts  (FLiBe  Salts)  for  use  in  the  Molten  Salt  Reactor.  

v Wright  Patterson  AFB’s  test   facilities,  NASA  Plum  Brook  and  NASA  Glenn  could  support  the  mission  of  commercializing  a  closed  cycle  Brayton  turbine  capable  of  converting  the  heat  of  a  MSR  into  electricity  without  using  steam  or  water.  

v Perry  Nuclear  power  plant  has  the  capability  to  support  a  ¼  to  half  scale  test  reactor  that  would  be  needed  in  the  commercialization  process  of  molten  salt  reactor  technology.  

v Piketon,  Ohio’s  uranium  enrichment  facility  has  the  capability  to  host  a  full-­‐scale  modular  molten   salt   reactor,   which   would   require   testing   before   initiating   assembly   line  manufacturing  of  such  reactors.  

Page 59: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    58    

v Battelle  Memorial   Institute  has   the  expertise  and  experience   to  manage  and  audit   such  facilities.  

v FirstEnergy,   NASA,   JobsOhio,   the   Third   Frontier   program,   the   Ohio   Chamber   of  Commerce,  The  Cleveland  Foundation,  The  Cleveland  Clinic,  The  Ohio  Aerospace  Institute,  Team   NEO,   The   Ohio   State   University,   should   all   have   a   vested   interest   in   seeing   this  technology  developed.  The  same  factors  militate  for  similar  interest  in  commercialization  of  MSR  technology  in  Ohio  among  heavy  industrial  manufacturing  industries  (e.g.,  Timken,  Alcoa,  AK  Steel,  Nucor,  Ford,  General  Motors,  Chrysler,  and  Jeep)  in  Ohio.  The  combined  efforts   of   these   institutions   give   Ohio   the   political   muscle,   marketing,   and   lobbying  expertise  in  being  able  to  drive  this  critically  needed  project  to  success.  

SEEKING ALLIANCE MEMBERS

eGeneration   Economic   Development   Corporation   is   seeking   an   alliance   to   support   these  initiatives  and  be  our  organizational  and  funding  partners  in  marketing  this  conceptual  plan.  

Funding  efforts  will  focus  on  support  for:  

v Public   education   regarding   the   myths   and   realities   of   Generation   IV   nuclear   reactors,  including  molten  salt  reactors,  and  their  safety  and  benefits  

v Organization  of  community  roundtable  discussions  on  these  subjects  with  governmental  and  business  and  manufacturing  interests  

v Interacting  with  the  Nuclear  Regulatory  Commission’s  various  working  groups  v Educating   nuclear   research   and   development   committees,   including   governmental,  

private  industry  groups,  and  grassroots  organizations  v Economic  and  feasibility  studies  v The   environmental   analysis   necessary   to   support   deployment   of  Generation   IV  Molten  

Salt   Reactors,   as   well   as   development   of   licensing   and   site   licensing   documents   for  submission   to   the   U.S.   Nuclear   Regulatory   Commission   (NRC)   for   NASA   Plum   Brook  development  as  a  location  and  resource  for  this  enterprise.  

v Lobbying  and  networking  efforts      

Page 60: eGeneration Economic Development Plan NPBS

 

    Economic  Development/Plum  Brook  |    59    

 

 

 

[email protected]  

www.eGenEDC.org  

eGeneration  Economic  Development  Corporation  

1768  E  25th  Street    .    Suite  301    .    Cleveland,  Ohio  44114  

eGeneration  Economic  Development  Corporation  is  a  501(c)  4  Non-­‐profit  organization  Contributions  to  the  eGeneration  Economic  Development  Corporation  are  not  deductible  for  federal  income  tax  purposes.