effect of high isostatic pressure processing on milk...

250
UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA DE ALIMENTOS BRUNO RICARDO DE CASTRO LEITE JÚNIOR EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK- CLOTTING ENZYMES EFEITO DO PROCESSAMENTO DE ALTA PRESSÃO ISOSTÁTICA EM ENZIMAS COAGULANTES DO LEITE CAMPINAS 2017

Upload: others

Post on 03-Jan-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE ENGENHARIA DE ALIMENTOS

BRUNO RICARDO DE CASTRO LEITE JÚNIOR

EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK-

CLOTTING ENZYMES

EFEITO DO PROCESSAMENTO DE ALTA PRESSÃO ISOSTÁTICA EM

ENZIMAS COAGULANTES DO LEITE

CAMPINAS

2017

Page 2: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

BRUNO RICARDO DE CASTRO LEITE JÚNIOR

EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK-

CLOTTING ENZYMES

EFEITO DO PROCESSAMENTO DE ALTA PRESSÃO ISOSTÁTICA EM

ENZIMAS COAGULANTES DO LEITE

Thesis presented to the Faculty of Food

Engineering of the University of Campinas in partial

fulfillment of the requirements for the degree of

Doctor in Food Technology

Tese apresentada à Faculdade de Engenharia de

Alimentos da Universidade Estadual de Campinas

como parte dos requisitos exigidos para a

obtenção do título de Doutor em Tecnologia de

Alimentos

Orientador: Prof. Dr. Marcelo Cristianini

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA

TESE DEFENDIDA PELO ALUNO BRUNO RICARDO DE

CASTRO LEITE JÚNIOR, E ORIENTADO PELO PROF. DR.

MARCELO CRISTIANINI.

CAMPINAS

2017

Page 3: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

Agência(s) de fomento e nº(s) de processo(s): FAPESP, 2014/17782-4; FAPESP,

2016/01425-3; CNPq, 140567/2014-3

ORCID: http://orcid.org/0000-0001-9030-2819

Ficha catalográfica

Universidade Estadual de Campinas

Biblioteca da Faculdade de Engenharia de Alimentos

Márcia Regina Garbelini Sevillano - CRB 8/3647

Informações para Biblioteca Digital

Título em outro idioma: Effect of high isostatic pressure processing on milk-clotting

enzymes

Palavras-chave em inglês:

Non-thermal processes

High hydrostatic pressure

Coagulants

Enzymes

Área de concentração: Tecnologia de Alimentos

Titulação: Doutor em Tecnologia de Alimentos

Banca examinadora:

Marcelo Cristianini [Orientador]

Helia Harumi Sato

Walkíria Hanada Viotto

Ariene Gimenes Fernandes Van Dender

Daniel Augusto Cavalcante

Data de defesa: 27-03-2017

Programa de Pós-Graduação: Tecnologia de Alimentos

Leite Júnior, Bruno Ricardo de Castro, 1989- I536e Efeito do processamento de alta pressão isostática em enzimas coagulantes do leite/ Bruno Ricardo de Castro Leite Júnior. – Campinas, SP: [s.n.], 2017. Orientador: Marcelo Cristianini. Tese (doutorado) – Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos. 1. Processos não térmicos. 2. Alta pressão hidrostática. 3. Coagulantes. 4.

Enzimas. I. Cristianini, Marcelo. II. Universidade Estadual de Campinas. Faculdade de Engenharia de Alimentos. III. Título.

Page 4: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

BANCA EXAMINADORA

_______________________________ Prof. Dr. Marcelo Cristianini

DTA/ FEA/ UNICAMP (Orientador; Membro Titular)

_______________________________ Profa. Dra. Walkíria Hanada Viotto

DTA/ FEA/ UNICAMP (Membro Titular)

_______________________________ Dr. Daniel Augusto Cavalcante

APIÁRIO BALDONI (Membro Titular)

_______________________________ Dr. Lúcio Alberto Forti Antunes

CHR HANSEN IND. E COM. LTDA (Membro Suplente)

_______________________________ Profa. Dra. Helia Harumi Sato

DCA/ FEA/ UNICAMP (Membro Titular)

_______________________________ Dra. Ariene Gimenes F. Van Dender

TECNOLAT/ ITAL (Membro Titular)

_______________________________ Dr. Mark Alexandrow Franchi SAN LEON INGREDIENTES

(Membro Suplente)

_______________________________ Dr. Mario Tyago Murakami

CNPEM (Membro Suplente)

A Ata da defesa com as respectivas assinaturas dos membros encontra-se no

processo de vida acadêmica do aluno

Page 5: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

DEDICATÓRIA

Aos meus pais Ricardo de Castro Leite (in memoriam) e Cleoni de Castro Leite,

As meus avós e avôs (in memoriam)

As minhas irmãs Natalie e Daniellle,

As minhas sobrinhas e sobrinho,

A minha companheira Patrícia,

Dedico.

Page 6: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

AGRADECIMENTOS

A realização deste trabalho só foi possível devido ao apoio de algumas

pessoas que contribuíram diretamente ou indiretamente, profissionalmente ou

pessoalmente, e que sem elas não seria possível conquistar este sonho. Sinto-me

grato a todos e gostaria de aproveitar o espaço para nomeá-las, e pedir perdão por

eventual esquecimento. Sendo assim, gostaria de agradecer:

Ao Prof. Dr. Marcelo Cristianini (UNICAMP/FEA/DTA) pela orientação,

amizade, companheirismo, parceria, dedicação, confiança em meu trabalho, incentivo,

liberdade e pelo apoio nas decisões profissionais e pessoais (Foi fácil, aqui é high

pressure, tamu junto sempre!).

A Pesquisadora Dra. Alline Artigiani Lima Tribst (NEPA/UNICAMP) pela

confiança no meu trabalho, apoio, ideias, dedicação, amizade, companheirismo,

espiritualidade, força, clareza, incentivo e carinho atuando como uma verdadeira mãe.

Aos membros da banca Profa. Dra. Hélia Harumi Sato

(UNICAMP/FEA/DCA), Profa. Dra. Walkiria Hanada Viotto (UNICAMP/DTA/FEA),

Pesquisadora Dra. Ariene Gimenes Fernandes Van Dender (TECNOLAT/ITAL), Dr.

Daniel Augusto Cavalcante (APIÁRIO BALDONI), Dr. Mark Alexandrow Franchi (San

Leon Ingredientes), Dr. Lúcio Alberto Forti Antunes (Chr Hansen Ind. e Com. Ltda) e

Dr. Mario Tyago Murakami (CNPEM) pelas valiosas contribuições e sugestões.

Ao Departamento de Tecnologia de Alimentos pela oportunidade de

realização do projeto e ao CNPq e a FAPESP pelas bolsas concedidas.

Ao Prof. Ph.D. Rickey Y. Yada (Presidente do IUFoST e Diretor/Professor

da Faculdade de Food Health and Nutrition/UBC/Canadá) pela orientação e

oportunidade de realização de parte dos experimentos na Universidade de Bristish

Columbia (Vancouver, Canadá) e por toda atenção, apoio, incentivo e presteza para

comigo durante todo o período do doutorado Sanduiche e nas demais ocasiões.

Às chefes do DTA/FEA/UNICAMP, Profa. Dra. Caroline Joy Steel

(UNICAMP/FEA) e à Profa. Dra. Marise Aparecida Rodrigues Pollonio

(UNICAMP/FEA) por todo apoio e incentivo.

Aos secretários da SPG/FEA, Sr. Cosme Perota e Sra. Camila Ferreira,

Sra. Andrea Ferrari, pela paciência e auxílios diversos.

Aos funcionários do DTA/FEA, Téc. José Roberto dos Santos, Técnica Ana

Maria Silva, Técnica Dra. Juliana Hashimoto, Msc. Maria Elizabete Dias e a Secretária

Claudia pela disposição e auxílios diversos.

Page 7: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

Aos amigos de laboratório (Luma, Leandro, Miguel, Bruna, Ana Laura,

Laura, Paula, Ricardo e Thiago) pelo apoio pessoal, risadas, amizade e pela ajuda

durante a realização das análises. Com essa fámilia High Pressure as dificuldades

passam a ser apenas meros obstáculos e os problemas ficam bem mais fáceis de

serem resolvidos transformando o laboratório num local muito agradável de trabalhar.

A Mariana e ao Vitor do Intituto de Física/Eletrônica Quântica/UNICAMP

pela ajuda e apoio para realização das análises de microscopia de Confocal.

Aos amigos que compartilharam comigo momentos felizes e

desesperadores ao longo desta estrada, e sempre acreditaram no meu sonho e

potencial em especial a Alline, Luma, Miguel, Leandro, Renan, Vitor, Aniel, Diego e

Saul.

A minha companheira Patrícia por estar sempre ao meu lado me

confortando, apoiando e incentivando nos momentos difíceis e fazendo do meu dia-

dia mais feliz com toda sua ternura, meiguice e carinho. Sem ela nada disso seria

possível, obrigado por existir e por fazer parte da minha vida.

Aos meus pais (Ricardo de Castro Leite – in memoriam e Cleoni de Castro

Leite) que sempre me apoiaram em todas as minhas escolhas, sempre me deram do

bom e do melhor dentro das suas condições, todas as minhas conquistas é mérito de

vocês e tudo que eu fizer não será a metade do que vocês já fizeram por mim.

As minhas irmãs (Natelie e Danille), as minhas sobrinhas e sobrinho

(Bárbara, Rafaela, Gabriela, Mariana, Marcela e Rafael), aos meus cunhados (Virgilio

e Marcelo), os meus primos, tios, avós e demais familiares por estarem sempre

presentes e disponíveis em minha vida, incentivando e me acolhendo em momentos

difíceis.

Ao IF Sudeste MG e à UNICAMP, e a seus professores (em especial, ao

Prof. Dr. Maurilio Lopes Martins e a Profa. Dra. Eliane Mauricio Furtado Martins) e

funcionários, pelo conhecimento sólido e base segura para minha formação

acadêmica, profissional e pessoal.

Aos amigos da FEA, cujos auxílios diversos, incentivo e apoio foram

essenciais: Diana, Kazumi, Mária, Ludmila, Ingrid e Vanessa.

A Deus, acima de todos e de todas as coisas, por tornar a minha existência

possível.

Page 8: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

RESUMO

A tecnologia de Alta Pressão Isostática (API) promove alteração na atividade

de enzimas. Neste contexto, esse estudo visou otimizar as condições de

processamento por API para maximizar a atividade de coagulação do leite (ACL) de

cinco coagulantes (protease obtida do Rhizomucor miehei, coalho de vitelo, quimosina

recombinante, coalho de bovino e pepsina suína); avaliar a ACL em diferentes pHs e

temperaturas; avaliar a estabilidade durante estocagem; analisar o grau de hidrólise

da κ-caseína (κ-CN) usando essas enzimas; descrever as alterações estruturais nas

enzimas induzidas pela API; e acompanhar o processo de coagulação por diferentes

metodologias. Pressões de até 300 MPa por tempos e temperaturas inferiores a 10

minutos e 25 °C, respectivamente, resultaram em ativação enzimática. Por outro lado,

em condições mais drásticas observou-se redução da atividade enzimática, com

completa inativação em processos realizados acima de 550 MPa com tempos maiores

que 10 min e temperaturas maiores que 45 °C. De forma específica, os coagulantes

processados por API (principalmente aqueles com alta concentração de quimosina)

apresentaram um maior grau de hidrólise sobre a κ-CN em comparação às enzimas

não processadas. Além disso, a pressurização melhorou a estabilidade das enzimas

em diferentes valores de pH após o processamento e em pH ótimo de atividade ao

longo da estocagem. A protease obtida do R. miehei apresentou maior resistência ao

processo, sendo a única com ausência de ativação. A avaliação estrutural das

enzimas indicou que o processo de API aumentou a exposição do aminoácido

triptofano (avaliado por fluorescência intrínseca) nas condições de ativação e

promoveu uma drástica redução dessa exposição sob condições de inativação,

indicando um desdobramento molecular após API. Estes resultados foram

confirmados pelo aumento da hidrofobicidade superficial observada para amostras

processadas por API. Similarmente, os resultados da espectroscopia de reflexão total

atenuada no infravermelho com transformada de Fourier confirmaram que o processo

de API produziu mudanças significativas nas estruturas secundárias das enzimas com

maiores alterações em pressões mais altas. Para avaliação dos efeitos práticos das

alterações induzidas pela API sobre as enzimas, a coagulação do leite por essas

enzimas foi acompanhada pelos métodos de espectroscopia no infravermelho próximo

(que avalia a determinação do grau de agregação proteica), ensaio reológico (que

determina a força do gel) e microscopia confocal (que pode ilustrar a porosidade do

gel). Esses resultados demonstraram que as enzimas processadas por API em

Page 9: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

condições otimizadas promoveram uma coagulação mais rápida e que os géis

produzidos foram mais consistentes e com um maior grau de agregação da rede

proteica em comparação com aqueles produzidos utilizando as enzimas não

processadas. Estes efeitos são atribuídos ao maior grau de hidrólise da fração k-CN

durante a primeira fase de coagulação. Em termos de rendimento, verificou-se que os

géis obtidos com as enzimas processadas por API apresentaram um maior

rendimento em comparação com aqueles obtidos a partir das respectivas enzimas não

processadas (aumento de até 4,3%). Portanto, a aplicação de API pode melhorar o

desempenho e a competitividade dos coagulantes com consequente redução de

custos.

PALAVRAS-CHAVE: Processos não térmicos • Alta pressão hidrostática •

Coagulantes • Enzimas

Page 10: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

ABSTRACT

The High Isostatic Pressure (HIP) processing promotes changes in enzyme

activity. In this context, this study aimed to: optimize the process conditions by HIP to

maximize milk clotting activity (MCA) of five coagulants (protease obtained from

Rhizomucor miehei, calf rennet, recombinant chymosin, bovine rennet and porcine

pepsin); evaluate MCA at different pH and temperature; evaluate the stability during

storage; analyze the degree of κ-casein (κ-CN) hydrolysis by proteases action;

describe the structural changes in the enzymes induced by HIP; and monitor the

coagulation process by different methods. Pressures up to 300 MPa for times and

temperatures below 10 min and 25 °C, respectively, resulted in enzyme activation. On

the other hand, under more drastic conditions a reduction of enzymatic activity was

observed, with complete inactivation in processes performed above 550 MPa with

times >10 min and temperatures >45 °C. Specifically, HIP processed coagulants

(mainly enzymes with high chymosin concentration) showed a higher degree κ-CN

hydrolysis compared to the non-processed enzymes. In addition, pressurization

improved the stability of the enzymes at different pH values after processing and at

optimum pH during storage. The protease obtained from R. miehei presented greater

resistance to the process, being the only one without activation. Structural evaluation

of the enzymes indicated that the HIP process increased the exposure of the aminoacid

tryptophan (assessed by intrinsic fluorescence) under the activation conditions and

promoted a drastic reduction of this exposure under inactivation conditions indicating

a molecular unfolding after HIP. These results were confirmed by the increased surface

hydrophobicity observed for samples processed by HIP. Similarly, the Attenuated Total

Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy results confirmed

that the HIP process produced significant changes in the secondary structures of the

enzymes with the highest changes in higher pressures. To evaluate the practical

effects of HIP-induced changes on enzymes, the coagulation of milk by these enzymes

was accompanied by methods of near-infrared spectroscopy (which evaluates the

degree of protein aggregation), rheological assay (which determines the gel

consistency) and confocal microscopy (which characterizes the gel porosity). These

results demonstrated that enzymes processed by HIP under optimized conditions

promoted faster coagulation and the gels were more consistent and with a higher

degree of protein network aggregation compared to those produced using the non-

processed enzymes. These effects are attributed to the higher hydrolysis degree of k-

Page 11: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

CN fraction hydrolysis during the first coagulation phase. In terms of yield, gels

obtained with HIP-processed enzymes were found to have a higher fresh yield

compared to those obtained from the respective non-processed enzymes (up to 4.3%

increase). Therefore, the HIP process application can improve the performance and

competitiveness of theses coagulants with consequent reduction of costs.

KEY-WORDS: Non-thermal processes • High hydrostatic pressure • Coagulants •

Enzymes

Page 12: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

SUMÁRIO

BANCA EXAMINADORA ........................................................................................... 4

DEDICATÓRIA .......................................................................................................... 5

AGRADECIMENTOS ................................................................................................. 6

RESUMO ................................................................................................................... 8

ABSTRACT .............................................................................................................. 10

SUMÁRIO ................................................................................................................ 12

Introdução Geral ...................................................................................................... 17

Capítulo 1. Revisão bibliográfica e objetivos ............................................................ 20

1.1 Revisão bibliográfica...................................................................................... 21

1.1.1 Micela de caseína ......................................................................................... 21

1.1.2 O fenômeno da coagulação do leite e desenvolvimento do gel ..................... 24

1.1.3 Enzimas: Estrutura e funcionalidade ............................................................. 26

1.1.4 Coalho e coagulantes .................................................................................... 28

1.1.5 Desafios da produção de queijos: custo e atividade das enzimas responsáveis

pelo processo de coagulação ................................................................................... 33

1.1.6 Uso da alta pressão isostática em enzimas: Nova proposta para melhorar o

desempenho de enzimas utilizadas na coagulação do leite ..................................... 34

1.2 Objetivos ....................................................................................................... 36

1.3 Referências (Introdução Geral e Revisão Bibliográfica) ................................. 37

Capítulo 2. Comparative effects of high isostatic pressure and thermal processing on the inactivation of Rhizomucor miehei protease ....................................................... 55

Abstract .................................................................................................................... 56

Resumo ................................................................................................................... 57

2.1 Introduction .................................................................................................... 58

2.2 Material and Methods .................................................................................... 58

2.2.1 Rhizomucor miehei protease ......................................................................... 58

2.2.2 Experimental design ...................................................................................... 59

2.2.3 Determination of the proteolytic and milk-clotting activities of the protease .... 60

2.2.4 Kinetic model ................................................................................................. 60

2.2.5 Statistical analysis ......................................................................................... 61

2.3 Results and Discussion ................................................................................. 61

2.3.1 Effect of high isostatic pressure on the relative proteolytic and milk-clotting

activities ................................................................................................................... 61

Page 13: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

2.3.2 The kinetics of protease inactivation by high isostatic pressure and thermal

processing ............................................................................................................... 63

2.4 Conclusions ................................................................................................... 66

2.5 Acknowledgements........................................................................................ 67

2.6 References .................................................................................................... 67

Capítulo 3. Determination of the influence of high pressure processing on calf rennet using response surface methodology: effects on milk coagulation ........................... 70

Abstract .................................................................................................................... 71

Resumo ................................................................................................................... 72

3.1 Introduction .................................................................................................... 73

3.2 Materials and Methods .................................................................................. 74

3.2.1 Enzyme ......................................................................................................... 74

3.2.2 High pressure processing .............................................................................. 75

3.2.3 Experimental design ...................................................................................... 75

3.2.4 Proteolytic activity determination ................................................................... 77

3.2.5 Milk-clotting activity determination ................................................................. 77

3.2.6 Rheological assays........................................................................................ 78

3.2.7 Three dimensional microstructure of the coagulation process and rennet-

induced gels obtained by confocal scanning laser microscopy ................................. 79

3.2.8 Image analysis .............................................................................................. 80

3.3 Results and Discussion ................................................................................. 80

3.3.1 The effect of high pressure processing on the proteolytic and milk-clotting

activities ................................................................................................................... 80

3.3.2 High pressure process validation and evaluation of the processed calf rennet

performance during milk gel formation ..................................................................... 85

3.4 Conclusions ................................................................................................... 90

3.5 Acknowledgments ......................................................................................... 90

3.6 References .................................................................................................... 91

Capítulo 4. Comparative study among rheological, near-infrared light backscattering and confocal microscopy methodologies in enzymatic milk coagulation: impact of different enzyme and protein concentrations ............................................................ 95

Abstract .................................................................................................................... 96

Resumo ................................................................................................................... 97

4.1 Introduction .................................................................................................... 98

4.2 Materials and Methods .................................................................................. 99

4.2.1 Milk and enzyme ........................................................................................... 99

4.2.2 Rheological assays of the coagulation process ........................................... 100

Page 14: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

4.2.3 Near-infrared (NIR) light backscattering of the gels obtained by the enzyme-

induced milk coagulation process........................................................................... 101

4.2.4 Three dimensional (3D) microstructure of the gels obtained by the enzyme-

induced milk coagulation process, obtained by confocal scanning laser microscopy

(CSLM) .................................................................................................................. 102

4.2.5 Image analysis ............................................................................................ 102

4.2.6 Statistical analysis ....................................................................................... 103

4.3 Results and Discussion ............................................................................... 103

4.3.1 Evaluation of the milk-clotting enzyme during milk gel formation as monitored

by a rheological analysis ........................................................................................ 103

4.3.2 Determination of the coagulation properties of milk-clotting enzymes using the

NIR light backscattering profile ............................................................................... 107

4.3.3 Evaluation of the milk-clotting enzymes during the formation of the milk gel, as

monitored by confocal microscopy ......................................................................... 111

4.3.4 Comparative evaluation between the methodologies ................................... 116

4.4 Conclusions ................................................................................................. 122

4.5 Acknowledgments ....................................................................................... 122

4.6 References .................................................................................................. 122

Capítulo 5. The effect of high pressure processing on recombinant chymosin, bovine rennet and porcine pepsin: Influence on the proteolytic and milk-clotting activities and on milk-clotting characteristics ............................................................................... 126

Abstract .................................................................................................................. 127

Resumo ................................................................................................................. 128

5.1 Introduction .................................................................................................. 129

5.2 Materials and Methods ................................................................................ 130

5.2.1 Enzymes ..................................................................................................... 130

5.2.2 Sample preparation ..................................................................................... 130

5.2.3 High pressure processing ............................................................................ 130

5.2.4 Determination of the proteolytic and milk-clotting activities .......................... 132

5.2.5 Evaluation of milk-clotting process and milk gels formed using HP processed

enzymes under the optimal conditions ................................................................... 132

5.2.6 Statistical analysis ....................................................................................... 134

5.3 Results and Discussion ............................................................................... 135

5.3.1 The effect of high pressure processing on the proteolytic and milk-clotting

activities ................................................................................................................. 135

5.3.2 Stability of the enzymes processed by HP during refrigerated storage ........ 139

Page 15: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

5.3.3 Evaluation of milk-clotting process and milk gels formed using HP processed

enzymes ................................................................................................................ 140

5.4 Conclusions ................................................................................................. 152

5.5 Acknowledgments ....................................................................................... 152

5.6 References .................................................................................................. 152

Capítulo 6. Assessing casein hydrolysis by high pressure processed coagulants using capillary electrophoresis ......................................................................................... 155

Abstract .................................................................................................................. 156

Resumo ................................................................................................................. 157

6.1 Introduction .................................................................................................. 158

6.2 Material and Methods .................................................................................. 158

6.2.1 Enzymes preparation ................................................................................... 158

6.2.2 High isostatic pressure processing .............................................................. 159

6.2.3 Capillary zone electrophoresis of the degree of standard κ-CN hydrolysis and

casein hydrolysis .................................................................................................... 159

6.2.4 Statistical analysis ....................................................................................... 161

6.3 Results and Discussion ............................................................................... 161

6.4 Conclusion ................................................................................................... 170

6.5 Acknowledgements...................................................................................... 170

6.6 References .................................................................................................. 170

Capítulo 7. Milk-clotting activity of high pressure processed coagulants: evaluation at different pH and temperatures and pH influence on the stability ............................. 173

Abstract .................................................................................................................. 174

Resumo ................................................................................................................. 175

7.1 Introduction .................................................................................................. 176

7.2 Materials and Methods ................................................................................ 177

7.2.1 Enzymes ..................................................................................................... 177

7.2.2 High pressure processing ............................................................................ 177

7.2.3 Determination of relative milk-clotting activity (RMCA) after HPP ................ 178

7.2.4 Determination of RMCA of HPP processed coagulants at different pH and

temperature of milk ................................................................................................ 178

7.2.5 Determination of pH stability ........................................................................ 179

7.2.6 Statistical analysis ....................................................................................... 179

7.3 Results and Discussion ............................................................................... 179

7.3.1 Milk-clotting activity after high pressure processing ..................................... 179

7.3.2 The effect of high pressure processing on the milk-clotting activity of coagulants

at different pH and temperature of milk .................................................................. 180

Page 16: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

7.3.3 The effect of high pressure processing on pH stability of the coagulants ..... 186

7.4 Conclusions ................................................................................................. 188

7.5 Acknowledgments ....................................................................................... 189

7.6 References .................................................................................................. 189

Capítulo 8. Biophysical evaluation of milk-clotting enzymes processed by high pressure ................................................................................................................. 192

Abstract .................................................................................................................. 193

Resumo ................................................................................................................. 194

8.1 Introduction .................................................................................................. 195

8.2 Materials and Methods ................................................................................ 196

8.2.1 Enzymes ..................................................................................................... 196

8.2.2 High pressure processing ............................................................................ 197

8.2.3 Structural evaluation of purified enzymes processed by high isostatic

pressure ................................................................................................................. 198

8.2.4 Statistical analysis ....................................................................................... 199

8.3 Results and Discussion ............................................................................... 200

8.3.1 Intrinsic fluorescence intensity of milk-clotting enzymes .............................. 200

8.3.2 Surface hydrophobicity of milk-clotting enzymes using ANS as probe ......... 202

8.3.3 Attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy

of milk-clotting enzymes ......................................................................................... 204

8.4 Conclusions ................................................................................................. 207

8.5 Acknowledgments ....................................................................................... 207

8.6 References .................................................................................................. 207

Capítulo 9. Discussão Geral ................................................................................... 212

Capítulo 10. Conclusões Gerais ............................................................................. 217

Sugestões para trabalhos futuros........................................................................... 220

Capítulo 11. Referências Bibliográficas .................................................................. 221

Anexos ................................................................................................................... 246

Page 17: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

17

Introdução Geral

Page 18: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

18

Enzimas são proteínas globulares que apresentam a função biológica de

catalisar reações bioquímicas possuindo grande importância para a produção de

alimentos (Stryer, 1995; Torres, 2001; Haki e Rakshit, 2003; Krajewska, 2004; Jayani,

Saxena e Gupta 2005). Na indústria de lácteos uma das aplicações mais importantes

de enzimas ocorre na manufatura da maioria dos queijos, cuja etapa inicial de

produção envolve a coagulação enzimática do leite.

A produção de queijo no Brasil registrou um crescimento de 22% em 2015

em comparação com o período de 2012-2015 com uma taxa de crescimento anual de

7% (Carvalho et al., 2016). Em 2015 a produção nacional de leite atingiu cerca de 34

bilhões de litros sendo que 46% foram destinados à produção de queijos, totalizando

aproximadamente 1.124 mil toneladas/ano (Zoccal, 2016).

Desta forma, observa-se que a produção de queijos está crescendo, o que

faz com que a etapa de coagulação se torne cada vez mais crítica em função da baixa

disponibilidade de coalho de vitelo. Apesar dos avanços em pesquisas, ainda não se

tem um coagulante substituto adequado do coalho de vitelo, considerando atividade,

especificidade e questões tradicionais. A alta pressão isostática (API) pode ser uma

ferramenta interessante no processo de modificação de enzimas, pois estudos prévios

indicaram que a tecnologia poderia promover aumento de atividade, especificidade e

de estabilidade enzimática (Mozhaev et al., 1996; Sila et al., 2007; Eisenmenger e

Reyes-de-Corcuera, 2009a, b; Kudryashova et al., 1998; Knnor, 1999; Sila et al., 2007;

Chakraborty et al., 2014; Leite Júnior et al., 2016a,b; Leite Júnior et al., 2017). Os

efeitos da API no leite têm sido intensivamente estudados visando à inativação de

micro-organismos e avaliação dos efeitos sobre os seus macro-constituintes (Liu et

al., 2005; Huppertz et al., 2006; Devi et al., 2015; Garrido et al., 2015). Outros estudos

focaram na produção de queijo com leite tratado previamente por API ou conduziram

o processo de pressurização após a fabricação dos queijos (Huppertz et al., 2006;

Zamora et al., 2007; Trujilo et al., 2000; Calzada et al., 2013a, b; Calzada et al., 2014

a, b; Evert-Arriagada et al., 2014; Costabel et al., 2016).

Apesar do processo de API ter sido bastante estudado em produtos lácteos

e também apresentar resultados efetivos no aumento de atividade e estabilidade de

enzimas, o efeito especificamente sobre as enzimas coagulantes do leite ainda não

havia sido estudado. Assim, esse projeto visou ser um estudo de base para (i) otimizar

as condições de processamento por API para maximizar a atividade de coagulação

do leite (ACL) de cinco coagulantes (protease obtida do Rhizomucor miehei, coalho

Page 19: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

19

de vitelo, quimosina recombinante, coalho de bovino e pepsina suína). Para aquelas

enzimas que apresentaram aumento de atividade em condições otimizadas após API

foram estudados também (ii) a ACL em diferentes pH e temperaturas; (iii) a

estabilidade enzimática em diferentes valores de pH e durante estocagem em pH

ótimo; (iv) o grau de hidrólise da κ-CN utilizando-se esses coagulantes; (v) as

alterações sobre a conformação molecular (neste caso, o efeito da API foi avaliado

tanto em condições de ativação como em condições de inativação); e (vi) o

acompanhamento do processo de coagulação por diferentes metodologias. A partir

destes resultados, foi possível estabelecer a API como um processo alternativo para

modificação de enzimas coagulantes, além de avaliar se estas mudanças melhoraram

o coágulo de leite formado.

A otimização da ACL para cada enzima e o acompanhamento da

coagulação do leite por diferentes metodologias estão descritos nos capítulos 2, 3, 4

e 5. A avaliação do grau de hidrólise dessas enzimas sobre a κ-CN por meio da análise

de eletroforese capilar estão contidos no capítulo 6, e a avalição da ACL em diferentes

temperaturas e pH e a estabilidade enzimática em diferentes valores de pH estão

apresentadas no capítulo 7. Por fim, a avaliação do efeito do processo de API sobre

a conformação molecular é apresentada no capítulo 8.

Page 20: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

20

Capítulo 1. Revisão bibliográfica e objetivos

Page 21: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

21

1.1 Revisão bibliográfica

1.1.1 Micela de caseína

As caseínas são fosfoproteínas insolúveis em pH 4,6, corresponde a 80%

das proteinas contidas no leite e podem ser subdivididas nas seguintes classes: α-

(αs1 e αs2), β- e κ-caseínas (Walstra et al., 1999). Estão presentes na forma de

estruturas coloidais, denominadas micelas (Farrell et al., 2006). As frações αs1-CN

contém de 7 a 9 resíduos fosfato-serina por mol, a αs2-CN de 10 a 13 e a β-CN 5

(Farrell et al., 2004), assim possuem a capacidade de se ligarem fortemente ao cálcio

pelo envolvimento dos resíduos fosfato-serina e precipitarem. Entretanto, a κ-caseína,

que possui apenas um resíduo fosfato por mol, é solúvel em altas concentrações de

Ca2+ e, por interagir hidrofobicamente com as frações α e β, consegue estabilizá-las

mantendo as micelas estáveis em suspensão no leite (Law, 1997), além disso, devido

à presença de glicomacropeptídeos carregados negativamente limitam o tamanho da

micela por repulsões eletrostáticas e impedimento de natureza estérica (Fox et al.,

2000).

Por muitos anos, uma explicação muito utilizada para descrever a estrutura

micelar foi o modelo de submicelas (Walstra, 1990; Varnam e Sutherland, 2001). Esse

modelo evoluiu e Walstra (1999) apresentou uma nova figura, onde o fosfato de cálcio

está presente em pacotes dentro das submicelas. Apesar do modelo de submicelas,

atualizado por Walstra (1999), ter aceitação na comunidade científica, modelos

alternativos foram propostos por Holt em 1992 e por Horne em 1998 (Phadungath,

2005), os quais aceitam a existência da camada externa estabilizadora de κ-caseína

e destaca o papel do fosfato de cálcio coloidal como “cimento” da rede proteica, mas

não aceitam a organização das caseínas em submicelas. O modelo de Holt (Figura

1.1A) descreve a micela como um gel mineralizado composto por proteínas unidas por

ligações cruzadas, onde nanoclusters de fosfato de cálcio coloidal são os agentes

responsáveis por essas ligações cruzadas e por manter a rede unida (Holt, 1992;

Horne, 1998).

Page 22: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

22

Figura 1.1 Modelo da micela de caseína proposto por Holt (A) onde os pontos pretos

(•) são os nanoclusters de fosfato de cálcio e modelo da micela de caseína proposto

por Horne (B) onde as proteínas interagem pelas regiões hidrofóbicas (barras pretas

retangulares), e as regiões hidrofílicas das proteínas (alças) que contém os “clusters”

de fosfoserina se ligam aos “clusters” de fosfato de cálcio (triângulos) sendo que as

moléculas de κ-CN limitam o crescimento micelar (K) (Farrell et al., 2006).

O modelo proposto por Horne (1998) apresenta o fosfato de cálcio micelar

não apenas como promotor de ligações cruzadas, mas também como agente

neutralizante, o qual, sendo carregado positivamente, se liga aos clusters de

fosfoserina negativamente carregados reduzindo a carga proteica até o nível em que

Page 23: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

23

interações atrativas entre as regiões hidrofóbicas das caseínas passam a dominar

(Phadungath, 2005). Ainda de acordo Horne (1998), apesar das moléculas de κ-CN

poderem interagir através dos seus domínios hidrofóbicos com as regiões hidrofóbicas

de outras caseínas, o crescimento além da κ-CN não é possível já que ela não possui

nenhum cluster de fosfoserina para ligar via fosfato de cálcio coloidal, nem outro ponto

hidrofóbico para estender a cadeia. Assim a κ-CN age como um finalizador do

crescimento da micela e faz parte da sua estrutura superficial. O modelo de Horne

está ilustrado na Figura 1.1B.

Dalgleish, Spagnuolo e Goff (2004), a partir de micrografias obtidas de

microscópio eletrônico de varredura reportaram que a micela de caseína é uma

estrutura mais complexa e flexível do que apenas filamentos atados a uma esfera.

Consistindo de pequenos canais de caseína, além de apresentar entradas ou fendas

altamente porosas, sugerindo que o interior da micela é acessível a pequenas

moléculas como as enzimas. Mais recentemente, McMahon e Oommen (2008)

apresentaram imagens de microscopia eletrônica de transmissão de alta resolução da

estrutura da micela, com base na interpretação destas imagens, um modelo da

estrutura interligada foi desenvolvido, em que ambos os agregados de caseína

associados ao fosfato de cálcio e as cadeias poliméricas de caseína agem em

conjunto para manter a integridade das micelas. Assim, as caseínas estão

apresentadas em cadeias lineares e cadeias ramificadas interligadas por nanoclusters

de fosfato de cálcio. Este modelo sugere que ocorre a estabilização de nanoclusters

de fosfato de cálcio por domínios fosfoserina de αs1 -, αs2- ou β-caseína, ou sua

combinação, podendo orientar seus domínios hidrofóbicos para fora, permitindo a

interação e ligação com outras moléculas de caseína.

Outras interações entre as caseínas, como a ponte de cálcio, também

podem ocorrer, para estabilizar ainda mais a “supermolécula” (McMahon e Oommen,

2008; Fox e Brodkorb, 2008). Além disso, destaca-se a presença da água, na qual as

micelas de caseína são altamente hidratadas e apresentam partículas coloidais

semelhantes a esponjas. Foi estimado que de 4 g de água / g de proteína contida na

micela coloidal, apenas 15% está ligado à proteína, sendo o restante simplesmente

aprisionado dentro da partícula (de Kruif e Holt, 2003; Farrell et aL, 2003). A

combinação de uma estrutura entrelaçada com múltiplas interações resulta então em

uma “supermolécula” coloidal esponjosa e porosa que é resistente as alterações

espaciais e de desintegração (McMahon e Oommen, 2008).

Page 24: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

24

1.1.2 O fenômeno da coagulação do leite e desenvolvimento do gel

A dispersão coloidal das micelas de caseína no leite é responsável pela

estabilidade da suspensão de proteínas e ocorre devido às repulsões eletrostáticas e

impedimento de natureza estérica. Esses fenômenos ocorrem primordialmente pela

presença de glicomacropeptídeos carregados negativamente que são encontrados na

superfície das micelas de caseína (Fox et al., 2000).

Na fabricação de queijos, a função primária das enzimas é iniciar a

coagulação do leite (Figura 1.2). O processo de coagulação enzimática pode ser

dividido em três fases: hidrólise enzimática da κ-caseína, agregação das micelas de

caseína na presença de íons de cálcio e desenvolvimento do gel coagulado (Karlsson,

Ipsen e Ardo, 2007). Entretanto, a maioria dos autores relata que a coagulação ocorre

em dois estágios. Na primeira fase da coagulação ocorre a clivagem específica do

glicomacropeptídeo hidrofílico, preferencialmente no sítio Phe105-Met106 da κ-caseína

(κ-CN) que é altamente suscetível à hidrólise por proteases ácidas (Fox et al., 2000;

Walstra et al., 2006). Na segunda fase da coagulação, a para-κ-caseína2+ (formada a

partir das micelas clivadas), fica instável pela saída do glicomacropeptídeo e inicia-se

um processo de agregação sob a influência dos íons cálcio do meio (Dalgleish, 1992;

Walstra et al., 2006). Então, ligações cruzadas são progressivamente formadas entre

cadeias de micelas floculadas para formar um gel final (Fox e McSweeney, 1998;

Lucey, 2002a; Lagaude et al., 2004; Bönisch, Heidebach e Kulozik, 2008).

Page 25: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

25

Figura 1.2 Representação esquemática das etapas que ocorrem durante a

coagulação enzimática do leite (Adaptado de Lucey, 2011)

Após a coagulação, a formação da rede de coalhada continua por um

tempo considerável após a obtenção de um gel visível, mesmo após o corte (Fox e

McSWeeney, 1998; Walstra et. al., 1999). As características do gel formado por ação

enzimática, tais como capacidade de retenção de água, sinérese e força, são

importantes no processo de elaboração de queijos, pois afetam parâmetros como o

rendimento, conteúdo de umidade e textura do produto (Pandey, Ramaswamy e St-

Gelais, 2000).

A velocidade de clivagem da κ-caseína pela ação enzimática é o principal

responsável para o início da agregação do gel. As progressivas ligações hidrofóbicas

entre para-κ-caseína na presença de íons de cálcio, além da presença de fosfato de

cálcio coloidal (FCC) desempenham um papel essencial para formação do gel final

(Dalgleish, 1983; Fox e McSweeney, 1997; Lucey, 2002a,b). Neste contexto, a força

de um gel obtido por ação enzimática é dependente do tipo e quantidade de enzima

adicionada no leite, além das propriedades físicas e químicas das micelas de caseína,

ou seja, o tamanho das micelas, o teor de proteína (isto é, de caseína), a concentração

Page 26: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

26

de cálcio, o pH, temperatura e a proporção entre caseína e proteínas do soro de leite

(Lucey et al., 2003; Auldist et al., 2001; Amenu e Deeth, 2007).

1.1.3 Enzimas: Estrutura e funcionalidade

Enzimas são proteínas que apresentam a função biológica de catalisar

reações bioquímicas possuindo grande importância para a produção de alimentos

(Stryer, 1995; Torres, 2001). As enzimas apresentam estruturas primárias,

secundárias, terciárias e, em alguns casos, também estruturas quaternárias. Além

disso, podem apresentar em suas estruturas componentes não proteicos, como

carboidratos e íons metálicos (Whitaker, 1994).

A estrutura primária é composta por aminoácidos unidos entre si por meio

de ligações peptídicas entre o grupo amino de um aminoácido e o grupo carboxílico

do aminoácido subsequente, formando uma cadeia polipeptídica (Torres, 2001). A

quantidade e a sequência de aminoácidos conferem a cada enzima uma configuração

única. Já a estrutura secundária é caracterizada pela organização regular das cadeias

peptídicas, formando estruturas denominadas α-hélice e folha β-pregueada (Whitaker,

1994). A estrutura α-hélice é mantida por pontes de hidrogênio formadas entre átomos

de nitrogênio e de oxigênio presentes em cadeias laterais e por ligações dissulfeto

entre cisteínas, essas ligações ocorrem comumente a cada cinco aminoácidos unidos

pelas ligações peptídicas, resultando na formação de uma estrutura espiralada. Já a

estrutura folha β-pregueada ocorre pela junção paralela de duas cadeias

polipeptídicas, por meio, principalmente, de ligações de hidrogênio e dissulfeto

(Whitaker, 1994).

Para enzimas, a estrutura terciária é uma estrutura globular formada a partir

de enrolamentos, dobras e voltas das cadeias polipeptídicas, previamente

organizadas em estruturas de α-hélice e folha β-pregueada (Stryer, 1995). A estrutura

terciária é mantida por diferentes ligações e interações como pontes de hidrogênio e

dissulfeto, interações eletrostáticas, força de Van der Walls e ligações iônicas

(Whitaker, 1994). A estrutura terciária é responsável pela formação do sítio catalítico

da enzima e, qualquer modificação nesta estrutura resulta em modificação da

atividade enzimática (Stryer, 1995). A estrutura quaternária é definida pela ligação de

duas ou mais cadeias polipeptídicas sem função biológica que, quando se unem,

formam o sítio catalítico. Apenas algumas enzimas possuem esta estrutura. A junção

Page 27: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

27

das cadeias ocorre através de interações hidrofóbicas, pontes de hidrogênio e

ligações salinas (Stryer, 1995).

A ação enzimática ocorre em função da reação do sítio catalítico da enzima

com o substrato, assim, o sítio ativo de uma enzima pode ser descrito como a cavidade

aberta na superfície da estrutura globular da enzima que permite a entrada do

substrato, e, em seguida, a sua ligação/ interação com a enzima, formando o

complexo enzima-substrato (Stryer, 1995). Na prática, a formação do complexo

enzima-substrato envolve pequenas deformações na enzima de forma que a mesma

se ajuste perfeitamente ao substrato, atingindo um formato ideal para a catálise. Após

a reação enzimática, o complexo se separa, obtendo-se a enzima em sua forma

íntegra e o produto da ação enzimática. O sítio ativo de cada enzima permite apenas

o encaixe de um substrato exclusivo, o que confere a especificidade de cada enzima

(Whitaker, 1994).

Desta forma, a atividade de uma enzima existe em função de sua

configuração, uma vez que os sítios ativos podem ficar mais ou menos expostos como

resposta ao enovelamento da molécula. Assim, existe uma condição ótima do meio

para que a enzima apresente máxima atividade. Alguns métodos são empregados

para modificar a funcionalidade das enzimas visando uma melhoria no desempenho

das mesmas. Dentre estes destacam-se: os métodos físico-químicos pela alteração

da temperatura, pH, constante dielétrica, força iônica, dentre outros; os métodos

químicos pela presença de agentes oxidantes ou redutores ou até mesmo pela quebra

de uma ligação covalente promovida por uma enzima; e os métodos físicos ou

mecânicos (Lehninger, Nelson e Cox, 1993).

Dentre os métodos físicos utilizados para modificação da estrutura

tridimensional de enzimas, ressaltam-se os processos que envolvem a aplicação de

pressão (homogeneização à alta pressão e o processamento de alta pressão

isostática) (Eisenmenger; Reyes-de-Corcuera, 2009; Liu et al., 2009; Tribst et al.,

2014; Chakraborty et al., 2014; Leite Júnior, Trisbt e Cristianini, 2014; Leite Júnior et

al., 2014; Leite Júnior, Trisbt, & Cristianini, 2015 a,b). Apesar dos mecanismos de

funcionamento serem diferentes, ambos os processos são descritos como capazes

de promover alterações nas estruturas quaternárias e terciárias e, eventualmente, nas

estruturas secundárias de enzimas (Eisenmenger; Reyes-de-Corcuera, 2009; Liu et

al., 2009; Tribst et al., 2014; Chakraborty et al., 2014).

Page 28: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

28

Apesar da existência de alguns estudos que avaliaram o efeito da API

sobre as estruturas de enzimas, nenhum deles descrevem o efeito sobre as estruturas

das enzimas coagulantes do leite. Além disso, a ausência de trabalhos realizados com

enzimas diferentes (utilizando a mesma metodologia de preparo, processamento e

análises) dificulta a comparação e o entendimento de como o processo de API atua

sobre essas moléculas. A seguir é apresentada uma revisão sobre as enzimas que

apresentam capacidade de coagular o leite.

1.1.4 Coalho e coagulantes

O coalho é o extrato obtido do abomaso de animais ruminantes. Este

extrato é rico em proteinases ácidas que apresentam atividade coagulante sobre o

leite. Os coagulantes, por sua vez, correspondem às demais proteinases de diferentes

origens, capazes de coagular o leite sob condições adequadas de temperatura e pH

(Fox, 1988; Fox e McSweeney, 1997).

As proteinases encontradas no abomaso de ruminantes são a quimosina e

a pepsina. A quimosina caracteriza-se por ser uma enzima de atividade altamente

específica (Phe105-Met106 da κ-caseína) e com bom poder coagulante (Hyslop, 2003;

Crabbe, 2004). Por outro lado, a pepsina apresenta menor especificidade,

hidrolisando ligações que tenham aminoácidos como Phe, Tyr, Leu ou Val (Agudelo

et al., 2004; Papoff et al., 2004), podendo desta forma ocasionar a liberação de

peptídeos de cadeias médias com sabores desagradáveis, apesar de ter poder

hidrolítico maior do que a quimosina (Fox, 1988; Fox et al., 2004). A concentração de

quimosina e de pepsina varia em função da idade do animal, sendo que ela é

encontrada na proporção 80% de quimosina e 20% de pepsina em bezerros e na

proporção inversa em animais adultos.

O coalho extraído do abomaso de bezerros era considerado a melhor

enzima para produção de queijos (Fox et al., 2004). A sua aplicação, entretanto, é

cada vez mais restrita devido ao crescimento da produção mundial de queijos (cerca

de 4% ao ano) e ao decréscimo da oferta de coalho de bezerros (uma vez que há uma

tendência de redução de abate precoce de novilhos em função do baixo

aproveitamento em termos de produção de carnes) (FAO, 2010).

Assim, é crescente a busca de enzimas alternativas para substituição do

coalho (Walstra et al., 2006). Atualmente, apenas 20-30% dos queijos produzidos no

Page 29: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

29

mundo utilizam coalho de vitelo (Jacob, Jaros e Rohm, 2011). Substitutos potenciais

devem imitar as suas propriedades específicas apresentando alta atividade de

coagulação do leite (ou seja, especificidade na hidrólise da κ-caseína) e baixa

atividade proteolítica em pH e temperatura de fabricação de queijos. Além disso,

devem ser inativados à temperatura de pasteurização, de forma que seja possível

obter um soro com boa qualidade proteica, sem restos de coagulante ativo (Dalgleish,

1992; Fox e Kelly, 2004). Adicionalmente, devem cumprir as regras e regulamentos

em vigor de cada país, restrições tecnológicas e econômicas, bem como o mercado-

alvo (certificação kosher, aprovação orgânico ou vegetariano) (Rolet-Répécaud et al.,

2013).

Nas últimas décadas, diversos coagulantes de origem animal, microbiana

e vegetal foram considerados substitutos potenciais para o coalho (Dalgleish, 1992;

Jacob, Jaros e Rohm, 2011). Contudo, a aplicação destas enzimas na coagulação do

leite poderia resultar em inconvenientes como a redução do rendimento da fabricação

(decorrente da intensa atividade proteolítica destas enzimas) e o aparecimento de

defeitos de aroma e sabor (especialmente o gosto amargo). Há relatos de que as

pepsinas de origem suína e avícola, esta última principalmente por questões religiosas

(Andrén, 2011), eram consideradas aceitáveis e aplicadas como coagulantes de

origem animal para a produção de queijo (Fox e McSweeney, 1997), entretanto, essas

enzimas apresentam características indesejáveis como baixa especificidade

hidrolítica (pepsina de aves), com consequente defeito no sabor e na textura dos

queijos (Fox e McSweeney, 1997; Fox et al., 2004). Também podem apresentar baixa

atividade de coagulação de leite em pH > 6,6 (pepsina suína), o que restringe sua

aplicação (Chitpinityol e Crabbe, 1998; Fox et al., 2004).

As enzimas de origem vegetal, por sua vez, apresentam atividade

proteolítica acentuada em relação ao seu poder coagulante (Ben Amira et al., 2017a).

Com isso, provocam defeitos na massa e gosto amargo ou anormal. Desta forma,

apesar de serem bastante estudadas e algumas tentativas de aplicação terem sido

realizadas com ficina, bromelina, papaína dentre outras proteases vegetais, elas não

são consideradas próprias para a fabricação de queijo (Cattaneo et al., 1994; Teixeira

et al., 2000; Fadyloglu, 2001; Patil et al., 2003; Llorente et al., 2004; Fox et al., 2004;

Moharib, 2004; Libouga et al., 2006; Low et al., 2006; Senthilkumar et al., 2006;

Chazarra et al., 2007; Egito et al., 2007; Raposo e Domingos, 2008; Vairo Cavalli et

al., 2005; Duarte et al., 2009; Pontual et al., 2012; Grozdanovic et al., 2013; Anusha

Page 30: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

30

et al., 2014). Em contrapartida, os extratos de Cynara cardunculus L. têm sido usados

durante séculos na produção artesanal de queijos a partir de leite de ovelhas, como o

Serra da Estrela, Manchego, Torta Del Casar, La Serena ou Serpa em Portugal e

Espanha, alguns deles com Denominação de Origem Controlada (DOC) (Sousa e

Malcata, 2002; Roseiro et al., 2003; Prados et al., 2007; Jacob, Jaros e Rohm, 2011;

Ben Amira et al., 2017a,b).

Cynara cardunculus L. é uma variedade de cardo que cresce

principalmente em áreas secas e pedregosas de Portugal e algumas outras partes da

Península Ibérica (Sales-Gomes e Lima-Costa, 2008; Ben Amira et al., 2017b). Uma

característica especial destes queijos é a acentuada proteólise, resultando em um

queijo cremoso e amanteigado de textura macia (Chen et al., 2003; Prados et al.,

2007; Galan et al., 2008; Pereira et al., 2008; Pino et al., 2009). No entanto, um

problema para sua aplicação na fabricação de queijos em escala automática é a

variabilidade de extratos não padronizados, sendo o pH um fator crucial para

manutenção da atividade proteolítica (Sousa e Malcata, 1996). Assim, foi realizada a

fabricação de cynarase recombinante que, como a quimosina, pode ser produzida por

micro-organismos (Fernandez-Salguero et al., 2003; Sampaio et al., 2008).

Diversas proteases extracelulares de origem microbiana possuem ação

semelhante à quimosina e são, em parte, apropriadas para a produção de queijo

(Andrén, 2011). Tais coagulantes podem ser produzidos por fermentação em

produção ilimitada, além disso, como essas enzimas não são derivadas de tecidos de

ruminantes são aceitas pelos lacto-vegetarianos (Jacob, Jaros e Rohm, 2011).

Desde a década de 60 até os dias atuais mais de 100 fungos foram

relatados com atividade de coagulação sobre o leite (Garg e Johri, 1994; Tubesha e

Al-Delaimy, 2003; Jacob, Jaros e Rohm, 2011; Silva et al., 2016; Silva et al., 2017), o

que reflete o interesse científico em coagulantes alternativos para a produção de

queijo. Três espécies, Rhizomucor miehei, Rhizomucor pusillus e Cryphonectria

parasitica foram estabelecidas para a produção em larga escala (Walstra et al., 2006;

Jacob, Jaros e Rohm, 2011). A protease aspártica produzida por R. miehei consiste

de uma única cadeia polipeptídica com alta semelhança a quimosina em relação a

sua estrutura tridimensional (Chitpinityol e Crabbe, 1998). Esta protease é o

coagulante microbiano mais comumente utilizado para a produção de queijo e

comercialmente disponível em diferentes níveis de pureza e estabilidade térmica

(Jacob, Jaros e Rohm, 2011). Na França, as preparações enzimáticas de fontes

Page 31: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

31

animais e fúngicas são as mais utilizadas. Em 2010, coalho de vitelo representou 33%

da demanda para a produção de queijos, quimosina recombinante apenas 14% e

coagulantes microbianos 53% sendo 35% para R. miehei e 18% para C. parasitica

(SPPAIL, 2010).

A protease obtida a partir de R. pusillus apresenta maior atividade de

coagulação do leite a 50 ºC e sensibilidade ao pH o que reduziu sua aplicação em

larga escala (Nouani et al., 2009). A protease de Cryphonectria é reconhecida por sua

maior atividade proteolítica e, em contraste com as proteases de Rhizomucor,

hidrolisa principalmente a β-caseína (Tam e Whitaker, 1972; Vanderporten e Weckx,

1972; Awad et al., 1999; Trujillo et al., 2000; Broome et al., 2006), entretanto, é menos

sensível a adição do Ca2+ do que as proteases do Rhizomucor. Como a quimosina, a

ligação Phe105-Met106 de κ-caseína é também preferencialmente hidrolisada pelas

proteinases ácidas de R. miehei e R. pusillus, mas a proteinase ácida da

Cryphonectria parasítica preferencialmente cliva a ligação Ser104-Phe105 (Andrén,

2011).

No entanto, ao contrário de quimosina, as proteinases destes micro-

organismos também clivam outras ligações da κ-caseína e possuem uma atividade

proteolítica mais acentuada (Chitpinityol e Crabbe, 1998). Além disso, essas enzimas

fúngicas são produzidas por fermentação em estado sólido e após a purificação, as

modificações químicas são geralmente aplicadas para reduzir suas termoestabilidade.

A alta estabilidade térmica foi a grande desvantagem da primeira geração de

proteases fúngicas, o que significa que mesmo após a pasteurização do soro a enzima

mantinha-se intacta, o que inviabilizou a aplicação deste subproduto (Jacob, Jaros e

Rohm, 2011). Apesar disso, os queijos produzidos com essas enzimas têm

apresentado boa aceitabilidade (Foltmann, 1993; Fox e McSweeney, 1997;

Chitpinityol e Crabbe, 1998; Fox et al., 2000). Contudo, mais estudos sobre a

maturação de queijo precisam ser realizados para verificar a utilidade destas enzimas

para o processamento de queijo.

A baixa especificidade dos coagulantes disponíveis industrialmente e o

custo do coalho alavancaram a busca de processos alternativos para obtenção de

novas enzimas para aplicação no processo de coagulação do leite (Rooijen et al.,

2008). Nesta busca, a engenharia genética se tornou uma ferramenta importante

(Badiefar et al., 2009), permitindo a produção de quimosina recombinante por micro-

organismos a partir do sequenciamento genético que leva à produção destas enzimas

Page 32: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

32

obtidas de vitelos e bovinos, além de animais como veados, búfalos, girafas, ovinos,

caprinos, camelos e espécies de equídeos (Jacob, Jaros e Rohm, 2011).

A quimosina recombinante é idêntica, química e funcionalmente, à

quimosina obtida a partir do coalho, com as mesmas condições ótimas de ação e

tendo o mesmo desempenho durante a coagulação e maturação do queijo (Rampilli

et al., 2005). De acordo com Johnson e Lucey (2006) estima-se que 70-80% das

enzimas utilizadas na fabricação de queijos são coalhos recombinantes. Nos EUA e

na Grã-Bretanha 80-90% de queijos são fabricados com quimosina recombinante

(GMO Compass, 2010).

É importante ressaltar que o coalho é diferente da quimosina obtida por

engenharia genética, uma vez que a primeira contém quimosina e pepsina bovina I

(gastricsina) e II, encontradas na proporção aproximada de 80% de quimosina, 3% de

gastricsina e 17% de pepsina bovina II em animais jovens (Dalgleish, 1992,

Moschopoulou et al., 2007). Algumas pesquisas relataram a importância da pepsina

bovina para uma melhor maturação controlada do queijo. Como consequência disto,

alguns coagulantes comerciais são formulações que contêm quimosina produzida por

micro-organismos por meio de engenharia genética com adição de pepsina bovina

(Fox et al., 2000).

Além disso, o coalho animal contém uma mistura de quimosinas A, B e C

na proporção aproximada de 30:55:15. Essas frações apresentam atividades e

especificidades diferentes e, para o coagulante obtido por recombinação, não ocorre

a mistura de mais de um tipo de quimosina; ele é composto exclusivamente pelo tipo

A ou B (Fox et al., 2000), o que pode reduzir um pouco as faixas de ação da enzima.

Novas pesquisas vêm sendo realizadas para obtenção de quimosina de

outras espécies. Dentro deste contexto, trabalhos mais recentes destacam-se a

utilização de quimosina obtida de camelo (Camelus dromedarius) expressa em A.

niger var. awamori (Jacob, Jaros e Rohm, 2011). Kappeler et al. (2006) descreveram

a produção e purificação em escala piloto de quimosina recombinante de camelo,

utilizando cromatografia de afinidade. Esta enzima apresenta uma atividade específica

sobre a κ-caseína cerca de 70% superior comparada com a quimosina recombinante

obtida do vitelo e uma atividade proteolítica inferior, sendo atualmente produzida em

escala industrial, por Chr. Hansen A/S (Hoersholm, Dinamarca) e comercialmente

disponível desde o final de 2009 (Jacob, Jaros e Rohm, 2011). No entanto,

mercadologicamente, os coagulantes geneticamente modificados apresentam uma

Page 33: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

33

restrição de uso por parte dos produtores e consumidores tradicionais, tal fato é

evidente na França, país no qual apenas 14% dos queijos produzidos usam quimosina

recombinante (SPPAIL, 2010).

1.1.5 Desafios da produção de queijos: custo e atividade das enzimas

responsáveis pelo processo de coagulação

A etapa de coagulação é crítica para a produção de queijos e ainda não se

tem um coagulante substituto do coalho de vitelo adequado, considerando-se a

atividade e especificidade. O uso de engenharia genética através da produção de

coalhos recombinantes melhora o desempenho das enzimas microbianas para

aplicação na produção de queijos, mas ainda assim, não representam uma solução

final para o desafio da produção de coagulantes com custo e desempenho adequados,

além de todas as certificações.

Recentemente, novos processos, como ultrasom, micro-ondas e alta

pressão dinâmica (APD), se mostraram capazes de promover alterações de atividade

e estabilidade em enzimas, melhorando o desempenho das mesmas com

consequente redução de seus custos (Cano, Hernández e Ancos, 1997; Barton,

Bullock e Weir, 1996; Rejasse et al., 2007).

O ultrasom, utilizado durante a ação das enzimas sobre o substrato, resulta

em aumento de atividade por melhorar a difusividade e transferência de massa de

produtos e substratos (Lee et al., 2008), tornando os processos mais efetivos,

principalmente quando existe algum tipo de inibição (Barton, Bullock e Weir, 1996) ou

quando se trata de enzimas imobilizadas, onde o uso de ultrasom aumenta a

superfície de contato (Mason, Paniwnyk e Lorimer, 1996). Além disso, o processo

também pode promover alterações no substrato, como quebra de regiões helicoidais,

favorecendo o acesso das enzimas (Jian, Wenyi e Wuyong, 2008).

O processamento por micro-ondas foi estudado por alguns autores que

observaram aumento de atividade, estabilidade e/ou seletividade enzimática após

aplicação de micro-ondas de baixa energia em meio não aquoso (Roy e Gupta, 2003).

Isso pode ser explicado pela transferência direta de energia do campo magnético para

as regiões polares das enzimas, aumentando a flexibilidade das mesmas, sua

reatividade (Rejasse et al., 2007) e as colisões entre enzima e substrato (Yadav e

Page 34: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

34

Lathi, 2005). Resultados prévios obtidos para enzimas tratadas por micro-ondas

também indicam aumento de atividade (Rejasse et al., 2007).

A alta pressão dinâmica de (APD) também foi recentemente descrita como

um processo capaz de alterar a atividade de enzimas (Vannini et al., 2004; Dosualdo

2007; Lanciotti et al., 2007; Lucci et al., 2007; Welti-Chanes et al., 2009; Liu et al.,

2009a,b; Tribst e Cristianini, 2012a,b; Tribst, Augusto e Cristianini, 2012; Leite Júnior,

Tribst e Cristianini, 2014; Leite Júnior et al., 2014; Leite Júnior, Tribst e Cristianini,

2015), sendo observado ativação ou inativação das mesmas, dependendo do tipo de

enzima avaliada, das condições do processo e do método de determinação da

atividade. Esses resultados estão correlacionados com as alterações promovida pelo

processo sobre a conformação molecular das enzimas estudadas (Liu et al., 2009a,b;

Tribst e Cristianini, 2012b; Tribst, Augusto e Cristianini, 2012). Assim, a aplicação de

algumas tecnologias não convencionais tem se destacado pela melhoria do

desempenho de enzimas.

1.1.6 Uso da alta pressão isostática em enzimas: Nova proposta para melhorar

o desempenho de enzimas utilizadas na coagulação do leite

A alta pressão isostática (API) também conhecida como alta pressão

hidrostática (APH) é uma tecnologia emergente no processamento de alimentos

desenvolvida com o primeiro propósito de substituir o processamento térmico de

alimentos visando à inativação de micro-organismos com menores danos às suas

características físicas e sensoriais. Algumas pesquisas se dedicaram a avaliar o efeito

do processo sobre enzimas e indicaram que o processo é capaz de promover a

ativação (Mozhaev et al., 1996; Sila et al., 2007; Eisenmenger e Reyes-de-Corcuera,

2009a, b; Leite Júnior et al., 2016a; Leite Júnior et al., 2017) e estabilização de

enzimas (Mozhaev et al., 1996; Eisenmenger e Reyes-de-Corcuera, 2009a, b; Leite

Júnior et al., 2016a; Leite Júnior et al., 2017), pela aplicação de baixas pressões (até

400MPa) e temperaturas moderadas (Kudryashova et al., 1998; Knnor, 1999; Sila et

al., 2007).

Além destas variáveis, o efeito nas enzimas depende do solvente e do

substrato utilizado (Eisenmenger e Reyes-de-Corcuera, 2009a). O aumento de

atividade foi relatado tanto em enzimas previamente processadas por API (Cano,

Hernández e Ancos, 1997; Hernández e Cano, 1998; Katsaros et al., 2009) como nas

Page 35: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

35

reações enzimáticas conduzidas a API (Mozhaev et al., 1996; Kudryashova et al.;

1998; Sila et al., 2007; Eisenmenger e Reyes-de-Corcuera, 2009b).

Segundo Knnor (1999), a ativação de enzimas pela alta pressão é

observada apenas para enzimas monoméricas, entretanto, segundo Eisenmenger e

Reyes-de-Corcuera (2009a), a ativação por API já foi relatada para pelo menos 15

enzimas diméricas ou tetraméricas. Para cada enzima há um limite de pressão a ser

aplicada, a partir do qual se observa perda de atividade devido à desnaturação com

perda de funcionalidade (Kudryashova et al., 1998; Sila et al., 2007; Eisenmenger e

Reyes-de-Corcuera, 2009a; Leite Júnior et al., 2016b; Leite Júnior et al., 2017).

O processo de pressurização, seguindo o princípio de “Le Chatelier”, induz

a redução de volume molecular (Knnor, 1999), acelerando, de forma exponencial, a

ocorrência de reações favorecidas nessas condições (Mozhaev et al., 1996). Em

termos moleculares, quando a API é aplicada apenas na enzima, o processo pode

induzir a ativação pelo aumento da flexibilidade conformacional por meio da

hidratação dos seus grupos carregados (Eisenmenger e Reyes-de-Corcuera,

2009a,b). Além disso, pode aumentar a estabilidade das enzimas pela interação

intramolecular, hidratação de grupos carregados e estabilização das pontes de

hidrogênio (Eisenmenger e Reyes-de-Corcuera, 2009a,b), sendo a hidratação de

grupos carregados e não polares o principal fator capaz de fortalecer a hidratação das

proteínas, prevenindo a desnaturação.

Quando o processo é realizado em presença do substrato, ainda é possível

o aumento das interações físicas da molécula com o substrato (Eisenmenger e Reyes-

de-Corcuera, 2009a) e aumento da concentração de grupos polares e carregados no

complexo de Michaelis e no estado de transição (Kudryashova et al., 1998), com

consequente aumento na taxa das reações. Além disso, a pressurização também

pode provocar a alteração do fator limitante da reação ou alteração no meio de

reação/substrato, aumentando a obtenção do produto da reação enzimática

(Eisenmenger e Reyes-de-Corcuera, 2009a).

Assim, a API pode ser uma ferramenta interessante no processamento de

modificação de enzimas, pois além de promover aumento de atividade e melhoria na

especificidade, também pode resultar em aumento de estabilidade enzimática,

conforme previamente verificado (Eisenmenger e Reyes-de-Corcuera, 2009a,b).

Os efeitos da API no leite têm sido intensivamente estudados visando à

inativação de micro-organismos e avaliação dos efeitos sobre os seus macro-

Page 36: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

36

constituintes (Liu et al., 2005; Huppertz et al., 2006; Devi et al., 2015; Garrido et al.,

2015). Outros estudos focaram na produção de queijo com leite tratado previamente

por API ou conduziram o processo de pressurização após a fabricação dos queijos.

A produção de queijos utilizando leite processado por API é vantajosa, uma

vez que além da redução da carga microbiológica (Tomasula et al., 2014; Evert-

Arriagada et al., 2014), o processo reduz o tamanho das micelas (permitindo a

interação mais rápida entre as proteínas) e causa agregação parcial das proteínas do

soro à matriz caseica (aumentando o rendimento do processo) (Huppertz et al., 2006;

Zamora et al., 2007).

Por outro lado, pressões muitos elevadas (> 500 MPa) por longos períodos

(> 30 minutos) podem dificultar o processo de coagulação devido à agregação total e

irreversível das proteínas do soro na micela de caseína, o que dificulta a ação do

coalho e coagulantes (Trujilo et al., 2000). Outra aplicação importante da API em

queijos se faz pela otimização da maturação visando a redução ou o aumento da

proteólise/lipólise em diferentes estágios de cura (Calzada et al., 2013 a, b; Calzada

et al., 2014 a, b; Costabel et al., 2016)

Apesar do processo de API ter sido bastante estudado em produtos lácteos

e também apresentar resultados efetivos no aumento de atividade e estabilidade de

enzimas, o efeito especificamente sobre as enzimas coagulantes do leite ainda não

havia sido estudado. Assim, esse projeto teve por objetivo ser um trabalho de base

para avaliar a influência da alta pressão isostática sobre cinco enzimas utilizadas no

processo de fabricação de queijo e avaliar as mudanças no coágulo de leite formado.

1.2 Objetivos

O objetivo geral do trabalho foi avaliar o efeito da alta pressão isostática

(API) sobre cinco enzimas utilizadas no processo de fabricação de queijo. Para uma

avaliação global deste objetivo, o mesmo foi subdividido em alguns objetivos

específicos:

1. Otimizar as condições de processamento por API para maximizar a

atividade de coagulação do leite (ACL) de cinco coagulantes (protease obtida do

Rhizomucor miehei, coalho de vitelo, quimosina recombinante, coalho de bovino e

Page 37: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

37

pepsina suína) e acompanhar o processo de coagulação do leite por diferentes

metodologias (Capítulos 2, 3, 4 e 5).

2. Para aquelas enzimas que apresentaram aumento de ACL em condições

otimizadas após API objetivou-se também: avaliar o grau de hidrólise da κ-caseína (κ-

CN) durante ação dessas enzimas, por meio da análise de eletroforese capilar

(Capítulo 6), avaliar a ACL em diferentes temperaturas e pH e a estabilidade

enzimática em diferentes valores de pH (Capítulo 7). Por fim, objetivou-se avaliar o

efeito do processo de API sobre a conformação molecular das enzimas processadas

em condições de ativação e inativação (Capítulo 8).

1.3 Referências (Introdução Geral e Revisão Bibliográfica)

Agudelo, R. A.; Gauthier, S. F.; Pouliot, Y., Marin, H.; Savoie, L. Kinetics of peptide

fraction release during in vitro digestion of casein. Journal of the Science of Food

and Agriculture, v.84, p. 325–333, 2004.

Amenu, B.; Deeth, H. C. The impact of milk composition on Cheddar cheese

manufacture. Australian Journal of Dairy Technology, v. 62, p. 171-184, 2007.

Andrén, A. Cheese: Rennets and Coagulants. In J. W. Fuquay, P. F. Fox, & P. L. H.

McSweeney (Eds.), Encyclopedia of Dairy Sciences, 2nd ed., (pp. 574-

578). London:Elsevier Academic Press, 2011.

Anusha, R.; Singh, M. K.; Bindhu, O. Characterisation of potential milk coagulants from

Calotropis gigantea plant parts and their hydrolytic pattern of bovine casein. European

Food Research and Technology, v. 238, p. 997-1006, 2014.

Auldist, M.; Mullins, C.; O’Brien, B.; Guinee, T. A comparison of the formagraph and

low amplitude strain oscillation rheometry as methods for assessing the rennet

coagulation properties of bovine milk. Milchwissenschaft, v. 56, p. 89–92, 2001.

Awad, S.; Lu¨thi-Peng, Q. Q.; Puhan, Z. Proteolytic activities of Suparen and Rennilase

on buffalo, cow, and goat whole casein and β-casein. Journal of Agricultural and

Food Chemistry, v. 47, p. 3632–3639, 1999.

Page 38: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

38

Badiefar, L.; Ahmadian, G.; Asgarani, E.; Ghandili, S.; Salek Esfahani, M.;

Khodabandeh, M. Optimization of conditions for expression and activation of a splice

variant of prochymosin lacking exon 6 in Escherichia coli. International Journal of

Dairy Technology, v. 62, p.265–271, 2009.

Barton, S.; Bullock, C.; Weir, D. The effects of ultrasound on the activities of some

glycosidase enzymes of industrial importance. Enzyme and Microbial Technology,

v.18, p.190-194, 1996.

Ben Amira, A.; Makhlouf, I.; Petrut, R. F.; Francis, F.; Bauwens, J.; Attia, H.; Besbes,

S.; Blecker, C. Effect of extraction pH on techno-functional properties of crude extracts

from wild cardoon (Cynara cardunculus L.) flowers. Food Chemistry, v. 225, p. 258-

266, 2017a.

Ben Amira, A.; Bauwens, J.; De Pauw, E.; Besbes, S.; Attia, H.; Francis, F.; Blecker,

C. Identification of proteins from wild cardoon flowers (Cynara cardunculus L.) by a

proteomic approach. Journal Chemistry Biological, v. 10, p. 25–33, 2017b.

Bonisch, M.P.; Heidebach, T.C.; Kulozik, U. Influence of transglutaminase protein

cross-linking on the rennet coagulation of casein. Food Hydrocolloids, v.22, p. 288–

297, 2008.

Broome, M. C.; Xu, X.; Mayes, J. J. Proteolysis in Cheddar cheese made with

alternative coagulants. Australian Journal of Dairy Technology, v. 61, p. 85–87,

2006.

Calzada, J.; del Olmo, A.; Picon, A.; Gaya, P.; Nuñez, M.; Olmo, A. del; Picon, A.;

Gaya, P.; Nuñez, M. High-pressure processing for the control of lipolysis, volatile

compounds and off-odours in raw milk cheese. Food and Bioprocess Technology,

v.7, p. 2207–2217, 2013a.

Page 39: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

39

Calzada, J.; Olmo, A. del; Picon, A.; Gaya, P.; Nuñez, M. Using high-pressure

processing for reduction of proteolysis and prevention of over-ripening of raw milk

cheese. Food and Bioprocess Technology, p. 1–10, 2013b.

Calzada, J.; del Olmo, A.; Picon, A.; Nuñez, M. Effect of high-pressure-processing on

lipolysis and volatile compounds of Brie cheese during ripening and refrigerated

storage. International Dairy of Journal, v.39, p. 232–239, 2014a.

Calzada, J.; Olmo, A. del; Picon, A.; Gaya, P.; Nuñez, M. Effect of high-pressure-

processing on the microbiology, proteolysis, texture and flavour of Brie cheese during

ripening and refrigerated storage. International Dairy Journal, v. 37, p. 64–73, 2014b.

Cano, M. P.; Hernandez, A.; Ancos, B. High pressure and temperature effects on

enzyme inactivation in strawberry and orange products. Journal of Food Science, v.

62, n.1, p. 85-88, 1997.

Carvalho, M. P.; Venturini, C. E. P.; Galan, V. B. As grandes oportunidades do

mercado de queijos no Brasil. 2016. [Documento da Internet]. Disponível em:

https://www.milkpoint.com.br/industria/radar-tecnico/mercado/as-grandes-

oportunidades-do-mercado-de-queijos-no-brasil-93301n.aspx Acessado em 13 de

Jan, 2017.

Cattaneo T. M. P.; Nigro, F.; Messina, G.; Giangiacomo, R. Effect of an enzymatic

complex from pineapple pulp on the primary clotting phase. Milchwissenschaft, v. 49,

p.269–272, 1994.

Chakraborty, S.; Kaushik, N.; Rao, P. S.; Mishra, H. N. High-pressure inactivation of

enzymes: A review on its recent applications on fruit purees and juices.

Comprehensive Reviews in Food Science and Food Safety, v.13, p. 578-596,

2014.

Chazarra, S.; Sidrach, L.; Lopez-Molina, D.; Rodriguez-Lopez, J. Characterization of

the milk-clotting properties of extracts from artichoke (Cynara scolymus, L.) flowers.

International Dairy Journal, v. 17, p. 1393–1400, 2007.

Page 40: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

40

Chen, S. J.; Agboola, S.; Zhao, J. Use of Australian cardoon extract in the manufacture

of ovine milk cheese. A comparison with commercial rennet preparations.

International Journal of Food Science and Technology, v.38, p.799–807, 2003.

Chitpinityola, S.; Crabbe, M.J.C. Chymosin and aspartic proteinases. Food

Chemistry, v. 6, n. 4, p. 395-418, 1998.

Costabel, L.M.; Bergamini, C.; Vaudagna, S.R.; Cuatrin, A.L.; Audero, G.; Hynes, E.

Effect of high-pressure treatment on hard cheese proteolysis. Journal of Dairy

Science, p. 1-13, 2016.

Crabbe, M. J. C. Rennets: general and molecular aspects. In. Cheese: Chemistry,

Physics and Microbiology, Vol. 1, pp. 19–46. Fox, P. F., McSweeney, P. L. H.,

Cogan, T. Mand Guinee, T. P. eds. Amsterdam: Elsevier, 2004.

Dalgleish, D.G. Coagulation of renneted bovine casein micelles- dependence on

temperature, calcium ion concentration and ionic strength. Journal of Dairy

Researcher, v. 50, p. 331-340, 1983.

Dalgleish, D. G. Enzymatic coagulation of milk. In Developments in Dairy Chemistry,

Vol. 1, pp. 63–96. Fox P F, ed. London: Elsevier Applied Science, 1992.

Dalgleish, D. G.; Spagnuolo, P. A.; Goff, H. D. A possible structure of the casein micelle

based on high-resolution field-emission scanning electron microscopy. International

Dairy Journal, .v 14, p. 1025-1031, 2004.

De Kruif, C.G.; Holt, C. Casein micelle structure, functions and interactions. In:

Advanced Dairy Chemistry. I. Proteins, 3rd edn, Fox, P.E and McSweeney, P.L.H. eds,

Kluwer, Dordrecht. pp. 233-276, 2003.

Devi, A.F.; Buckow, R.; Singh, T.; Hemar, Y.; Kasapis, S. Colour change and

proteolysis of skim milk during high pressure thermal–processing. Journal of Food

Engineering, v, 147, p. 102–110, 2015.

Page 41: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

41

Dosualdo, G.L. Efeito do processo de homogeneização a ultra alta pressão na

redução da carga microbiana e da atividade enzimática da água de coco. 2007.

153p. Dissertação (Mestrado em Tecnologia de Alimentos) – Faculdade de

Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, 2007.

Duarte, A. R.; Duarte, M. D. R.; Moreira, K. A.; Cavalcanti, M. T. H.; de Lima, J. L.;

Porto, A. L. F. Jacaration corumbensis O. Kuntze a new vegetable source for milk-

clotting enzymes. Brazilian Archives of Biology and Technology, v.52, p. 1–9,

2009.

Egito, A. S.; Girardet, J.-M.; Laguna, L.E.; Poirson, C.; Mollé, D.; Miclo, L.; Humbert,

G.; Gaillard, J.-L. Milk-clotting activity of enzyme extracts from sunflower and albizia

seeds and specific hydrolysis of bovine κ-casein. International Dairy Journal, v; 17,

p. 816-825, 2007.

Eisenmenger, M.J.; Reyes-De-Corcuera, J.I. High pressure enhancement of enzymes:

a review. Enzymes and Microbial Techology, v. 45 (5), p. 331-347, 2009a.

Eisenmenger, M.J.; Reyes-De-Corcuera, J.I. High hydrostatic pressure increased

stability and activity of immobilized lipase in hexane. Enzymes and Microbial

Techology, v. 45 (2), p. 118-125, 2009b.

Evert-Arriagada, K.; Hernández-Herrero, M.M.; Guamis, B.; Trujillo, A.J. Commercial

application of high-pressure processing for increasing starter-free fresh cheese shelf-

life. LWT - Food Science and Technology, v. 55, p. 498–505, 2014.

Fadyloglu, S. Immobilization and characterization of ficin. Nahrung ⁄ Food, v. 45, p.

143–146, 2001.

FAO [Food Agriculture Organization], 2010. Milk and Milk Products. [Documento da

Internet] Disponível em: http://www.fao.org/docrep/011/ai474e/ai474e10.htm

Acessado em 27 de Mai, 2013.

Page 42: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

42

Farrell Jr., H. M.; Brown, E.M.; Hoagland, P.D.; Malin, E.L. Higher order structures

in casein: a paradox. In: Fox PF, Sweeney PLH, editors. Advanced Dairy Chemistry-

1, Proteins, Part A. New York (NY): Kluwer Academic; p. 203–231, 2003.

Farrell Jr., H. M.; Jimenez-Flores, R.; Bleck, G. T.; Brown, E. M.; Butler, J. E.; Creamer,

L. K.; Hicks, C. L.; Hollar, C. M.; Ng-Kwai-Hang, K. F.; Swaisgood, H. E. Nomenclature

of the proteins of cows’ milk-sixth revision. Journal of Dairy Science, v. 87, n.6, p.

1641–1674, 2004.

Farrell Jr., H. M.; Malin, E. L.; Brown, E. M.; Qi, P. X. Casein micelle structure: what

can be learned from milk synthesis and structural biology? Current Opinion in Colloid

& Interface Science, v. 11. P. 135-147,2006.

Fernández-Salguero, J.; Prados, F.; Calixto, F.; Vioque, M.; Sampaio, P.; Tejada, L.

Use of recombinant cyprosin in the manufacture of ewe’s milk cheese. Journal of

Agricultural and Food Chemistry, v. 51, p. 7426–7430, 2003.

Foltmann, B. General and molecular aspects of rennets. In: Fox, P.F. (Ed.), Cheese

Chemistry, Physics and Microbiology, vol. 1. , 2nd ed. Chapman & Hall, London,

pp. 37–68, 1993.

Fox, P. F.; Brodkorb, A. The casein micelle: Historical aspects, current concepts and

significance. International Dairy Journal, v.18, p.677-684, 2008.

Fox, P. F.; Kelly. A, L. The caseins. In. Proteins in Food Processing, p. 29–71. Yada

R Y, ed. Boca Raton, FL: CRC Press, 2004.

Fox, P. F.; Mc Sweeney, P. L. H. Rennets: their role in milk coagulation and cheese

ripening. In: Law, B.A. (Ed.), Microbiology and Biochemistry of Cheese and

Fermented Milk. Blackie Academic & Professional, London, p. 1–49, 1997.

Fox, P.F.; McSweeney, P.L.H. Dairy Chemistry and Biochemistry. London: Blackie

Academic and Professional, 1998.

Page 43: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

43

Fox, P. F.; Guinee, T. P.; Cogan, T. M.; Mc Sweeney, P. L. H. Fundamentals of

Cheese Science. Gaithersberg, MD, USA: Aspen Publishers, 2000.

Fox, P. F.; Mc Sweeney, P. L. H.; Cogan, T. M.; Guinee, T. P. Cheese: Chemistry,

Physics and Microbiology. London: Chapman e Hall, v. 1, 617p. 2004.

Fox, P. F. Rennets and their action in cheese manufacture and ripening.

Biotechnology and Applied Biochemistry. v.10, p.522–535, 1988.

Galan, E.; Prados, F.; Pino, A.; Tejada, L.; Fernández-Salguero, J. Influence of

different amounts of vegetable coagulant from cardoon Cynara cardunculus and calf

rennet on the proteolysis and sensory characteristics of cheeses made with sheep

milk. International Dairy Journal, v. 18, p. 83–98, 2008.

Garg, S. K.; Johri, B. N. Rennet: current trends and future research. Food Reviews

International, v. 10, p. 313–355, 1994.

Garrido, M.; Contador, R.; García-Parra, J.; Delgado, F.J.; Delgado-Adámez, J.;

Ramírez, R., Volatile profile of human milk subjected to high-pressure thermal

processing. Food Research International. v. 78, p. 186–194, 2015.

GMO Compass. (2010). Chymosin [WWW page]. URL. http://www.gmo-

compass.org/eng/database/enzymes/83.chymosin.html. Acessado em 10/07/2013.

Grozdanovic, M. M.; Burazer, L.; Gavrovic-Jankulovic, M.; Kiwifruit (Actinidia deliciosa)

extract shows potential as a low-cost and efficient milk-clotting agent. International

Dairy Journal, v. 32, p. 46-52, 2013.

Haki, G.D.; Rakshit, S.K. Developments in industrially important thermostable

enzymes: a review. Biosource Technology, v. 89, p. 17-34, 2003.

Hernández, A.; Cano, M.P. High-pressure and temperature effects on enzyme

inactivation in tomato puree. Journal of Agricultural Food Chemistry, v. 46, p. 266-

270, 1998.

Page 44: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

44

Holt, C. Structure and stability of bovine casein micelles. Advances in Protein

Chemistry v.43, p. 63–151, 1992.

Horne, D. S. Casein interactions: casting light on the black boxes, the structure in dairy

products. International Dairy Journal, v. 8, p. 171-177, 1998.

Huppertz, T.; Fox, P.F.; de Kruif, K.G.; Kelly, A.L. High pressure-induced changes in

bovine milk proteins: A review. Biochimica et Biophysica Acta - Proteins and

Proteomics, v. 1764, p. 593–598, 2006.

Hyslop, D. B. Enzymatic coagulation of milk. In Advanced Dairy Chemistry, Vol. 1,

pp. 839–878. Fox P F, Mc Sweeney P L H, eds. New York: Kluwer, 2003.

Jacob, M.; Jaros, D.; Rohm, H. Recent advances in milk clotting enzymes.

International Journal of Dairy Technology, v.64, n.1, p. 14-33, 2011

Jayani, R.S.; Saxena, S.; Gupta, R. Microbial pectinolytic enzymes: A review. Process

Biochemistry, v. 40, p. 2931-9244, 2005.

Jian, S.; Wenyi, T.; Wuyong, C. Ultrasound-accelerated enzymatic hydrolysis of solid

leather waste. Journal of Cleaner Production, v. 16, p. 591-597, 2008.

Johnson, M. E.; Lucey, J. A. Major technological advances and trends in cheese.

Journal of Dairy Science, v. 89, p.1174–1178, 2006.

Kappeler, S. R.; van den Brink, H. J.; Rahbeck-Nielsen, H.; Farah, Z.; Puhan, Z.;

Hansen, E. B.; Johansen, E. Characterization of recombinant camel chymosin reveals

superior properties for the coagulation of bovine and camel milk. Biochemical and

Biophysical Research Communications, v. 342, p. 647–654, 2006.

Karlsson, A. O.; Ipsen, R. Ardo, Y. Rheological properties and microstructure during

rennet induced coagulation of UF concentrated skim milk. International Dairy

Journal, v. 17, p. 674–682, 2007.

Page 45: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

45

Katsaros, G.I.; Giannoglou, M.N.; Taoukis, P.S. Kinetic study of the combined effect of

high hydrostatic pressure and temperature on the activity of Lactobacillus delbrueckii

ssp. bulgaricus aminopeptidases. Journal of Food Science, v. 74 (5), p. 219-225,

2009.

Knnor, D. Novel approaches in food-processing technology: new technologies for

preserving foods and modifying function. Current Opinion in Biotechnology, v. 10

(5), p. 485-491, 1999.

Krajewska, B. Application of chitin- and chitosan-based materials for enzyme

immobilizations: a review. Enzyme and Microbial Technology, v. 35, p. 126-139,

2004.

Kudryashova, E.V.; Mozhaev, V.V; Balny, C. Catalytic activity of thermolysin under

extremes of pressure and temperature: modulation by metal ions. Biochimica et

Biophysica Acta, v. 1386, p. 199-210, 1998.

Lagaude, A.; Fernandez, L.; Cuq, J.; Marchesseau, S. Characterization of curd

formation during the rennet coagulation of milk by an optical microscopic method.

International Dairy Journal, v. 14, p. 1033–1039, 2004.

Lanciotti, R.; Patrignani, F.; Iucci, L.; Saracino, P.; Guerzoni, M.E. Potential of high

pressure homogenization in the control and enhancement of proteolytic and

fermentative activities of some Lactobacillus species. Food Chemistry, v. 102 (2), p.

542-550, 2007.

Law, B. A. Microbiology and Biochemistry of Cheese and Fermented Milk, 2 ed.

London: Blackie Academic & Professional, 1997. p. 1-6.

Lee, S.H.; Nguyen, H.M.; Koo, Y-M., Ha, S.H. Ultrasound-enhance lipase activity in

the syntesis of sugar ester using ionic liquids. Process Biochemistry, v. 43, p. 1009-

1012, 2008.

Page 46: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

46

Lehninger, A.L.; Nelson, D.L.; Cox, M.M. Enzymes. Lehninger, A.L.; Nelson, D.L.; Cox,

M.M. Principles of Biochemistry. New York: Worth Publishers, 1993.

Leite Júnior, B. R. C.; Tribst, A. A. L.; Cristianini, M. Proteolytic and milk-clotting

activities of calf rennet processed by high pressure homogenization and the influence

on the rheological behavior of the milk coagulation process. Innovative Food Science

and Emerging Technology, v. 21, p. 44-49, 2014.

Leite Júnior, B. R. C.; Tribst, A. A. L.; Cristianini, M. High pressure homogenization of

porcine pepsin protease: effects on enzyme activity, stability, milk coagulation profile

and gel development. PloS ONE, 10, e0125061, 2015a.

Leite Júnior, B. R. C.; Tribst, A. A. L.; Bonafe, C. F. S.; Cristianini, M. Determination of

the influence of high pressure processing on calf rennet using response surface

methodology: Effects on milk coagulation. LWT - Food Science and Technology, v.

65, p. 10-17, 2016a.

Leite Júnior, B. R. C.; Tribst, A. A. L.; Cristianini, M. Comparative effects of high

isostatic pressure and thermal processing on the inactivation of Rhizomucor miehei

protease. LWT - Food Science and Technology, v. 65, p. 1050-1053, 2016b.

Leite Júnior, B. R. C., Tribst, A. A. L., & Cristianini, M. The effect of high pressure

processing on recombinant chymosin, bovine rennet and porcine pepsin: Influence on

the proteolytic and milk-clotting activities and on milk-clotting characteristics. LWT -

Food Science and Technology, v. 76, p. 351-360, 2017.

Libouga, D. G.; Vercaigne-Marko, D.; Djangal, S. L. Study of a suitable cheese making

milk clotting agent from Balanites aegyptica fruits. Tropicultura, v. 24, p. 229–238,

2006.

Liu, X.; Powers, J.R.; Swanson, B.G.; Hill, H.H.; Clark, S. Modification of whey protein

concentrate hydrophobicity by high hydrostatic pressure. Innovative Food Science

and Emerging Technology, v. 6, p. 310–317, 2005.

Page 47: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

47

Liu, W.; Liu, J.; Xie, M.; Liu, C.; Liu, W.; Wan, J. Characterization and high-pressure

microfluidization-induced activation of polyphenoloxidase from Chinese pear (Pyrus

pyrifolia Nakai). Journal of Agricultural and Food Chemistry, 57, 5376–5380,

2009a.

Liu, W.; Liu, J.; Liu, C.; Zhong, Y.; Liu, W.; Wan, J. Key, S. Activation and

conformational changes of mushroom polyphenoloxidase by high pressure

microfluidization treatment. Innovative Food Science and Emerging Technologies,

v. 10, p. 142–147, 2009b.

Llorente, B. E.; Brutti, C. B.; Caffini, B. O. Purification and characterization of a milk-

clotting aspartic proteinase from Globe Artichoke (Cynara scolymus L.). Journal of

Agricultural and Food Chemistry, v. 52, p. 8182-8189, 2004.

Low, Y. H.; Agboola, S.; Zhao, H.; Lim, M. Y. Clotting and proteolytic properties of plant

coagulants in regular and ultrafiltered bovine skim milk. International Dairy Journal,

v. 16, p. 335–343, 2006.

Lucci, L.; Patrignani, F.; Vallicelli, M.; Guerzoni, M.E.; Lanciotti, R. E. Effects of high

pressure homogenization on the activity of lysozyme and lactoferrin against Listeria

monocytogenes. Food Control, v. 18, p. 558–565, 2007.

Lucey, J. A. Formation and physical properties of milk protein gels. Journal of Dairy

Science, v.85, p.2, 281–294, 2002a.

Lucey, J. A. Rennet coagulation of milk. In: Encyclopedia of Dairy Sciences. H.

Roginski, J. W. Fuquay & P. F. Fox, eds., Academic Press, London, pp. 286-293,

2002b.

Lucey, J. A. Cheese | Rennet-Induced Coagulation of Milk. In: J. W. Fuquay, P. F.

Fox, & P. L. H. McSweeney (Eds.), Encyclopedia of Dairy Sciences, 2nd ed., (pp. 579-

584). London:Elsevier Academic Press, 2011.

Page 48: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

48

Lucey, J. A.; Johnson, M. E.; Horne, D. S. Perspectives on the basis of the rheology

and texture properties of cheese. Journal of Dairy Science, v. 86, p. 2725-2743,

2003.

Mason, T.J.; Paniwnyk, L.; Lorimer, J.P. The uses of ultrasound in food technology.

Ultrasonics Sonochemistry, v. 3, p. S253-S260, 1996.

McMahon, D. J.; Oommen, B. S. Supramolecular structure of the casein micelle.

Journal of Dairy Science, v. 91, p. 1709-1721, 2008.

Moharib S A. Protease activities in seeds of fenugreek (Trigonella foenum-graecum).

Advances in Food Sciences, v. 26, p. 69–74, 2004.

Moschopoulou, E.; Kandarakisa, I.; Anifantakis, E. Characteristics of lamb and kid

artisanal liquid rennet used for traditional Feta cheese manufacture. Small Ruminant

Research, v.72, p.237–241, 2007.

Mozhaev, V.V.; Lange, R; Kudryashova, E.V; Balny, C. Application of high hydrostatic

pressure for increasing activity and stability of enzymes. Biotechnology and

Bioengineering, v. 52, p. 320-331, 1996.

Nouani, A.; Dako, E.; Morsli, A.; Belhamiche, N.; Belbraouet, S.; Bellal, M. M.; Dadie,

A. Characterization of the purified coagulant extracts derived from artichoke flowers

(Cynara scolymus) and from the fig tree latex (Ficus carica) in light of their use in the

manufacture of traditional cheeses in Algeria. Journal of Food Technology, v. 1, p.

20-29, 2009.

Pandey, P. K.; Ramaswamy, H. S.; St-Gelais, D. Water-holding capacity and gel

strength of rennet curd as affected by high pressure treatment of milk. Food Research

International, v. 33, p. 655 –663, 2000.

Papoff, C. M.; Mauriello, R.; Pirisi, A.; Piredda, G.; Addis, M.; Chianese, L. Proteolytic

activity of animal rennet on ovine casein. Michwissenschaft, v. 59, p.414–417, 2004.

Page 49: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

49

Patil, S. V.; Salunke, B. K.; Bhat, J. A. Herbal rennet from Calotropis gigantea. Journal

of Medicinal and Aromatic Plant Science, v. 25, p. 392–396, 2003.

Pereira, C. I.; Gomes, E. O.; Gomes, A. M. P.; Malcata, F. X. Proteolysis in model

Portuguese cheeses: Effects of rennet and starter culture. Food Chemistry, v. 108, p.

862–868, 2008.

Phadungath, C. Casein micelle structure: a concise review. Songklanakarin Journal

of Science and Technology, v. 27, p. 201-212, 2005.

Pino, A.; Prados, F.; Galan, E.; Mc Sweeney, P. L. H.; Fernández-Salguero, J.

Proteolysis during the ripening of goats milk cheese made with plant coagulant or calf

rennet. Food Research International, v. 42, p. 324–330, 2009.

Pontual, E. V.; Carvalho, B. E. A.; Bezerra, R. S.; Coelho, L. C. B. B.; Napoleão, T. H.;

Paiva, P. M. G. Caseinolytic and milk-clotting activities from Moringa oleifera flowers.

Food Chemistry, v. 135, p. 1848–1854, 2012.

Prados, F.; Pino, A.; Fernández-Salguero, J. Effect of a powdered vegetable coagulant

from Cynara cardunculus in the accelerated ripening of Manchego cheese.

International Journal of Food Science and Technology, v. 42, p. 556–561, 2007.

Rejasse, B.; Lamare, S.; Legoy, M-D.; Besson, T. Influence of microwave irradiation

on enzymatic properties: application in enzyme chemistry, Journal of Enzyme

Inhibition and Medicinal Chemistry, v. 22, p. 518-526, 2007.

Rampilli, M.; Larsen, R.; Harboe, M. Natural heterogeneity of chymosin and pepsin in

extracts of bovine stomachs. International Dairy Journal, v.15, p.1130–1137, 2005.

Raposo, S.; Domingos, A. Purification and characterization of milk-clotting aspartic

proteinases from Centaura calciptrea cell suspension cultures. Process

Biochemistry, v. 43, p. 139–144, 2008.

Page 50: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

50

Rolet-Répécaud, O.; Berthier, F.; Beuvier, E.; Gavoye, S.; Notz, E.; Roustel, S.;

Gagnaire, V.; Achilleos, C. Characterization of the non-coagulating enzyme fraction of

different milk-clotting preparations. LWT - Food Science and Technology, v.50, p.

459-468, 2013.

Rooijen, G.; Richard Glenn, K.; Shen, Y.; Boothe, J. Commercial production of

chymosin in plants. US Patent Application, US 07390936, 2008.

Roseiro, L. B.; Wilbey, R. A.; Barbosa, M. Serpa cheese: technological, biochemical

and microbiological characterisation of a POD ewe’s milk cheese coagulated with

Cynara cardunculus L. Lait, v. 83, p. 469–481 2003.

Roy, I.; Gupta, M.N. Non-thermal effects of microwaves on protease-catalyzed

esterification and transesterification. Tetrahedrom, v. 59, p. 5431-5436, 2003.

Sales-Gomes, M.; Lima-Costa, M. E. Immobilization of endoproteases from crude

extract of Cynara cardunculus L. flowers. Food Science and Technology

International, v. 14, p. 271–276, 2008.

Sampaio, P.; Fortes, A. M.; Cabral, J. M. S.; Pais, M. S.; Fonseca, L. P. Production

and characterization of recombinant cyprosin B in Saccharomyces cerevisiae (W303-

1A) strain. Journal of Bioscience and Bioengineering, v. 105, p. 305–312, 2008.

Senthilkumar, S.; Ramasamy, D.; Subramanian, S. Isolation and partial

characterization of milk-clotting aspartic protease from Streblus asper. Food Science

and Technology International, v. 12, p. 103-109, 2006.

Sila, D.N.; Smout, C.; Satara, Y.; Truong, V.; Loey, A.V.; Hendrickx, M. 2007.

Combined thermal and high pressure effect on carrot pectinmethylesterase stability

and catalytic activity. Journal of Food Engineering, 78, 755-764, 2007.

Silva, R. R., Souto, T. B., Oliveira, T. B., Oliveira, L. C. G., Karcher, D., Juliano, M. A.,

Oliveira, A. H. C., Rodrigues, A. Rosa, J. C., Cabral, H. Evaluation of the catalytic

specificity, biochemical properties, and milk clotting abilities of an aspartic peptidase

Page 51: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

51

from Rhizomucor miehei. Journal of Industrial Microbiology and Biotechnology, v.

43, p. 1059-1069, 2016

Silva, R. R., Oliveira, L. C. G., Juliano, M. A., Juliano, L., Oliveira, A. H. C., Rosa, J.

C.; Cabral, H. Biochemical and milk-clotting properties and mapping of catalytic

subsites of an extracellular aspartic peptidase from basidiomycete fungus

Phanerochaete chrysosporium. Food Chemistry, v, 225, p. 45-54, 2017.

Sousa, M. J.; Malcata, F. X. Effects of processing conditions on the caseinolytic activity

of crude extracts of Cynara cardunculus L. Food Science and Technology

International, v. 2, p. 255–263, 1996.

Sousa, M. J.; Malcata, F. X. Advances in the role of a plant coagulant (Cynara

cardunculus) in vitro and during ripening of cheese from several milk species. Lait, v.

82, p. 151–170, 2002.

SPPAIL Syndicat Professionnel des Producteurs d’Auxiliaires Pour l’Industrie Laitière.

(2010). Les enzymes coagulantes sur le marché français [Text file].

URL.http://www.cniel.com/quifait/Syndicat/SPPAIL/pdf/SPPAIL_marchefrancaisenzy

mescoagulantes_2010.pdf.

Stryer, L. Enzymes: Basics concepts and kinetics. Stryer, L. Biochemistry. New York:

W H Freeman & Company, 1995.

Tam, J. R.; Whitaker, J. R. Rate and extents of proteolysis of several caseins by

pepsin, rennin, Endothia parasitica protease and Mucor pusillus protease. Journal of

Dairy Science, v. 55, p. 1523–1533, 1972.

Teixeira, G.; Santana, A. R.; Pais, M. S.; Clemente, A. Enzymes of Opuntia ficus-indica

(L.) miller with potential industrial applications. Applied Biochemistry and

Biotechnology, v. 88, p. 299–312, 2000.

Tomasula, P.M., Renye, J. a, Van Hekken, D.L., Tunick, M.H., Kwoczak, R., Toht, M.,

Leggett, L.N., Luchansky, J.B., Porto-Fett, a C.S., Phillips, J.G. Effect of high-pressure

Page 52: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

52

processing on reduction of Listeria monocytogenes in packaged Queso Fresco.

Journal of Dairy Science, v.97, p. 1281–95, 2014.

Torres, B.B. Elementos de enzimologia. In: Borzani, W.; Schmidell, W.; Lima, U.A.;

Aquarone, E. Biotecnologia industrial. Volume I – Fundamentos. São Paulo:

Editora Edgard Blücher, 2001.

Tribst, A. A. L.; Cristianini, M. High pressure homogenization of a fungi α-amylase.

Innovative Food Science and Emerging Technologies, v. 13, p. 107-111, 2012a.

Tribst, A. A. L.; Cristianini, M. Increasing fungi amyloglucosidase activity by high

pressure homogenization. Innovative Food Science and Emerging Technologies,

v. 16, p. 21-25, 2012b.

Tribst, A. A. L.; Junio, C.; Murakami, M. T.; Cristianini, M. Effects of high pressure

homogenization on the activity, stability, kinetics and three-dimensional conformation

of a glucose oxidase produced by Aspergillus niger. PloS One, v. 7, p.e103410, 2014.

Tribst, A. A. L.; Augusto, P. E. D.; Cristianini, M. The effect of the high pressure

homogenisation on the activity and stability of a commercial neutral protease from

Bacillus subtilis. International Journal of Food Science and Technology, v. 47, p.

716–722, 2012a.

Trujillo, A. J.; Guamis, B.; Laencina, J.; Lopez, M. B. Proteolytic activities of some milk

clotting enzymes on ovine casein. Food Chemistry, v. 71, p. 449–457, 2000.

Tubesha, Z. A.; Al-Delaimy, K. S. Rennin-like milk coagulant enzyme produced by a

local isolate of Mucor. International Journal of Dairy Technology, v. 56, p. 237-241,

2003.

Vairo-Cavalli, S.; Claver, S.; Priolo, N.; Natalucci, C. Extraction and partial

characterization of a coagulant preparation from Silybum marianum flowers. Its action

on bovine caseinate. Journal of Dairy Research, v. 72, n. 3, p. 271-275, 2005.

Page 53: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

53

Vanderporten, R.; Weckx, M. Breakdown of casein by rennet and microbial milk-

clotting enzymes. Netherlands Milk and Dairy Journal, v. 26, p. 47–59, 1972.

Vannini, L.; Lanciotti, R.; Baldi, D.; Guerzoni, M.E. Interactions between high pressure

homogenization and antimicrobial activity of lysozyme and lactoperoxidase.

International Journal of Food Microbiology, v. 94, p. 123– 135, 2004.

Varnam, A. H.; Sutherland, J. P. Milk and Milk Products, Technology, Chemistry

and Microbiology. 2. ed. London: Aspen Publishers, Inc., 2001. p. 1-13.

Walstra, P. On the stability of casein micelles. Journal of Dairy Science, v. 73, p.

1965-1979, 1990.

Walstra, P. Casein sub-micelles: do they exist? International Dairy Journal, v. 9, p.

189-192, 1999.

Walstra, P.; Geurts, T. J.; Noomen, A.; Jellema, A.; van Boekel, M. A. J. S. Dairy

Technology: Principles of Milk Properties and Processes. Marcel Dekker, Inc., New

York, 1999.

Walstra, P.; Wouters, J. T. M.; Geurts, T. J. Dairy Science and Technology, Boca

Raton, FL: CRC Press, 2006.

Welti-Chanes, J.; Ochoa-Velasco, C. E.; Guerrero-Béltran, J. Á. High-pressure

homogenization of orange juice to inactivate pectinmethylesterase. Innovative Food

Science and Emerging Technologies, v.10 (4), p. 457-462, 2009.

Whitaker, J.R. Principles of enzymology for the food science. New York: Marcel

Dekker, 1994.

Yadav, G.D.; Lathi, P.S. Synergism of microwaves and immobilized enzyme catalysis

in synthesis of adipic acid esters in nonaqueous media. Synthetic Communications,

v. 12, p. 1699-1705, 2005.

Page 54: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

54

Zamora, A.; Ferragut, V.; Jaramillo, P.D.; Guamis, B.; Trujillo, A.J. Effects of ultra-high

pressure homogenization on the cheese-making properties of milk. Journal of Dairy

Science, v. 90, p. 13–23, 2007.

Zoccal, R. Queijos: produção e importação. 2016 . [Documento da Internet]

Disponível em: http://www.baldebranco.com.br/queijos-producao-e-importacao/

Acessado em 11 de Jan, 2017.

Page 55: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

55

Capítulo 2. Comparative effects of high isostatic pressure

and thermal processing on the inactivation of Rhizomucor

miehei protease

Trabalho publicado na revista LWT – Food Science and

Technology: LEITE JÚNIOR, B. R. C.; TRIBST, A.A.L.;

CRISTIANINI, M. Comparative effects of high isostatic

pressure and thermal processing on the inactivation of

Rhizomucor miehei protease. LWT – Food Science

and Technology, v. 65, p. 1050-1053, 2016. doi:

http://dx.doi.org/10.1016/j.lwt.2015.09.042

Page 56: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

56

Abstract

This study compared the inactivation of the proteolytic (PA) and milk-clotting

(MCA) activities of Rhizomucor miehei protease by high isostatic pressure (HIP) up to

600 MPa / 20 min / 25 °C and by a thermal process (TP) up to 72.0 °C / 30 min.

Pressures above 300 MPa caused a loss of enzyme activity, MCA being expressively

more affected than PA. The inactivation of the protease showed a nonlinear behavior,

converging to a two-component system model (stable and labile fractions). The stable

fraction represents higher activity for PA and the labile for MCA. The D-values for

stable PA (3.35 ± 0.42 min for HIP and 5.58 ± 0.48 min for TP) and labile MCA (0.34 ±

0.04 min for HIP and 0.47 ± 0.04 min for TP) were significantly lower for the HIP

processed enzyme, highlighting the effectiveness of the process in inactivating this

enzyme. Therefore, the results highlight HIP at 600 MPa as an optional process to

inactivate R. miehei protease (without the use of heat), being more effective than the

thermal process.

Key-words: High Hydrostatic Pressure • Thermal Process • Fungal Protease •

Proteolytic Activity • Milk-Clotting Activity

Page 57: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

57

Resumo

Este estudo comparou a inativação das atividades proteolítica (AP) e de

coagulação do leite (ACL) da protease obtida do Rhizomucor miehei por alta pressão

isostática (API) até 600 MPa / 20 min / 25 ° C e por processo térmico (PT) até 72,0 °C

/ 30 min. Pressões superiores a 300 MPa promoveram uma redução na atividade

enzimática, sendo ACL expressivamente mais afetada em comparação AP. A

inativação da protease mostrou um comportamento não-linear, convergindo para um

modelo de sistema de dois componentes (frações estáveis e lábeis). Com base nos

parâmetros obtidos do modelo, a fração estável representa maior atividade de AP e a

fração lábil maior atividade de ACL. Os valores de D para AP da fração estável (3,35

± 0,42 min para API e 5,58 ± 0,48 min para PT) e para ACL da fração lábil (0,34 ± 0,04

min para API e 0,47 ± 0,04 min para PT) foram significativamente menores para a

enzima processada API, destacando a eficácia do processo na inativação desta

enzima. Portanto, os resultados destacaram a API a 600 MPa como um processo

opcional para inativar a protease de R. miehei (sem o uso de calor), sendo mais eficaz

do que o processo térmico.

Palavras-chave: Alta pressão isostática • Processo térmico • Protease fúngica •

Atividade proteolítica • Atividade de coagulação do leite

Page 58: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

58

2.1 Introduction

Some milk coagulant must be used in cheese manufacturing. Calf rennet is

the traditional milk coagulant, but its use is limited due to low availability (Chitpinityol &

Crabbe 1998; Andrén, 2011). The protease from Rhizomucor miehei is the most used

rennet substitute from microbial sources (Andrén, 2011). It is an aspartic protease (EC

3.4.23.23) with a single polypeptide chain and highly similar to chymosin in its three

dimensional structure (Chitpinityol & Crabbe 1998). This fungal protease is

characterized by its high thermostability, which is a disadvantage due to the difficulty

in stabilizing the residual whey obtained in cheese manufacturing (Kumar, Grover,

Sharma, & Batish, 2010) without significantly damaging the functionality of the whey

protein (Harboe, Broe, & Qvist, 2010). In addition, this fungal protease remains active

during the cheese shelf-life, even in cheese produced with cooked curd, which results

in undesirable changes in the flavor and texture during cheese maturation (Jacob,

Jaros, & Rohm, 2011).

High isostatic pressure (HIP) is a non-thermal technology capable of

promoting protein denaturation and, consequently, of inactivating enzymes

(Eisenmenger & Reyes-de-Corcuera, 2009). The level of pressure required to start

enzyme inactivation depends on the kind of enzyme, process conditions (pressure,

time, temperature) and the pressurization medium (Eisenmenger & Reyes-de-

Corcuera, 2009). The effect of HIP on the R. miehei protease has not yet been studied.

Therefore, this work evaluated the influence of HIP on the proteolytic and milk-clotting

activities of a commercial Rhizomucor miehei protease and compared its inactivation

by HIP and a traditional thermal process.

2.2 Material and Methods

2.2.1 Rhizomucor miehei protease

A commercial preparation of Rhizomucor miehei protease was used in

these experiments (commercial name: Marzyme 150 MG Powder Microbial Rennet,

Danisco, Vinay, France). This preparation contains ≥ 28000mg of protease per kg of

product with an activity of at least 2200 IMCU/g.

Page 59: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

59

2.2.2 Experimental design

High isostatic pressure process

The experiments were carried out in a high pressure equipment (QFP 2L-

700 Avure Technologies, OH, USA) that works at pressures of up to 690 MPa. The

pressurizing rate was 6.2 MPa.s-1 and the decompression was practically

instantaneous (1-2 seconds). The temperature of the equipment block was set at 25°C.

The initial temperature of the water (compression fluid) in the chamber was set

according to the rate of temperature increase expected to occur due to adiabatic

heating (~3 °C/ 100MPa), reaching a temperature of 26.8 ± 1.4 °C at the beginning of

the process and 25.3 ± 1.1 °C at the end. The control sample (non-processed) was not

subjected to pressure.

Aliquots of 100 mL of a 2.0 g/100 mL enzyme solution prepared in sodium

acetate buffer (0.2 M, pH 5.6) were vacuum-packed in plastic bags (LDPE-Nylon-

LDPE). Subsequently, the samples were subjected to the HIP process at pressures of

100 to 400MPa and times of 5 to 15 minutes, at a fixed temperature of 25 °C. In

addition, the process was carried out at 600MPa for 0, 0.25, 0.5, 0.75, 1, 2, 3, 5, 10

and 20 min at 25 °C. The proteolytic and milk-clotting (PA and MCA, section 2.2.3)

activities were carried out immediately after the end of the process.

Thermal process

The thermal inactivation of R. miehei protease was carried out using the

method described by Stumbo (1973). Aliquots of 200 mL of enzyme solution (2 g / 100

mL) prepared in sodium acetate buffer (0.2M, pH 5.6) were placed in glass beakers,

closed and immersed in a hot water bath at 65.6 °C (temperature usually used in LTLT

- low temperature - long time pasteurization) and 72.0 °C (temperature usually used in

HTST – high temperature - short time pasteurization). The samples were stirred

constantly at 380 rpm and the temperature monitored. After reaching the process

temperatures (35 ± 4 sec for 65.6 °C and 45 ± 2 sec for 72.0 °C – R2 = 0.93-0.98),

aliquots of 2 mL were removed at intervals for up to 30 min and placed in eppendorfs

submerged in an ice bath. The samples were kept in ice baths for up to 45 minutes

before analyzing for PA and MCA.

Page 60: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

60

2.2.3 Determination of the proteolytic and milk-clotting activities of the protease

The proteolytic and milk-clotting activities of the protease were determined

according to Leite Júnior, Tribst, & Cristianini (2014). The relative proteolytic activity

(RPA) was calculated considering the activity of the HIP or thermally processed

samples and of the non-processed sample according to Equation 2.1:

RPA = (PAafter_HIP_and/or_thermal_process/ PAnon-processed_sample_at_0h)*100 (Eq. 2.1)

The relative MCA (RMCA) was calculated considering the MCA of the HIP

or thermally processed samples and of the non-processed sample, according to

Equation 2.2:

RMCA = (MCAafter_HIP_and/or_thermal_process/ MCA non-processed_sample_at_0h)*100 (Eq. 2.2)

2.2.4 Kinetic model

The kinetic model used to represent the thermal and high pressure (600

MPa) inactivation of PA and MCA was modelled following a two-component system

(Chen & Wu, 1998). At a constant temperature and specific pH the two-component

model can be written as follows (Eq. 2.3).

𝐴

𝐴0= 𝛼 ∙ 10−𝜃 𝐷𝑆⁄ + (1 − 𝛼) ∙ 10−𝜃 𝐷𝐿⁄ (Eq. 2.3)

where A is the enzyme activity at time θ, A0 is the initial enzyme activity, α is the active

fraction of the stable enzyme, 1 – α is the active fraction of the labile enzyme, θ is the

process time, D is the decimal reduction time (the time required to reduce 90% of the

enzyme activity at a specified temperature) and the subscripts ‘S’ and ‘L’ associated

with D denote stable and labile, respectively. The parameters of the model were

obtained using the software Curve Expert Professional 2.2.0, using a significant

probability level of 95%.

Page 61: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

61

2.2.5 Statistical analysis

The processes and analyses (proteolytic activity and milk-clotting activity)

were carried out with three repetitions, and each experimental unit was carried out in

triplicate. The analysis of variance (ANOVA) was used to compare the effects on the

PA and MCA of the enzyme after thermal and HIP processing. The Tukey test was

applied to determine the differences between the samples at a 95% confidence level

and the results were presented as the mean ± standard deviation.

2.3 Results and Discussion

2.3.1 Effect of high isostatic pressure on the relative proteolytic and milk-

clotting activities

The PA measures the different molecular weight peptides released by the

enzymatic cleavage of any casein micelle fraction. Thus, proteolytic activity can be

used as an indicative of the unspecific hydrolysis of the casein structure caused by

enzymatic action (Leite Júnior, Tribst, & Cristianini, 2015). The MCA is an indirect way

of evaluating the specificity of milk coagulants in the cleavage of the site Phe105-Met106

of κ-casein. This cleavage destabilizes the casein micelles, which coagulate in the

presence of Ca2+ (Andrén, 2011).

Figure 2.1 shows the results obtained for the RPA and RMCA of

Rhizomucor miehei protease after the HIP process.

Page 62: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

62

Figure 2.1. Relative proteolytic (A) and milk-clotting (B) activities of R. miehei

protease processed by high isostatic pressure.

The results demonstrated that the process was unable to promote enzyme

activation, which was previously observed for other enzymes (Malone, Wick,

Shellhammer, & Courtney, 2003; Eisenmenger & Reyes-de-Corcuera, 2009). RPA

inactivation (Figure 2.1A) occurred at processes above 300MPa/10min/25°C

(reduction of 9%). For processes at 300 and 400 MPa, no differences in RPA were

observed for samples processed at 10 min (reduction of 9%) or 15 min (reduction of

29%) (p>0.05). On the other hand, MCA showed 10% inactivation (p<0.05) even at

processes at 250MPa/15min/25°C. In addition, for process at 400 MPa different levels

of inactivation showed a proportional relationship between MCA and the process time

(5, 10 and 15 min resulted in a reduction of 34, 52 and 63%, respectively - Figure 2.1B).

Page 63: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

63

A comparison between the maximum reductions reached for RPA (29%) and RMCA

(63%) at 400MPa / 15 min / 25 °C indicated that the nonspecific fraction was more

resistant than the specific fraction.

2.3.2 The kinetics of protease inactivation by high isostatic pressure and

thermal processing

Figure 2.2 shows the results for the inactivation of R. miehei protease,

considering the residual PA and MCA after thermal or HIP processing. The results

showed that PA had greater resistance than MCA to both processes. The reduction in

the activities showed non-linear behavior, and the two-component system model fitted

the experimental data (R2 ranging from 0.9756 to 0.9999 – Table 2.1), indicating that

the proteolytic and milk-clotting activities had both stable and labile fractions. The

thermal inactivation curves obtained in this study were similar to those obtained in the

study of Thunell, Duersch, & Ernstrom (1979).

Page 64: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

64

Figure 2.2. Reduction in PA and MCA of R. miehei protease processed at 65.6 °C

(A); at 72.0 °C (B) and at 600 MPa/ 25 °C (C).

Table 2.1 shows the distribution of the fractions (stable/labile) of the enzyme

and the D-values of each fraction. For PA, the stable fraction represented higher

Page 65: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

65

activity as compared to the labile fraction, but the opposite was the case for MCA,

showing that the labile enzyme fraction was more specific than the stable one.

Table 2.1. Labile and stable fraction distribution and D-values for the PA and MCA of

R. miehei protease thermally and HIP processed

Sample process Enzyme fraction D-value (min)

R2 1 - α (labile) α (stable) DL DS

Proteolytic activity (PA)

65.6°C 0.26±0.02a 0.74±0.02b 0.81±0.02a 89.08±2.74a 0.9851

72.0°C 0.20±0.03ab 0.80±0.03ab 0.34±0.18b 5.58±0.48b 0.9972

600MPa/ 25°C 0.15±0.06b 0.85±0.06a 0.02±0.00c 3.35±0.42c 0.9844

Milk-clotting activity (MCA)

65.6°C 0.64±0.02a 0.36±0.02a 1.88±0.15a 30.12±1.16a 0.9926

72.0°C 0.63±0.01a 0.37±0.01a 0.47±0.04b 3.04±0.15b 0.9999

600MPa/ 25°C 0.85±0.01b 0.15±0.01b 0.34±0.04c 2.97±0.23b 0.9756

D-value: the decimal reduction time; The subscripts ‘L’ and ‘S’ denote labile and stable

fractions, respectively. Different letters mean a significant difference (p<0.05) between

the sample processes (n = 6).

The evaluation of the D-values showed that, with the exception of the stable

MCA fraction, the values obtained for the HIP process (600 MPa / 25ºC) were

significantly lower than those determined at 72 °C (p<0.05), the differences being more

expressive for PA, which is the fraction responsible for the greater resistance of the R.

miehei protease to inactivation. Thus, the results highlight HIP at 600 MPa as an

optional process to inactivate R. miehei protease, being more effective than the thermal

treatment.

The protease from R. miehei exhibits the highest level of thermal stability

among the aspartic proteinases (Thunell, Duersch, & Ernstrom, 1979) because it is the

most glycosylated enzyme among their group, with ~6% carbohydrate (Rickert &

McBride-Warren, 1974). Based on studies of glycosylated enzymes and glycoproteins

Yang, Teplyakov, & Quail (1997) showed that the great thermal stability of R. miehei

protease is conferred by the N-linked carbohydrates. Those oligosaccharides may help

Page 66: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

66

prolong the active life of R. miehei protease by stabilizing the tertiary structure and

protecting the enzyme from proteolytic attack (Yang, Teplyakov, & Quail, 1997).

The inactivation by high isostatic pressure is a complex phenomenon

(Chakraborty, Kaushik, Rao, & Mishra, 2014). It involves a series of events like

formation and/or disruption of numerous interactions resulting in change in the

enzymes structure by folding and/or unfolding (Eisenmenger & Reyes-de-Corcuera,

2009; Chakraborty, Kaushik, Rao, & Mishra, 2014). In general, the primary and

secondary structure of the enzyme is not changed by the pressure, but the tertiary and

quaternary structures of enzymes normally undergo changes in electrostatic and

hydrophobic interactions and the hydrogen bonds, leading the enzyme inactivation

(Mozhaev et al., 1996; Chakraborty, Kaushik, Rao, & Mishra, 2014). Therefore, the

application of high pressure arises as a new tool for inactivation of milk-clotting enzyme

resistant to thermal process.

In addition, possibly HIP processing (batch system) could be used as a

process to obtain whey destined for the production of by-products without being

submitted to a thermal process, possibly resulting in better preservation of the bioactive

compounds and vitamins derived milk (without the use of heat) (Trujillo et al., 2002).

Furthermore, possibly cheeses coagulated with R. miehei protease processed by HIP

should undergo less proteolysis during storage, reducing undesirable changes in the

flavor and texture of these cheeses.

2.4 Conclusions

The HIP process did not activate the R. miehei protease and caused

reductions in the MCA and PA at pressures above 250 and 300 MPa, respectively. The

enzyme can be inactivated by both thermal and HIP processes, and MCA is more

easily lost than PA. Comparing the D-values after HIP at 600 MPa / 25 °C and thermal

processing at 72 °C, it can be seen that HIP was more effective in inactivating the

enzyme than the thermal process. Therefore, the application of high pressure arises

as a new tool for inactivation of milk-clotting enzyme resistant to thermal process.

Page 67: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

67

2.5 Acknowledgements

The authors would like to thank the São Paulo Research Foundation

(FAPESP) for their financial support (project no. 2012/13509-6) and for awarding a

scholarship to B.R.C. Leite Júnior (2014/17782-4).

2.6 References

Andrén, A. Cheese: Rennets and Coagulants. (2011). In J.W. Fuquay, P.F. Fox, &

P.L.H. McSweeney (Eds.), Encyclopedia of Dairy Sciences, 2nd ed., (pp. 574-578).

London: Elsevier Academic Press.

Chakraborty, S., Kaushik, N., Rao, P. S., & Mishra, H. N. (2014). High-Pressure

Inactivation of Enzymes: A Review on Its Recent Applications on Fruit Purees and

Juices. Comprehensive Reviews in Food Science and Food Safety, 13, 578-596.

Chen, C.S., & Wu, M.C. (1998). Critical review: kinetic models for thermal inactivation

of multiple pectinesterases in citrus juices. Journal of Food Science, 63, 1-4.

Chitpinityol, S., & Crabbe, M.J.C. (1998). Chymosin and aspartic proteinases. Food

Chemistry, 6, 395-418.

Eisenmenger, M.J., & Reyes-De-Corcuera, J.I. (2009). High pressure enhancement of

enzymes: a review. Enzymes and Microbial Technology, 45, 331-347.

Harboe, M., Broe, M.L., Qvist, K.B. The Production, Action and Application of Rennet

and Coagulants. (2010). In: Law, A., Tamime, A.Y., editors. Technology of

Cheesemaking, Barry, Second Edition Blackwell Publishing Ltd. 2010. pp. 98-129.

Jacob, M., Jaros, D., & Rohm, H. (2011). Recent advances in milk clotting enzymes.

International Journal of Dairy Technology, 64, 14-33.

Page 68: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

68

Kumar, A., Grover, S., Sharma, J., & Batish, V.K. (2010). Chymosin and other milk

coagulants: sources and biotechnological interventions. Critical Reviews in

Biotechnology, 30, 243-258.

Leite Júnior, B.R.C., Tribst, A.A.L., & Cristianini, M. (2014). Proteolytic and milk-clotting

activities of calf rennet processed by high pressure homogenization and the influence

on the rheological behavior of the milk coagulation process. Innovative Food Science

and Emerging Technology, 21, 44–49.

Leite Júnior, B.R.C., Tribst, A.A.L., & Cristianini, M. (2015). Influence of high pressure

homogenization on commercial protease from Rhizomucor miehei: Effects on

proteolytic and milk-clotting activities. LWT - Food Science and Technology, 63, 739-

744.

Malone, A.S., Wick, C., Shellhammer, T.H., & Courtney, P.D. (2003). High pressure

effects on proteolytic and glycolytic enzymes involved in cheese manufacturing.

Journal of Dairy Science, 86, 1139-1146.

Mozhaev, V.V., Lange, R., Kudryashova, E.V., & Balny, C. (1996). Application of high

hydrostatic pressure for increasing activity and stability of enzymes. Biotechnology and

Bioengineering, 52, 320-331.

Rickert, W. S. & McBride-Warren, P. A. (1974). Structural and functional determinants

of Mucor miehei protease. III. Isolation and composition of the carbohydrate moiety.

Biochimica et Biophysica Acta, 336, 437-444.

Stumbo, C. R. (1973). Thermobacteriology in food processing. 2nd ed. Academic

Press, San Diego, CA.

Thunell, R. K., Duersch, J. W., & Ernstrom, C. A. (1979). Thermal inactivation of

residual milk clotting enzymes in whey. Journal of Dairy Science, 62, 373-377.

Page 69: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

69

Trujillo, A. J., Capellas, M., Saldo, J., Gervilla, R., Guamis, B. (2002). Applications of

high-hydrostatic pressure on milk and dairy products: a review. Innovative Food

Science and Emerging Technologies, 3, 295-307.

Yang, J., Teplyakov, A., & Quail, J. W. (1997). Crystal structure of the aspartic

proteinase from Rhizomucor miehei at 2.15 Å resolution. Journal of Molecular Biology.

268, 449-459.

Page 70: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

70

Capítulo 3. Determination of the influence of high pressure

processing on calf rennet using response surface

methodology: effects on milk coagulation

Trabalho publicado na revista LWT – Food Science and

Technology: LEITE JÚNIOR, B. R. C.; TRIBST, A.A.L.;

BONAFE, C. F. S; CRISTIANINI, M. Determination of

the influence of high pressure processing on calf rennet

using response surface methodology: effects on milk

coagulation. LWT – Food Science and Technology,

v. 65, p. 10-17, 2016. doi:

http://dx.doi.org/10.1016/j.lwt.2015.07.063

Page 71: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

71

Abstract

This study investigated the influence of high pressure processing (HPP) on the

proteolytic and milk-clotting activities of calf rennet and milk coagulation using

processed enzyme by rheological assay and confocal microscopy. The process was

carried out at 25 ºC, using pressure range from 50 to 300 MPa and time between 5

and 30 min. It was found that HPP (175-285 MPa for 14-23min) increased the enzyme

proteolytic activity by up to 23% and the milk-clotting activity by up to 17%.

Furthermore, the G’ values obtained during milk coagulation were higher for calf rennet

processed at 280 MPa for 20 min than for the non-processed enzyme, forming more

consistent gels (25.8% higher G' value after 90 min). The evaluation of the milk

coagulation by confocal microscopy confirms the results obtained on the rheology.

Pretreatment of calf rennet using HPP accelerates the coagulation of milk and

produces firmer and more consistent gels.

Key-words: High hydrostatic pressure • Milk-clotting enzyme • Milk-clotting activity •

Rheological evaluation • Confocal microscopy

Page 72: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

72

Resumo

Este estudo investigou a influência da alta pressão e do tempo de

processamento do coalho de vitelo na atividade proteolítica e de coagulação. O efeito

da enzima processada por alta pressão na formação do gel foi avaliado por ensaio

reológico e microscopia de confocal. O processo foi realizado a 25 °C, variando a faixa

de pressão de 50 a 300 MPa e tempo entre 5 e 30 min. Verificou-se que a AP (175-

285 MPa por 14-23 min) aumentou a atividade proteolítica da enzima em até 23% e a

atividade de coagulação do leite em até 17%. Além disso, os valores de G’ obtidos

durante a coagulação do leite foram maiores para a coalho de vitelo processado a 280

MPa por 20 min em comparação com a enzima não processada, formando géis mais

consistentes (valor de G’ foi 25,8% maior após 90 min). A avaliação da coagulação do

leite por microscopia confocal confirma os resultados obtidos na reologia. O pré-

tratamento do coalho de vitelo utilizando AP acelera a coagulação do leite e produz

géis mais firmes e mais consistentes

Palavras-Chave: Alta Pressão Hidrostática • Enzimas Coagulantes do Leite •

Atividade de Coagulação do Leite • Avaliação Reológica • Microscopia de Confocal

Page 73: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

73

3.1 Introduction

Cheese production has been growing about 4% per year (Euromonitor

International, 2012). The coagulation step can be carried out using rennet extracted

from the calf abomasum (Fox et al., 2004). However, the reduction in slaughtering of

young steers due to their low performance in terms of meat production (Food

Agriculture Organization [FAO], 2010) is reducing the availability of calf rennet year by

year. Currently, only 20-30% of the cheese produced worldwide uses this kind of rennet

(Jacob, Jaros, & Rohm, 2011).

Thus, the search for a substitute for rennet enzymes is growing (Walstra et

al., 2006; Møller et al., 2012). These substitutes must mimic the calf rennet

characteristics, such as high specificity and good proteolytic activity at the usual pH

and temperature of cheese manufacture (Dalgleish, 1992; Fox & Kelly, 2004; Bansal

et al., 2009). In the last two decades, several animal, microbial (produced by

fermentation without using recombinant techniques, e.g. protease from Rhizomucor

miehei) and plant coagulants have been considered as potential rennet substitutes

(Dalgleish, 1992; Kumar, Grover, Sharma, & Batish, 2010; Rolet-Répécaud et al.,

2013). However, the application of these enzymes for milk clotting may have some

disadvantages, such as a reduction in manufacturing yield and the production of

undesirable flavors (Fox et al., 2004; Walstra et al., 2006). Currently the use of genetic

engineering to obtain a recombinant enzyme equal to chymosin has appeared as a

good option to replace calf rennet in cheese production (Johnson & Lucey, 2006),

reaching 70-80% of the current market (Jacob, Jaros, & Rohm, 2011).

Although there is a relatively high availability of recombinant enzyme, calf

rennet has kept its importance for traditional consumers that reject products obtained

from genetically modified organisms. The alteration of calf rennet by physical or

chemical changes, aiming to increase the enzyme activity or stability, represents an

interesting process to make it possible to use lower enzyme concentrations during milk

clotting for cheese production, reducing the cost of the enzyme for cheesemakers.

High pressure processing (HPP), also known as high hydrostatic pressure

(HHP) or high isostatic pressure (HIP), is an emerging technology developed for

microbial inactivation as an alternative to traditional thermal food processing. However

recently, some studies have been dedicated to evaluating the effect of HPP on

enzymes. The results indicated that the process is capable of promoting activation

Page 74: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

74

(Mozhaev et al., 1996; Sila et al., 2007; Eisenmenger & Reyes-de-Corcuera, 2009a,b)

and stabilization of enzymes (Mozhaev et al., 1996; Eisenmenger & Reyes-de-

Corcuera, 2009a,b), by applying low pressures (of up to 400 MPa) and moderate

temperatures (Knorr, 1999) in presence (reaction under pressure) (Mozhaev et al.,

1996; Kudryashova et al., 1998; Eisenmenger & Reyes-de-Corcuera, 2009a,b) or

absence of substrate (Sila et al., 2007; Eisenmenger & Reyes-de-Corcuera, 2009a).

The pressurization process follows the "Le Chatelier" principle, inducing a

reduction in molecular volume (Knorr, 1999). For several enzymes, this reduction of

molecular volume can results in permanent change of the tridimensional structure,

which sometimes imparts in increase of enzyme activity (Eisenmenger & Reyes-de-

Corcuera, 2009a). The main change in enzyme structure is an increase in enzyme

conformational flexibility caused by the hydration of charged groups (Eisenmenger &

Reyes-de-Corcuera, 2009a,b). Thus, HPP could be an interesting physical method to

increase the enzyme activity and specificity (Eisenmenger & Reyes-de-Corcuera,

2009a,b). It can be an interesting technology to be applied as a to promote increased

activity and enzyme stability.

Although the process has already been identified as capable of promoting

an increase or decrease in the enzymatic activity, no work had studied the effect of

HPP in milk-clotting enzymes, which is a gap in the knowledge about the effect of this

technology. Additionally, the majority of results were obtained by processing enzyme

and substrate together, which may have a different effect to applying HPP on the

enzyme alone. Therefore, this study aimed to evaluate the influence of high pressure

processing on the proteolytic and milk-clotting activities of a commercial calf rennet

and the milk clotting profile by using processed enzyme measured by rheological assay

and confocal microscopy.

3.2 Materials and Methods

3.2.1 Enzyme

A commercial powder calf rennet containing 94% of chymosin and 6% of

pepsin (freeze-dried CarlinaTM Animal Rennet 1650, Danisco, Vinay, France) was used

in the assays. The activity of the enzyme was 1700 IMCU per gram of powder.

Page 75: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

75

3.2.2 High pressure processing

The experiments were carried out in a pilot scale high pressure equipment

(High Pressure Equipment Company, Model 37-5-75-60, Erie, Pennsylvania, USA).

This equipment has a cylindrical chamber of 15 mm in diameter and 35 mm in height,

with 10 mL of capacity. The equipment works at pressures of up to 350 MPa and

ethanol was used as the pressurizing fluid. The come up time to reach 350 MPa was

3 min and the decompression process took 1 min.

3.2.3 Experimental design

Aliquots of 2 mL of enzyme solution (3 g / 100 mL) prepared in sodium

acetate buffer (0.2 mol/L, pH 5.5) were vacuum-packed in sterile plastic polyolefin bags

(BagLight® Polysilk® 132025, Interscience, Saint-Nom-la-Bretèche, France) at 4 °C.

Subsequently, the samples were subjected to the HPP at room temperature (25 °C) to

evaluate the simultaneous effect of two independent variables: isostatic pressure (X1)

and process time (X2) on the enzyme. The variable were studied using a central

composite rotational design (CCRD) with four linear levels +1 and -1, four axial points

(α ± 1.414) and three assays at the central point, totalizing 11 experiments.

Furthermore, a control enzyme sample (non processed enzyme) was also prepared

for comparative evaluation. The assays were performed in random order, and the data

fitted to a second order polynomial model (Equation 3.1).

𝑌 = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖 + 2𝑖=1 ∑ 𝛽𝑖𝑖𝑋𝑖

22𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗𝑗=𝑖+1𝑖 (Equation 3.1)

where Y was the predicted response, β0 was the constant (intercept), βi the linear

coefficients, βii the quadratic coefficients and βij the cross product coefficient. Xi and

Xj were the independent variables.

Table 3.1 shows the CCRD with the coded and real values of the

independent variables and their levels.

Page 76: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

76

Table 3.1. Variables and levels used in CCRD for the independent variables

Standard. Order Run order Coded variables Real values

X1 X2 X1 X2

1 8 -1 -1 86 8.60

2 10 1 -1 264 8.60

3 7 -1 1 86 26.40

4 1 1 1 264 26.40

5 3 -1.414 0 50 17.50

6 4 1.414 0 300 17.50

7 11 0 -1.414 175 5.00

8 5 0 1.414 175 30.00

9 9 0 0 175 17.50

10 2 0 0 175 17.50

11 6 0 0 175 17.50

Control (non- processed) - - 0 0.00

X1: Pressure (MPa); X2: Time (min)

The proteolytic and milk-clotting activities of the samples were assessed in

quadruplicate immediately after the HPP (time 0 h) and after 24 h of storage at 4 °C.

The results were analyzed using the software Statistica® 7.0 and the responses were:

significance of the effects (p ≤ 0.10), analysis of variance (ANOVA) using the F test to

assess the significance of the regression and the lack of fit (pure error), calculated

using a 95% confidence level (p ≤ 0.05). The R2 values were also calculated. The

regressions approved in the F test (for regression and lack of fit) were used to generate

a response surface (Myers & Montgomery, 2002). The validation of the mathematical

models obtained was carried out in quadruplicate at a pressure of 280 MPa and time

of 20 min (the point of maximum activity based on the optimization), by evaluating the

proteolytic activity and milk-clotting activity. Additionally, the performance of the HPP

treated enzyme in forming milk gels was evaluated by rheological and confocal

microscopy assays.

Page 77: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

77

3.2.4 Proteolytic activity determination

The proteolytic activity was based on Arima et al. (1970), and followed the

methods described by Leite Júnior, Tribst, & Cristianini (2014), using sodium caseinate

as substrate. The activity was determined spectrophotometrically by measurement of

the release of peptides. The proteolytic activity was calculated according to Equation

3.2.

U

mL= (ΔAbs280nm ∙ 10 ∙ dilution factor)/(0.6 ∙ 40) (Equation 3.2)

where Abs280nm is absorbance value measured at 280 nm, 10 is the factor for

conversion of the absorbance into activity (considering that 1 U is determined by the

variation of 0.1 on sample absorbance), dilution factor is the percentage of enzyme

dissolved in the solution, 0.6 is the enzyme solution volume added (milliliters), 40 is

the reaction time (minutes).

The analyses were carried out immediately after processing (time 0h) and

after 24h. The samples were stored under refrigeration (4ºC) during this period.

Furthermore, a non-processed sample was also prepared for a comparative

evaluation. The relative proteolytic activity (RPA) was calculated by considering the

activity of HPP and the non-processed samples according to Equation 3.3.

RPA = (

enzyme activity afterHPPandorstorage

enzyme activity non-processedsampleat0h

) ∙ 100 (Equation 3.3)

3.2.5 Milk-clotting activity determination

The milk-clotting activity (MCA) was based on Arima et al. (1970), and

followed the methods described by Leite Júnior, Tribst, & Cristianini (2014) using a

reconstituted skim milk powder as substrate. One milk-clotting activity unit (MCA) was

defined as the amount of enzyme required to clot 1 mL of substrate in 40 min at 35 ºC.

The MCA was calculated by the Equation 3.4.

Units of MCA = ((2400

t) ∙ (

S

E)) ∙ dilution factor) (Equation 3.4)

Page 78: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

78

where T is the time necessary for clot formation, S is the milk volume (5 mL), E is the

enzyme volume (0.5 mL) and dilution factor is the dilution of the enzyme (1/0.003).

MCA assays were carried out immediately after processing (time 0h) and

after 24h. The samples were stored under refrigeration (4ºC) during this period.

Furthermore, a non-processed enzyme was also prepared for comparative evaluation.

The relative MCA (RMCA) was calculated considering the MCA of the HPP and the

non-processed samples, according to Equation 3.5:

RMCA = (

MCA afterHPPandorstorage

MCA non−processedsampleat0h

) ∙ 100 (Equation 3.5)

3.2.6 Rheological assays

The milk coagulation kinetics were evaluated by monitoring the milk

coagulation process by way of a time sweep using a low deformation oscillatory test in

a rheometer with controlled stress (AR2000ex, TA Instruments, USA). This assay was

carried out for the native (non-processed) enzyme and the HPP enzyme under

optimum pressure and time conditions, considering the results of the response surface

for the greater milk-clotting activity (280 MPa for 20 min).

The experiments were carried out using 60 mL of skimmed milk powder

reconstituted at 10 g/100mL (pH 6.65, 3.2 g / 100 mL protein, 9.2 g / 100 mL non-fat

solids, Tangará Foods, Brazil) added by 0.084 g of CaCl2 to reach a final concentration

of 0.01 mol/L in the suspended milk. This mixture was pre-incubated at 35 °C for 10

min. Subsequently, 0.8 mL of the enzyme solution (0.03 g / 100 mL, 6.83 IMCU per

liter of milk) prepared in a sodium acetate (0.2 mol/L, pH 5.5) buffer solution was

added, and the mixture immediately transferred to a rheometer cup (30 mm diameter

and 80 mm height) with a vaned quarter geometry (28mm of diameter and 42 mm of

length) and 4 mm gap. The stress was set at 0.1 Pa (established by a strain sweep

(0.01–10 Pa) procedure, under a fixed frequency of 0.1 Hz, which showed that 0.1 Pa

could be used as geometry stress inside the linear viscoelastic region), frequency at

0.1 Hz and the parameter G' (storage modulus) read at 3 min intervals for 90 min of

Page 79: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

79

the clotting process at 35 °C (Leite Júnior, Tribst, & Cristianini, 2014). The temperature

was controlled by a Peltier system.

3.2.7 Three dimensional microstructure of the coagulation process and rennet-

induced gels obtained by confocal scanning laser microscopy

An aliquot of 1 mL of skim milk powder reconstituted at 10 g / 100 mL (pH

6.65, 3.2 g / 100 mL protein, 9.2 g / 100 mL non-fat solids) with the addition of 0.01

mol/L CaCl2 and 0.05 g / 100 mL sodium azide (Merck, Darmstadt, Germany) was pre-

incubated at 35 °C for 10 minutes. Subsequently, 100 µL of enzyme solution (0.008 g

/ 100 mL) prepared in 0.1 mol/L acetate buffer (pH 5.5) and 25 µL of fast-green FCF

(0.1 g / 100 mL, in distilled water, Sigma–Aldrich, Ireland) (used to observe the protein

matrix in a confocal microscope) were added and the time started. Immediately after

addition, 200 µL of the solution were transferred to an 8 chamber coverglass (a 10 mm

deep cavity dish) covered with a glass coverslip (0.17 mm thick) (Lab-Tek® II

Chambered Coverglass, USA) and confocal imaging carried out using a Zeiss Upright

LSM780-NLO microscope (Carl Zeiss AG, Germany) with the temperature control set

at 35 °C.

Confocal scanning laser microscopy (CLSM) is able to penetrate deeply but

noninvasively through the sample to obtain a large number of sequential, thin optical

sections that may then be assembled by image-analysis software to produce three

dimensional (3D) reconstructions and projections. For each sample, 20 adjacent

planes (2D layers with 512 × 512 pixels in resolution from a 134.95 μm × 134.95 μm

sample area) were acquired with the separation between the planes maintained

constant at 0.75 μm, giving a total observational depth of 15 μm. Images were recorded

of representative areas of each sample at a distance of 5 µm and 20 µm from the

surface of the coverglass (bottom) every 60 seconds for 40 minutes using an oil

immersion 63 x objective lens (numerical aperture = 1.40) at excitation wavelengths

of 633 nm for fast-green (He/Ne laser), in which the fast-green FCF stained protein

appeared as red, in contrast to the serum phase which appeared as black in these

images. The images were acquired in RGB colour (8 bits), of 512 x 512 pixels in size

to give final resolutions of 0.26 µm/pixel (Ong, Dagastine, Kentish, & Gras, 2010).

Page 80: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

80

3.2.8 Image analysis

Image analysis of the CLSM micrographs was carried out using image J

software (Research Service Branch, National Institute of Health, Maryland, USA)

equipped with “Pore Analysis” and “ComputeStats” plug-ins. The images were

enhanced and flattened using a bandpass filter. The enhanced image was then

transformed to a binary image using an Otsu threshold algorithm binarisation, with all

the structural features contributing black pixels and all the background features

contributing white pixels (Impoco, Carrato, Caccamo, Tuminello, & Licitra, 2006).

Image J analysis was used to quantify the porosity and total number of pores

from the CLSM micrographs (Hussain, Grandison, & Bell, 2012). The average pore

area was calculated as the total pore area with respect to the total sample area (0.018

mm2), divided by the total number of pores (Ong, Dagastine, Kentish, & Gras, 2011).

3.3 Results and Discussion

3.3.1 The effect of high pressure processing on the proteolytic and milk-clotting

activities

Table 3.2 shows the results obtained for PA and MCA immediately after

solution preparation (0h) and after 24 h of storage at 4 °C. It is observed that the

enzyme has low stability under solution, losing around 11% of proteolytic and milk-

clotting activities after this short storage. The results of enzyme activity measured

immediately after enzyme solution preparation were used to calculate the values of

relative proteolytic activity and relative milk-clotting activity.

Table 3.2. Proteolytic and milk-clotting activities of calf rennet measured at time 0h

and 24h after dissolution in sodium acetate buffer (0.2 mol/L, pH 5.5)

Time Proteolytic activity

(U.mL-1) Milk-clotting activity

(U.mL-1)

0 h 22.34 ± 2.26 2746.7 ± 13.3

24 h 20.02 ± 2.50 2416.7 ± 93.3

Table 3.3 shows the observed and predicted values for relative proteolytic and

milk-clotting (%) activities of the samples evaluated at 0 and 24 h and the relative error

between the observed and predicted values.

Page 81: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

81

Table 3.3. Observed and predicted values for RPA (%) and RMCA (%) for the HPP calf rennet and relative error.

0h 24h

Variable RPA (%)

Observed

RPA (%)

predicted

Relative

error (%)

RMCA (%)

Observed

RMCA (%)

predicted

Relative

error (%)

RPA (%)

Observed

RPA (%)

predicted

Relative

error (%)

RMCA (%)

Observed

RMCA (%)

predicted

Relative

error (%) Pressure

(MPa)

Time

(min)

86 8.60 86.2 93.0 -7.9 103.9 103.6 0.3 77.0 85.1 -10.5 83.9 86.2 -2.8

264 8.60 114.8 119.3 -4.0 106.3 105.9 0.3 100.3 101.5 -1.1 99.8 96.6 3.2

86 26.40 114.3 116.3 -1.7 103.0 104.1 -1.1 94.4 93.2 1.3 85.1 89.4 -5.0

264 26.40 116.3 116.0 0.3 105.7 106.5 -0.8 110.3 109.5 0.7 93.5 99.9 -6.8

50 17.50 107.0 102.0 4.6 104.6 104.9 -0.3 90.9 86.8 4.5 91.3 90.7 0.6

300 17.50 121.7 120.3 1.1 107.7 108.2 -0.5 110.0 109.7 0.2 103.5 105.4 -1.8

175 5.00 111.0 104.3 6.0 102.6 103.1 -0.6 97.2 91.1 6.3 84.2 85.8 -1.9

175 30.00 118.1 118.4 -0.2 105.2 103.9 1.2 100.5 102.4 -1.9 97.0 90.4 6.8

175 17.50 124.1 120.9 2.6 106.4 106.6 -0.2 110.9 109.0 1.6 99.9 98.1 1.8

175 17.50 119.1 120.9 -1.5 107.6 106.6 0.9 109.5 109.0 0.4 102.2 98.1 4.1

175 17.50 119.1 120.9 -1.5 107.4 106.6 0.7 107.0 109.0 -1.9 98.3 98.1 0.2

Non-processed

sample 100.0 100.0 89.6 88.1

RPA: Relative Proteolytic Activity; RMCA: Relative Milk-clotting Activity.

Page 82: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

82

The results showed that HPP increased the proteolytic and milk-clotting

activities of the enzyme when pressures up to 175 MPa were applied. For proteolytic

activity (at time 0h) all the factors were significant (p≤0.10). However, after 24 hours of

storage the interaction between the pressure and time became statistically non-

significant. For relative milk-clotting activity only the effects of the quadratic factor for

pressure and the interaction between the pressure and time were non-significant

(p>0.10), independent of the time after the HPP. The uncoded models obtained

considering the significant coefficients for proteolytic activity (%) and milk clotting

activity (%) are shown below:

RPA0h = 34.90103 + 0.43719·P - 0.00062·P2 + 4.16143·T - 0.06083·T2 - 0.00841·P·T

RPA24h = 39.75713 + 0.33336·P - 0.00069·P2 + 3.21226·T - 0.07882·T2

RMCA0h = 97.74924 + 0.01334·P + 0.70986·T - 0.01937·T2

RMCA24h = 65.05096 + 0.05885·P + 2.41585·T - 0.06381·T2

where P is the isostatic pressure (MPa), T is the process time (min); RPA is the relative

proteolytic activity (%) and RMCA is the relative milk-clotting activity (%).

These models and their regression coefficients were evaluated by ANOVA

using the F-test, to verify the significance of the regression and the lack of fit (pure

error) at the 95% confidence level (p ≤ 0.05). The ANOVA confirmed the regression

significance by the p-value of the effects (p<0.05), indicating that the model obtained

was predictive with good reproducibility. Furthermore, the lack of fit was not significant

(p>0.05) and the R2 values were in the expected range confirming the accuracy of the

model (R2: 0.81-0.88). In addition, it was found that the average of the relative error

between the observed and predicted values was only 2.4%. Therefore, the results

could be used to obtain response surfaces and contour curves of the relative proteolytic

and milk-clotting activities (Figure 3.1).

Page 83: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

83

Figure 3.1. Response surface of the relative proteolytic activity (%) immediately after

HPP (A) and after 24h of storage (B) and relative milk-clotting activity (%)

immediately after HHP (C) and after 24h of storage (D) for calf rennet processed by

HHP. *RPA (%) of the non-processed enzyme after 24h: 89.6% and RMCA (%) of the

non-processed enzyme after 24h: 88.1%

Figure 3.1A demonstrates that the highest RPA values (an increase in

activity of around 23%) were obtained between pressures of 175 and 285 MPa with

times ranging from 14 to 23 min. In addition it was observed that processes at below

125 MPa for less than 15 min caused a reduction in the calf rennet proteolytic activity,

reaching a minimum (24% of activity loss) after pressurization at 50 MPa for 5 min.

After 24 hours of rest (Figure 3.1B), the pressurized samples showed

reductions in proteolytic activity, following a similar trend of the non-processed

enzyme. However, the calculation of RPA and RMCA showed that HPP improves the

enzyme stability in solution, since RPA and RMCA were, respectively, up to 14 and

24% higher for pressurized samples compared with non-pressurized one. These

Page 84: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

84

results indicated that the higher the applied pressure (up to 300 MPa) the higher the

proteolytic activity of the enzyme after processing.

Previous research also observed an increase in the activity of different

enzymes when treated by HPP, attributed to changes in the structures of the enzymes

(Katsaros, Giannoglou, & Taoukis, 2009). Enzymes frequently show some activation

after pressurization at relatively low pressures (< 400 MPa) (Malone, Wick,

Shellhammer, & Courtney, 2003; Katsaros, Giannoglou, & Taoukis, 2009), but some

enzymes showed an increase in their activity at pressures of up to 700 MPa (Malone,

Wick, Shellhammer, & Courtney, 2003). In addition, other process conditions such as

time and temperature have a crucial importance in the effect of HPP on the enzymes

(Eisenmenger & Reyes-de-Corcuera, 2009a). Therefore, it is not possible to generalize

the effect of HPP on enzymes.

The activation of monomeric (Knorr, 1999), dimeric and tetrameric enzymes

(Eisenmenger & Reyes-de-Corcuera, 2009a) was previously related. For each

enzyme, there is a limit to the pressure that can be applied before it induces a loss in

enzyme activity due to denaturation (Sila et al., 2007; Eisenmenger & Reyes-de-

Corcuera, 2009a).

The stabilization of enzymes by pressure can be explained by

intramolecular interactions, hydration of non-polar and charged groups, disruption of

bound water and stabilization of hydrogen bridges (Eisenmenger & Reyes-de-

Corcuera, 2009a). Considering the stability of enzymes in solution during storage, the

hydration of non-polar and charged groups is reported as the main cause.

Figures 3.1C and 3.1D show the response surface (a) generated by the

model proposed for milk-clotting activity, measured immediately after processing (time

0 h – Figure 3.1C) and after 24h of storage (Figure 3.1D) of the samples.

Figure 3.1C demonstrates that the highest RMCA values were obtained

between pressures of 275 and 300 MPa with process time ranging from 15 to 20 min,

showing a maximum increase in activity of 8%. The increase in milk-clotting activity

was proportional to the increase in applied pressure up to 300 MPa, in contrast to the

results for proteolytic activity, which only presented a positive effect for processes with

pressures above 175 MPa. After 24 hours of rest (Figure 3.1D) just a small reduction

on the RMCA was observed for enzymes processed at pressures between 275 and

300 MPa with process times ranging from 15 to 20 min. Therefore, in contrast with non-

processed samples, it was observed that pressurization at this specific range was able

Page 85: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

85

to stabilize the enzyme in solution, reaching a RMCA value 17% higher than that

determined for the non-processed sample after 24 h of rest.

The results of Figure 3.1 show that HPP is able to improve the proteolytic

and milk-clotting activities of calf rennet, but, in general, PA was activated in milder

process conditions (pressure and time) than MCA. Calf rennet contains fractions of

chymosin and pepsin. Chymosin is the main responsible for MCA while pepsin causes

unspecific proteolysis, therefore, by the results, it is possible to suggest that pepsin is

activated in milder conditions than chymosin. This hypothesis must be proved by

further evaluation of HPP on chymosin and pepsin isolated. Additionally, although

lower PA and MCA loss was observed for processed samples than non-processed

one, after 24 h of storage, the PA loss at optimum conditions (pressures of 175 and

285 MPa with times ranging from 14 to 23 min) were more expressive than MCA loss

at also optimum conditions (pressures of 275 and 300 MPa with process time ranging

from 15 to 20 min) which might be related to capability of the process to improve more

the stability of chymosin than the pepsin fraction.

According to the results, it is possible to conclude that HPP is able to

improve the performance of calf rennet. Thus, high pressure processing emerges as

an interesting alternative for application as a unit operation to improve the performance

of coagulant enzymes, possibly reducing the cost of the enzyme and allowing for the

generation of unusual sensory profiles in cheeses.

Taking into account the expected effect of pressurization on the enzyme

structure, mainly on the increase in molecular conformational flexibility due to hydration

of the charged groups (Eisenmenger & Reyes-de-Corcuera, 2009a,b), it is possible to

infer that, for the enzyme evaluated, these effects increased the enzyme activity and

specificity.

3.3.2 High pressure process validation and evaluation of the processed calf

rennet performance during milk gel formation

Table 3.4 shows the optimum process range to improve the RPA and

RMCA. The increase of RPA and RMCA could be reached in the intercept of the

optimized region: pressure ranging between 275 and 285 MPa and process time set

between 17 and 20 min.

Page 86: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

86

Table 3.4. Optimal process conditions for the PA and MCA (%) of the calf rennet

Optimal range Proteolytic

activity (%) 0h

Proteolytic

activity (%) 24h

Milk-clotting

activity (%) 0h

Milk-clotting

activity (%) 24h

Pressure

Time

175-285 MPa

14-23 min

210-285 MPa

17-23 min

275-300 MPa

15-20 min

275-300 MPa

15-20 min

For the validation experiments, assays were carried out with the process

fixed at 280 MPa for 20 min (Table 3.5) and the results obtained were similar to the

values estimated by the models generated (average relative error of 0.6%), confirming

the reproducibility of the process and the accuracy of the model generated.

Table 3.5. Validation of the process conditions for optimal enzyme process conditions

Calf rennet RPA (%) 0h RPA (%) 24h RMCA (%) 0h RMCA (%) 24h

Non-processed 100.0 92.9 100.0 93.9 Processed * 120.5 111.3 109.1 104.2

Model ** 120.3 112.0 107.9 103.8 Relative error (%) 0.1 -0.7 1.2 0.4

RPA: Relative Proteolytic Activity; RMCA: Relative Milk-clotting Activity; *: optimum

point choice (280 MPa for 20 min); **: estimated by the model at the same point.

Besides the validation, the sample pressured at 280 MPa for 20 min was

evaluated by its ability to form milk gels through the evaluation of the rheological profile

of the milk during the coagulation step. The storage modulus (G') describes elastic

(solid) behavior of the product, and can represent the phenomenon of milk coagulation

(Figure 3.2). This allows one to compare the milk-clotting kinetics using native and

processed enzymes under optimum conditions.

Page 87: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

87

Figure 3.2. Rheological curves of the milk-clotting kinetics obtained using non-

processed ( ) and HPP calf rennet ( ) (280 MPa for 20 min at 25°C) immediately

after processing (A) and after 24h of storage (B). The results are expressed as the

mean ± the standard deviation (n = 6).

Page 88: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

88

According to the results, the aggregation process started after 36 min for

the sample with the HPP processed rennet, while the non-processed enzyme took 39

min to start aggregating. Therefore, coagulation using the processed enzyme occurs

8.3% quicker than using the non-processed one. This probably happened due to the

fast cleavage of the specific hydrophilic glycomacropeptide, preferably at the site

Phe105-Met106 of the κ-CN in the first phase of coagulation. These results are in

agreement with the increase in milk-clotting activity for the processed enzymes. In

addition, at the end of coagulation, the processed sample (280 MPa for 20 min) showed

higher values for G' than the non-processed enzyme (25.8% higher G' value). Thus, it

can be affirmed that the clot formed by the high pressure processed enzyme was more

consistent and that HPP improved the milk-clotting kinetic parameters in a positive

way.

After 24 hours of storage, the enzyme solution samples showed an increase

in coagulation time due to a loss of milk-clotting activity. Nevertheless, it was again

observed that aggregation started earlier for the processed enzyme (39 min) than for

the non-processed one (45 min) (15.4% quicker). These results corroborate the

expected increase in enzyme stability in solution after the high pressure process,

according to the results of RMCA and RPA activity of HPP samples after 24h of

storage.

Figure 3.3 shows the number of pores per µm2 and average pore area

calculated through the images of confocal scanning laser microscopy (CSLM) obtained

during milk coagulation carried out using the enzymes subjected to HPP (280 MPa for

20 min at 25 °C) and an a non-processed control.

Figure 3.3A and 3.3B shows that the number of pores was reduced and the

average pore area was increased with time, which is directly linked to protein

aggregation. The gel obtained with the high pressure processed enzyme showed a

faster reduction in total number of pores with increased average pore area

(approximately 20 min = onset of aggregation), when compared with the gel produced

using the non-processed enzyme (approximately 25 min = onset of aggregation). This

phenomenon could be attributed to the greater milk-clotting activity of high pressure

processed enzyme in the milk coagulation step, resulting in faster aggregation of the

protein network. At the end of the coagulation step (40 minutes), gel produced with

high pressure processed enzyme had lower number of pores with high average area

compared with the gel produced with non-processed enzyme, which means that gel

Page 89: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

89

produced with processed enzyme results in a more compact and rigid protein network,

corroborating the results obtained in rheology.

Figure 3.3. Number of pores (A) and average pore area (B) of milk coagulation using

non-processed ( at 5 and 20 µm from the bottom) and HPP calf rennet (280

MPa for 20 min at 25 °C) ( at 5 and 20 µm from the bottom) throughout a 40

minutes period at 35 ºC. The results are expressed as the mean ± the standard

deviation (n = 6).

Page 90: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

90

The significant increase for MCA and PA can increase the competition of

this enzyme as a milk coagulant as evidenced by rheological tests and microscopic

evaluation. Furthermore, these results raise the range of options to use this technology

in the food process. Thus, the application of HPP appears as a new option for the

processing of milk-clotting enzymes. The practical viability to use HPP for increase the

activity of the enzyme, allowing to use lower enzyme concentration in cheese

manufacture will depend on the costs of this enzyme (which is growing year by year)

and availability of HPP equipment. Although similar results could be obtained by using

more milk clotting enzymes (faster gel formation) and higher amount of protein (firmer

gel), it does not necessarily means the resulting cheese will have the same

characteristics.

3.4 Conclusions

The overall results of this work highlighted that the HPP can increase the

proteolytic and milk-clotting activities of calf rennet (especially at 280 MPa for 20

minutes at 25 ºC), making the enzyme able to form faster, firmer and denser gels,

which possibly can be lead to higher yield in cheese production. In addition,

pressurization improved the stability of the rennet in solution. Therefore, HPP may be

an interesting tool for calf rennet modification, since the results showed that the high

pressure processed rennet is able to produce milk gels in shorter times using less

enzyme. The industrial application of this technology is to improve the performance of

calf rennet, however, depend on other factors such as cost of non-processed enzyme

and availability of HPP equipment for processing.

3.5 Acknowledgments

The authors would like to thank the São Paulo Research Foundation

(FAPESP) for the financial support (project no. 2012/13509-6) and awarding a

scholarship to B. R. C. Leite Júnior (2014/17782-4).

Page 91: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

91

3.6 References

Arima, K., Yu, J., Iwasaki, S. Milk-clotting enzyme from Mucor pusillus var. Lindt

(1970). Methods in Enzymology, 19 (C), 446-459.

Bansal, N., Drake, M. A., Piraino, P., Broe, M. L., Harboe, M., Fox, P. F., &

McSweeney, P. L. H. (2009). Suitability of recombinant camel (Camelus dromedarius)

chymosin as a coagulant for Cheddar cheese. International Dairy Journal, 19, 10−517.

Dalgleish, D. G. (1992). Enzymatic coagulation of milk. In P. F. Fox (Ed.),

Developments in Dairy Chemistry (pp. 63–96). London, UK: Elsevier Applied Science.

Eisenmenger, M. J., & Reyes-De-Corcuera, J. I. (2009a) High pressure enhancement

of enzymes: a review. Enzymes and Microbial Technology, 45, 331-347.

Eisenmenger, M. J., & Reyes-De-Corcuera, J. I. (2009b) High hydrostatic pressure

increased stability and activity of immobilized lipase in hexane. Enzymes and Microbial

Technology, 45, 118-125.

Euromonitor International - Related Analysis. (2012) Cheese in Brazil. Available from

http://www.portal.euromonitor.com/Portal/Pages/Statistics/Statistics.aspx. Accessed

June, 2014.

Food Agriculture Organization, (2010). Milk and Milk Products. Available from

http://www.fao.org/docrep/011/ai474e/ai474e10.htm Accessed May, 2014.

Fox, P. F., & Kelly. A, L. (2004). The caseins. In. R. Y. Yada (Ed.), Proteins in Food

Processing, (pp. 29-71). Boca Raton, FL: CRC Press.

Fox, P. F., Mc Sweeney, P. L. H., Cogan, T. M., & Guinee, T. P. (2004). Cheese:

Chemistry, Physics and Microbiology. (vol. 1, 617p.) London, UK: Elsevier Applied

Science.

Page 92: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

92

Hussain, I., Grandison, A. S., & Bell, A. E. (2012). Effects of gelation temperature on

Mozzarella-type curd made from buffalo and cows' milk. 1: Rheology and

microstructure. Food Chemistry, 134, 1500–1508.

Impoco, G., Carrato, S., Caccamo, M., Tuminello, L., & Licitra, G. (2006). Image

analysis methods for industrial application: Quantitative analysis of cheese

microstructure using SEM imagery. ADSA–ASAS Joint Annual Meeting (Minneapolis,

Minn., USA).

Jacob, M., Jaros, D., & Rohm, H. (2011). Recent advances in milk clotting enzymes.

International Journal of Dairy Technology, 64, 14-33.

Johnson, M. E., & Lucey, J. A. (2006). Major technological advances and trends in

cheese. Journal of Dairy Science, 89, 1174–1178.

Katsaros, G. I., Giannoglou, M. N., & Taoukis, P. S. (2009). Kinetic study of the

combined effect of high hydrostatic pressure and temperature on the activity of

Lactobacillus delbrueckii ssp. bulgaricus aminopeptidases. Journal of Food Science,

74, 219-225.

Knorr, D. (1999). Novel approaches in food-processing technology: new technologies

for preserving foods and modifying function. Current Opinion in Biotechnology, 10,

485-491.

Kudryashova, E. V., Mozhaev, V. V, & Balny, C. (1998). Catalytic activity of thermolysin

under extremes of pressure and temperature: modulation by metal ions. Biochimica et

Biophysica Acta, 1386, 199-210.

Kumar, A., Grover, S., Sharma, J., & Batish, V. K. (2010). Chymosin and other milk

coagulants: sources and biotechnological interventions. Critical Reviews in

Biotechnology, 30, 243-258.

Leite Júnior, B. R. C., Tribst, A.A.L., & Cristianini, M. (2014). Proteolytic and milk-

clotting activities of calf rennet processed by high pressure homogenization and the

Page 93: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

93

influence on the rheological behavior of the milk coagulation process. Innovative Food

Science and Emerging Technology, 21, 44-49.

Malone, A. S., Wick, C., Shellhammer, T. H., & Courtney, P. D. (2003). High pressure

effects on proteolytic and glycolytic enzymes involved in cheese manufacturing.

Journal of Dairy Science, 86, 1139-1146.

Merheb-Dini, C., Gomes, E., Boscolo, M., & da Silva, R. (2010). Production and

characterization of a milk clotting protease in the crude enzymatic extract from the

newly isolated Thermomucor indicae-seudaticae N31. Food Chemistry, 120, 87-93.

Møller, K. K., Rattray, F. P., Sørensen, J. C., & Ardo, Y. (2012). Comparison of the

hydrolysis of bovine κ-casein by camel and bovine chymosin: A kinetic and specificity

study. Journal Agricultural and Food Chemistry, 60, 5454-5460.

Mozhaev, V. V., Lange, R., Kudryashova, E. V., & Balny, C. (1996). Application of high

hydrostatic pressure for increasing activity and stability of enzymes. Biotechnology and

Bioengineering, 52, 320-331.

Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: Process

end product optimization using designed experiments (2nd edn., 798p.) New York:

John Wiley & Sons.

Ong, L., Dagastine, R. R., Kentish, S. E., & Gras, S. L. (2011). Microstructure of milk

gel and cheese curd observed using cryo scanning electron microscopy and confocal

microscopy. LWT - Food Science and Technology, 44, 1291–1302.

Rolet-Répécaud, O., Berthier, F., Beuvier, E., Gavoye, S., Notz, E., Roustel, S.,

Gagnaire, V., & Achilleos, C. (2013). Characterization of the non-coagulating enzyme

fraction of different milk-clotting preparations. LWT - Food Science and Technology,

50, 459-468.

Page 94: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

94

Sila, D.N., Smout, C., Satara, Y., Truong, V., Loey, A. V., & Hendrickx, M. (2007).

Combined thermal and high pressure effect on carrot pectinmethylesterase stability

and catalytic activity. Journal of Food Engineering, 78, 755-764.

Walstra, P., Wouters, J. T. M., & Geurts, T. J. (2006). Dairy Science and Technology.

(2nd edn., 782p.) Boca Raton, London, New York: CRC Taylor & Francis Group.

Page 95: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

95

Capítulo 4. Comparative study among rheological, near-

infrared light backscattering and confocal microscopy

methodologies in enzymatic milk coagulation: impact of

different enzyme and protein concentrations

Trabalho publicado na revista Food Hydrocolloids:

LEITE JÚNIOR, B. R. C.; TRIBST, A.A.L.;

CRISTIANINI, M. Comparative study among

rheological, near-infrared light backscattering and

confocal microscopy methodologies in enzymatic milk

coagulation: impact of different enzyme and protein

concentrations. Food Hydrocolloids, v. 62, p. 73-82,

2017.

doi: http://dx.doi.org/10.1016/j.foodhyd.2016.07.035

Page 96: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

96

Abstract

Enzymatic milk coagulation affects parameters such as yield, moisture content

and texture and various methodologies have been used to evaluate this process. Thus,

the present work comparatively evaluated milk coagulation with different enzyme

(10.00, 16.67 and 23.33 IMCU.L-1 milk) and protein (1.5, 3.0 and 6.0%) concentrations

using rheological methods, near-infrared (NIR) light backscattering and confocal

microscopy. The enzymatic hydrolysis (first phase of coagulation) can be explained by

the parameters determined in the NIR light backscatter profile. All the methodologies

were capable of describing the protein network aggregation process (second phase of

coagulation), and using the rheological trials and NIR light backscattering, the gels with

greater enzyme or protein concentrations were shown to have more protein

aggregation, resulting in more consistent gels. In addition the start of aggregation could

be measured and the formation of the gel microstructure visually accompanied by

confocal microscopy. Thus, all the methods could be used to make an overall

evaluation of the milk coagulation phenomenon, but the method should be chosen

according to the parameters one desires to use to compare the different samples.

Key-words: Milk Protein • Milk-Clotting • Rheological Assay • Near-Infrared Light

Backscattering • Confocal Microscopy

Page 97: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

97

Resumo

A coagulação enzimática do leite afeta parâmetros como produtividade, teor de

umidade e textura e várias metodologias têm sido utilizadas para avaliar este

processo. Assim, o presente trabalho comparou a coagulação do leite com diferentes

concentrações de enzima (10,00, 16,67 e 23,33 IMCU.L-1 leite) e proteína (1,5, 3,0 e

6,0%) utilizando métodos reológicos, espectroscopia no infravermelho próximo (NIR)

e microscopia confocal. A hidrólise enzimática (primeira fase da coagulação) pode ser

explicada pelos parâmetros determinados no perfil de retroespalhamento de luz no

NIR. Todas as metodologias foram capazes de descrever o processo de agregação

da rede de proteínas (segunda fase de coagulação), e utilizando os ensaios reológicos

e a espectroscopia no NIR, verificou-se que os géis com maior concentração de

enzima ou proteína apresentaram maior agregação proteica, resultando em géis mais

consistentes. Além disso, o início da agregação pode ser medido e a formação da

microestrutura do gel visualmente acompanhada por microscopia de confocal. Assim,

todos os métodos podem ser usados para fazer uma avaliação global do fenômeno

da coagulação do leite, mas o método deve ser escolhido de acordo com os

parâmetros que se deseja usar para comparar as diferentes amostras.

Palavras-Chave: Proteína do Leite • Coagulação do Leite • Ensaio Reológico •

Espectroscopia no Infravermelho Próximo • Microscopia Confocal

Page 98: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

98

4.1 Introduction

The enzymatic milk coagulation step is of great commercial interest in

cheese manufacture (Horne & Banks, 2004), since an understanding of this step is

fundamental in determining parameters such as yield, moisture content and texture

(Pandey, Ramaswamy, & St-Gelais, 2000).

The casein micelles remain suspended in the milk and are stabilized by

electrostatic repulsions and impedance of a steric nature due to the presence of

negatively charged κ-casein (~ -20mV) on the molecule surface (Fox et al., 2004).

Enzymatic milk coagulation involves the phases of enzymatic hydrolysis and micelle

aggregation (McMahon & Brown, 1984; Dalgleish, 1993; Horne & Banks, 2004). The

first phase is characterized by the enzymatic action of the rennet, which acts on κ-

casein in a specific way, cleaving the bond Phe105-Met106, forming para-k-CN and

allowing the casein macropeptide (CMP) to go into the aqueous phase (Lucey, 2002;

Horne & Banks, 2004; Janhøj & Qvist, 2010). This cleavage results in a reduction in

the negative charge (decreasing electrostatic repulsion) and a decrease in the steric

impediment of the casein micelle (Horne & Banks, 2004). The start of the second phase

of coagulation is characterized by micelle aggregation in the presence of Ca2+ at a

temperature above 20 ºC (Fox et al., 2004). This aggregation starts only when a

considerable amount of κ-casein was cleaved by the enzyme (60-80%) for

unconcentrated milk (Dalgleish, 1993; Fox et al., 2004; Horne & Banks, 2004; Walstra

et al., 2006) or lower percentage (~20%) when coagulation is performed in

concentrated milk (Karlsson, Ipsen, & Ardö, 2007). In addition, for unconcentrated milk,

significant protein aggregation only occurs when 90% of the casein has been

hydrolyzed (Dalgleish, 1979).

Although the nature of the attractive forces during casein micellar

aggregation has still not been completely elucidated (Lucey, 2002), the Ca2+ bonds,

van der Waals forces and hydrophobic interactions are considered important for this

aggregation (Walstra, 1990). After the initial accommodation of the network, the gel

develops with an increase in the mechanical strength due to an intensification of the

bonds between the gel proteins up to the moment of cutting (Janhøj & Qvist, 2010).

In gels formed by the action of rennet, the percentage of non-hydrolyzed κ-

casein and other types of bonding present on the surface of the micelle can represent

a barrier (both steric and electrostatic) in order to aggregate the micelles, with a

Page 99: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

99

consequent reduction in the firmness of the gel obtained (Lucey, 2002). Thus the

enzyme concentration and type, the protein concentration, the amount of soluble

calcium and the temperature, amongst other factors, affect the milk coagulation

process (Dalgleish, 1993; Lucey, 2002; Horne & Banks, 2004).

Different techniques are available to accompany milk coagulation, and

Lucey (2002) carried out a review in which he emphasized various methods capable

of accompanying the process. However, a comparison amongst the methods cited in

order to determine the advantages and limitations of each one is impossible, since

each study was performed using different milk compositions, enzymes (type and

concentration), calcium amount and temperature of coagulation. Thus the objective of

the present study was to carry out a true comparative evaluation amongst the

rheological methods, near-infrared (NIR) light scanning and microscopy, in order to

accompany the milk coagulation step and characterize the gels obtained as a function

of different protein and enzyme concentrations. The results will permit one to determine

if the methods are complementary or substitutes one for the other, and the advantages

and limitations of each one.

4.2 Materials and Methods

4.2.1 Milk and enzyme

Milk was obtained by reconstituting skimmed milk powder (36.9% protein)

produced using a low heat process (particle temperature < 55°C) (Tagará Foods,

Brazil). Skimmed milk powder was reconstituted using different concentration of

powder - 4.07 (w/v), 8.13% (w/v) and 16.26% (w/v) -, resulting in concentrations of 1.5

(w/v), 3.0 (w/v) and 6.0% (w/v) of protein, respectively. 0.01 M CaCl2 was added to all

the milks.

The commercial enzyme used was recombinant chymosin with an activity

of 2500 IMCU.g-1 (CHY-MAX® M 2500 Power NB, Chr Hansen, Hoersholm, Denmark).

For the experiments, enzyme solutions were prepared in a sodium acetate buffer (0.2

M, pH 5.6) at concentrations of 0.03% w/v (10.00 IMCU per liter of milk), 0.05% w/v

(16.67 IMCU per liter of milk) and 0.07% (23.33 IMCU per liter of milk).

Using these different enzyme solutions and milk protein concentrations five

milk coagulation assays were carried out: (i) using milk with 1.5% of protein and an

Page 100: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

100

enzyme solution with a concentration of 16.67 IMCU per liter of milk (EN 0.05 %_PTN

1.5 %), (ii) using milk with 3.0 % of protein and an enzyme solution with a concentration

of 10 IMCU per liter of milk (EN 0.03 %_PTN 3.0 %), (iii) using milk with 3.0 % of protein

and an enzyme solution with a concentration of 16.67 IMCU per liter of milk (EN 0.05

%_PTN 3.0 %), (iv) using milk with 3.0 % of protein and an enzyme solution with a

concentration of 23.33 IMCU per liter of milk (EN 0.07 %_PTN 3.0 %) and (v) using

milk with 6% of protein and an enzyme solution with a concentration of 16.67 IMCU

per liter of milk (EN 0.05 %_PTN 6.0 %).

4.2.2 Rheological assays of the coagulation process

The milk coagulation process was evaluated by way of a time sweep using

a low deformation oscillatory test with a controlled stress rheometer (AR2000ex, TA

Instruments, USA).

Two types of small amplitude oscillatory rheological assays were carried

out. The first analysis used 60 mL of skimmed milk powder reconstituted (described in

item 4.2.1) and pre-incubated at 35 °C for 10 min. Subsequently, 0.8 mL of enzyme

was added and the mixture immediately transferred to a rheometer cup (30 mm

diameter and 80 mm height) with a vaned quarter geometry (28 mm of diameter and

42 mm of length) and 4 mm gap. The stress was set at 0.1 Pa, frequency at 0.1 Hz

and the parameter G' (storage modulus) read at 1 min intervals for 40 min of the clotting

process at 35 °C (Leite Júnior, Tribst, & Cristianini, 2014). The temperature was

controlled by a Peltier system. Furthermore, the rate of milk-clotting was calculated as

the variation of log G’ with log time (dG’/dt) at three min intervals, and expressed in

Pa.min-1. The storage modulus (G’) describes the elastic (solid) behavior of the

product, and consequently, the energy stored and released during each oscillatory

cycle.

The second analysis consisted of evaluating the gels after a 40 min period

of coagulation at 35 °C, using the same rheometer geometry, but with frequency sweep

procedures. Since this analysis preserves the original structure of the gel (Oliveira et

al., 2014), it is necessary to choose a strain within the linear viscoelastic region. For

this purpose, a strain sweep (0.01–10 Pa) procedure under a fixed frequency of 1.0 Hz

was carried out, and the stress within the linear viscoelastic region of 1 Pa determined.

Finally, a frequency sweep (0.01 to 100 Hz) procedure under a controlled strain of 1

Page 101: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

101

Pa was carried out, and the viscoelastic parameter G′ (storage modulus, elastic

behavior) attained (Oliveira et al., 2014). For the evaluation of the experimental results,

the values obtained before breaking of the gel were used according to the power law

model (Eq 4.1).

𝐺′ = 𝑘′. 𝜔𝑛′ (Eq. 4.1)

where G′ is the storage modulus, which represents the elastic behavior of the solid

(Pa), k′ is the consistency index (Pa·sn′), ω is the oscillation frequency (Hz) and n′ is

the behavior index. The parameters of the model were obtained by linear regression

after linearization using the software Microsoft Excel 2007, with a significant probability

level of 95% (Oliveira et al., 2014).

4.2.3 Near-infrared (NIR) light backscattering of the gels obtained by the

enzyme-induced milk coagulation process

Milk coagulation was monitored using a near-infrared light backscatter at

880 nm (Turbiscan MA2000, Formulaction, Ramonville St. Agne, France). For this, 15

mL of skimmed milk powder reconstituted (described in item 4.2.1) was pre-incubated

at 35 ºC for 10 min. Subsequently, 0.2 mL of enzyme (prepared as described in item

4.2.1) was added to the milk. The mixture was immediately transferred to borosilicate

glass tubes (12 mm inner diameter and 30 mm high) and the time started. The light

source scanned the sample at 1 min intervals from bottom to top with an infrared

wavelength (880nm), and measured the percentage of light backscattered during 40

min at 35 °C. The variation in delta backscattering (ΔBS) was determined from the

difference in backscattering between control samples (milk with no added enzyme) and

samples with added enzyme. An increase in ΔBS is associated with an increase in

particle concentration and size. The data were analyzed using the Turbisoft 2.0

software (Zhao et al., 2014).

Page 102: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

102

4.2.4 Three dimensional (3D) microstructure of the gels obtained by the

enzyme-induced milk coagulation process, obtained by confocal scanning laser

microscopy (CSLM)

An aliquot of 3 mL of skim milk powder reconstituted (described in item

4.2.1) was pre-incubated at 35 °C / 10 min. Subsequently, 40 µL of each recombinant

chymosin solution (prepared as described in item 4.2.1) and 75 µL of fast-green FCF

(0.1 % w/v, in distilled water, Sigma–Aldrich, Ireland) (used to observe the protein

matrix in a confocal microscope) were added. Immediately after addition, 200 µL of the

solution were transferred to an 8 chamber coverglass (a 10 mm deep cavity dish)

covered with a glass coverslip (0.17 mm thick) (Lab-Tek® II Chambered Coverglass,

USA) and confocal imaging carried out using a Zeiss Upright LSM780-

NLO microscope (Carl Zeiss AG, Germany) with the temperature set at 35 ºC.

For each sample, 20 adjacent planes (2D layers with 512 × 512 pixels in

resolution from a 134.95 μm × 134.95 μm sample area) were acquired with the

separation between the planes maintained constant at 0.75 μm, giving a total

observational depth of 15 μm. Images were recorded of representative areas of each

sample at a distance of 5 µm and 20 µm from the surface of the coverglass (bottom)

every 45 seconds for 40 minutes using an oil immersion x63 objective lens (numerical

aperture = 1.40) at excitation wavelengths of 633 nm for fast-green (He/Ne laser),

where the fast-green FCF stained protein appeared as red, in contrast to the serum

phase which appeared as black in these images. The images were acquired in RGB

color (8 bits), of 512 x 512 pixels in size to give final resolutions of 0.26 µm/pixel (Leite

Júnior et al., 2014).

4.2.5 Image analysis

Image analysis of the CLSM micrographs was done using image J software

(Research Service Branch, National Institute of Health, Maryland, USA) equipped with

“Pore Analysis” and “ComputeStats” plug-ins. The images were enhanced and

flattened using a bandpass filter. The enhanced image was then transformed to a

binary image using an Otsu threshold algorithm binarisation, with all the structural

features contributing black pixels and all the background features contributing white

pixels (Impoco, Carrato, Caccamo, Tuminello, & Licitra, 2006).

Page 103: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

103

Image J analysis was used to quantify the porosity and total number of pores

from the CLSM micrographs (Hussain, Grandison, & Bell, 2012). The average pore

area was calculated as the total pore area with respect to the total sample area (0.018

mm2), divided by the total number of pores (Leite Júnior et al., 2014).

4.2.6 Statistical analysis

The processes and analyses were carried out with three repetitions and

each experimental unit was carried out in duplicate. The analysis of variance (ANOVA)

was applied to compare the effects of the different coagulation processes and the

Tukey test was used to determine the differences between them at a 95% confidence

level. The statistical analyses were carried out using the STATISTICA 7.0 software–

(StatiSoft, Inc., Tulsa, Okla., U.S.A.) and the results were represented as the mean ±

standard deviation. In addition, multiple factor analysis (MFA) was used to analyze the

data obtained in the rheological, NIR light backscatter profile and microscopic assays.

It involved the establishment of a correlation matrix with the means of the process,

where the rows were the different coagulation process (5 lines) and the columns were

the parameters obtained in the evaluated methods. The analyses were carried out

using the XLSTAT software version 2015.2.02 (Addinsoft, Paris, France).

4.3 Results and Discussion

4.3.1 Evaluation of the milk-clotting enzyme during milk gel formation as

monitored by a rheological analysis

The rheological evaluation, carried out using dynamic assays and

measuring the elastic modulus (G’), is considered to be the easiest and most direct

way to characterize milk gel formation in the coagulation process (Hussain, Bell &

Grandison, 2013, Leite Júnior, Tribst, & Cristianini, 2015), since an increase in storage

modulus over coagulation time implies network formation (Leite Júnior et al., 2014).

Results in Figure 4.1 shows the rheological profile of the milk gels formed

using different concentrations of the enzyme and proteins evaluated. The rheological

parameters that explain the behavior of the gels formed were extracted from these data

(Table 4.1).

Page 104: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

104

The rennet coagulation time (RCT) describes the time when coagulation

starts (Janhøj & Qvist, 2010) and is mathematically described when tan(δ)=1 or G’=

G’’. This parameter indicates the time required to start the second coagulation phase

(sufficient hydrolysis of the k-casein to start micelles aggregation, as described by

Dalgleish (1993) and Sandra & Corredig (2013). The RCT is normally dependent on

the concentration of enzyme and ratio enzyme:substrate, since each enzyme molecule

needs to act few times until cleaved casein reaches the minimal concentration required

for aggregation to start.

Additionally, the RCT is affected by protein concentration, being higher

when high protein concentration is used. It occurs once at high protein concentration,

the ratio of enzyme:protein is lower, increasing the time to obtain sufficient hydrolyzed

protein to start aggregation.

The maximum milk coagulation rate (Table 4.1) occurred at the beginning

of aggregation (Karlsson, Ipsen, & Ardö, 2007), being directly proportional to the

amount of protein available for aggregate formation (p<0.05). Additionally, higher

enzyme concentration induces higher milk coagulation rate (p < 0.05) due to higher

rate of k-casein hydrolysis and formation of protein available for aggregation (Lucey,

2002). The consistency of gels formation is revealed by the linear part of the rheological

curve (Sandra, et al., 2011) and the evaluation of data (Table 4.1 and Figure 4.1)

highlights that protein concentration is the main responsible for consistency increase

in the gel (p<0.05).

Page 105: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

105

Figure 4.1. Rheological evaluation of the enzymatic milk coagulation process with different enzyme and protein concentrations. **

The values are means of the replicates (n = 6). EN: Enzyme; Ptn: Protein.

0

5

10

15

20

0 5 10 15 20 25 30 35 40

G' (P

a)

Time (min)

EN 0.07%_Ptn3.0% EN 0.05%_Ptn3.0% EN 0.03%_Ptn3.0%

EN 0.05%_Ptn1.5% EN 0.05%_Ptn6%

Page 106: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

106

Table 4.1. Evaluation of the rheological parameters obtained during the enzymatic milk coagulation process with different enzyme

and protein concentrations.

Sample RCT - (tan(δ)=1)

(min)

Max milk-clotting rate -

Log (dG'/dt) (Pa.min-1)

Curve slope

after onset of

aggregation

R2

Storage modulus

G' (Pa) k' (Pa·sn') R2

After 40 min

EN 0.07%_3.0% PTN 11.47 ± 0.11a 1.73 ± 0.37a 0.61 ± 0.01b 0.9987 14.6 ± 0.3b 26.8 ± 0.6b 0.996

EN 0.05%_6.0% PTN 22.57 ± 0.11d 1.43 ± 0.15ab 1.63 ± 0.06a 0.9949 20.4 ± 0.6a 46.4 ± 3.2a 0.995

EN 0.05%_3.0% PTN 16.66 ± 0.10c 1.21 ± 0.10bc 0.50 ± 0.01c 0.9997 9.7 ± 0.2c 19.2 ± 0.2c 0.993

EN 0.05%_1.5% PTN 16.00 ± 0.02b 0.52 ± 0.03d 0.08 ± 0.00e 0.9998 2.0 ± 0.0e 3.9 ± 0.0e 0.995

EN 0.03%_3.0% PTN 25.74 ± 0.05e 1.03 ± 0.15c 0.27 ± 0.02d 0.9907 3.2 ± 0.3d 8.1 ± 0.6d 0.994

Significant differences evaluated by the Tukey test (p < 0.05) between samples in the same column are indicated by different

superscripts a, b, c, d, e.** Values are means of replicates (n = 6). RCT: Rennet coagulation time; EN: Enzyme; PTN: Protein.

Page 107: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

107

The final values for G’ (Table 5.1) describes the consistency of the formed

gel (Leite Júnior et al., 2014) and the k’ value (Table 4.1) represents the elastic

component of the gel formed and is related to the protein-protein interactions, since a

greater number of interactions provide greater mechanical resistance (Oliveira et al.,

2014). These two parameters were positively affected (p<0.05) by the protein (due to

the availability of protein to aggregate) and enzyme content (since at high enzyme

concentration the aggregation starts before and had more time - up to 40 minutes - for

the bonds to form and strengthen the interactions between the casein aggregates

formed). On the other hand, when little enzyme was used, the aggregation started later

and probably occurred when a greater percentage of the casein was still intact. Thus,

possibly the non-hydrolyzed casein molecules made simultaneous aggregation more

difficult and the aggregates formed negatively affected the enzyme access to the

substrate. Hence, after 40 minutes, the gels possibly were not completely formed and

the presence of non-hydrolyzed protein resulted in a fragile gel with few interactions of

protein-protein.

The parameter n’ (Table 4.1) indicates the behavior index of the gels and it

is linked to changes in the type of intermolecular forces in the milk gels (Oliveira et al.,

2014). The values for n’ varied between 0.220 and 0.249 and this slight variation was

expected, since, independent of the amount of protein and enzyme used, the nature

of the bonds formed would be similar.

4.3.2 Determination of the coagulation properties of milk-clotting enzymes

using the NIR light backscattering profile

The milk coagulation process can be accompanied by scanning at a near

infrared wavelength (880nm), since the backscattering increases due to protein

network formation (Zhao et al., 2014). The backscattering values were determined

from bottom (5 mm) to top (25mm) of the tubes. During the coagulation step, the

maximum difference from bottom to top was 3.3%, indicating low dispersion of the

readings throughout the tube. Thus, the mean BS values obtained in the scans from 5

to 25 mm were used, and these values were plotted throughout the experiment to

obtain the curves (Figure 4.2).

Page 108: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

108

Figure 4.2. (A) NIR light backscattering scan of the enzymatic milk coagulation process with different enzyme and protein

concentrations; (B) Example of a model curve obtained by NIR light backscattering. ** The values are means of the replicates (n =

6). EN: Enzyme; Ptn: Protein.

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35 40

ΔB

S (

%)

Time (min)

EN 0.07% / Ptn 3.0% EN 0.05% / Ptn 3.0% EN 0.03% / Ptn 3.0%

EN 0.05% / Ptn 1.5% EN 0.05% / Ptn 6.0%

(B)

(A)

Page 109: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

109

Table 4.2. Evaluation of the parameters obtained from the NIR light backscattering scan during the enzymatic milk coagulation

process with different enzyme and protein concentrations.

Sample Var. %

ΔBS A-B

Linear rate

A-B R2

Var. %

ΔBS B-C

Var. Time

B-C (min)

Time in C -

RCT (min)

Linear rate

C-D R2

% ΔBS in D

40 min

EN 0.07%_3.0% PTN 2.2b 0.544a 0.993 0.24b 1.7b 11.3a 0.254a 0.997 6.7b

EN 0.05%_6.0% PTN 4.9a 0.380b 0.997 0.0d 0.0c 23.7d 0.201b 0.999 7.9a

EN 0.05%_3.0% PTN 2.2b 0.348b 0.989 0.19bc 2.3b 18.0c 0.188c 0.998 5.5c

EN 0.05%_1.5% PTN 0.9c 0.186c 0.983 0.62a 4.0a 15.3b 0.148d 0.998 2.9e

EN 0.03%_3.0% PTN 2.3b 0.237c 0.997 0.13c 4.0a 26.7e 0.140d 0.999 3.9d

Significant differences evaluated by the Tukey test (p < 0.05) between samples in the same column are indicated by different

superscripts a, b, c, d, e.** Values are means of replicates (n = 6). EN: Enzyme; PTN: Protein; Var.: Variation; ΔBS: delta backscattering.

Page 110: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

110

The ΔBS between points A and B (Figure 4.2B) probably occurred due to

destabilization of the casein micelles and liberation of CMP during the enzymatic

hydrolysis and was positively proportional to the protein content of the samples (Table

4.2) (p <0.05) but was not affected by enzyme concentrations, indicating that the

degree of hydrolysis required to start aggregation is governed by protein content.

Differently, the evaluation of ΔBS linear increase rate between points A and B (Table

4.2) showed that the velocity of CMP liberation was proportional to the enzyme

concentration used (p <0.05). For the increase in protein concentration, the same

behavior was found between 1.5 and 3% (p <0.05), since greater protein availability

(micelles) for the reaction increased the liberation of CMP, so long as there was

sufficient enzyme in the medium to guarantee a high enzyme reaction rate. However,

the rate between points A and B for protein content of 3 and 6% was similar, which can

possibly be explained by saturation of the substrate (milk with 6% protein).

Aggregation of the micelles (beginning of the second coagulation phase)

occurred after a shoulder formation in ΔBS (as from point C - Figure 4.2B). For the gel

coagulated with 6% protein, this shoulder was not formed as in the other curves,

probably due to higher protein content, which induces higher level of CMP formation

and aggregation at the same time. Therefore, for this sample, the second phase started

when a deceleration of ΔBS was observed (Nicolau et al., 2015).

The variation in ΔBS at the shoulder (Figure 4.2B and Table 4.2 - variation

in % ΔBS between points B and C) was more affected by the protein concentration

than by the enzyme concentration. The greater the amount of protein in the medium,

the smaller the variation observed (p <0.05), being null at a protein concentration of

6.0%. The inverse was observed for enzyme concentration (p <0.05), the greater the

amount of enzyme present, the greater the variation in ΔBS (p <0.05). At the studied

conditions, the shoulder probably represented the moment the CMP liberation rate

decreased simultaneously with the start of micelle destabilization, characterized by the

start of the reduction in electrostatic repulsion and steric impedance, without micelle

aggregation. With respect to the shoulder extent of time (Δtime between B and C - Table

4.2 and Figure 4.2B), it was observed that the greater the concentrations of enzyme

and protein, the shorter the shoulder time (p < 0.05). For enzyme concentration this

occurred due to the rapid liberation of CMP between the start and finish of the shoulder,

favoring the start of aggregation (2nd phase). In the case of protein, the greater the

protein concentration, the greater the proximity of the casein micelles to each other,

Page 111: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

111

favoring the aggregation even with relative low concentration of casein hydrolyzed

(Karlsson, Ipsen, & Ardö, 2007).

With respect to RCT (point C as shown in Table 4.2 and Figure 4.2), it was

found that the greater the enzyme concentration and the smaller the protein

concentration, the shorter the time for the start of aggregation. Results of this

parameter were compatible to the RCT measured by rheology, with higher values for

samples with higher concentration of protein or lower ratio of enzyme: protein.

The rate of increase in ΔBS after point C represents the rate of protein

aggregation (Table 4.2 and Figure 4.2). An evaluation of these results shows that the

greater the enzyme and protein concentrations, the greater the aggregation rates

(p<0.05). In the case of enzyme concentration, this phenomenon can be explained by

the greater concentration of hydrolyzed micelles at the start of aggregation and the

smaller content of whole micelles that could upset aggregation by impediment of a

steric or electrostatic nature. On the other hand, for protein content, the greater the

amount of protein present and the smaller the distance between the protein molecules

greater the aggregation rate.

For the ΔBS value after 40 minutes (point D – Table 4.2 and Figure 4.2), it

was shown that the greater the concentration of protein and enzyme, the greater the

value of ΔBS, signifying a greater final degree of aggregation between the micelles.

Results of this parameter were compatible to the k’ measured by rheology, and higher

values means strong interactions protein-protein.

4.3.3 Evaluation of the milk-clotting enzymes during the formation of the milk

gel, as monitored by confocal microscopy

Confocal laser scanning microscopy is an interesting and non-destructive

technique for observe the gel formation microstructure during milk coagulation (Leite

Júnior et al., 2014). From CLSM images at a height of 20 µm above the slide surface

(Figure 4.3), it is calculated several gels structural parameters (Figure 4.4 and Table

4.3), such as the porosity and the number and average size of the pores (Ong et al.,

2012; Hussain, Bell & Grandison, 2013; Leite Júnior et al., 2014).

A reduction in porosity was found in all the samples during the development

of the gels (Table 4.3). This reduction could be due to sedimentation and compacting

of the protein network during coagulation (0 to 40 minutes, as represented in Table 4.3

Page 112: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

112

by points A’ and D’). In the comparative evaluation between the different processes it

was shown that the porosity was dependent on the protein content, the lower the

protein content the greater the porosity (less dense network) (p<0.05). However, the

amount of enzyme in the medium did not affect porosity (p>0.05).

Figure 4.4 shows the number of pores per µm2 in the images obtained by

confocal scanning laser microscopy (CSLM). The evaluation of the data showed a

reduction in the number of pores with time accompanied by an increase in their size,

being more intense in the range between points B’ and C’ (Figure 4.4 and Table 4.3).

This behavior is related to the beginning of formation of the gel structure, which

occurred when a sufficient amount of hydrolyzed casein had been formed and is

directly proportional to enzyme concentration (p<0.05) (Table 4.3), due to a rapid

cleavage of the k-casein, favoring a greater aggregation and accommodation of the

protein network. To the contrary, the greater the protein concentration the smaller the

reduction in the number of pores and change in their mean size (p<0.05). This probably

occurred because a network with a greater protein concentration would show reduced

protein dispersion, and hence the micelles would move shorter distances to bond

during aggregation, maintaining an elevated number of small-sized pores. In addition,

in gels with a lower protein concentration there would be greater dispersion of the

hydrolyzed micelles, such that they would move longer distances until they could form

a network capable of guaranteeing their aggregation, resulting in a smaller number of

larger pores.

There is a time range (ΔT) during coagulation in which this intense reduction

in the number of pores with an increase in mean size occurs (from points B’ to C’ as

shown in Figure 4.4 and Table 4.3). This time range starts at the RCT time (point B’)

and varies from 4.25 to 9.56 min depending on the sample. As described by rate of

protein aggregation parameter of NIR light backscattering, enzyme and protein

concentration positively affect this process.

Page 113: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

113

Figure 4.3. Images obtained by confocal microscopy for the enzymatic milk coagulation

process with different enzyme and protein concentrations. 1: EN 0.07%_3.0% PTN; 2: EN

0.05%_6.0% PTN; 3: EN 0.05%_3.0% PTN; 4: EN 0.05%_1.5% PTN; 5: EN 0.03%_3.0%

PTN. A’: milk with 5 min of coagulation; B’: Start aggregation; C’: stabilization; D’: gel after 40

min of coagulation. Time (min) in the figures refers to the time during coagulation process in

which the image was captured.

A’ B’ C’ D’

Page 114: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

114

Figure 4.4. (A) Evaluation of the number of pores formed during the enzymatic milk coagulation process with different enzyme and protein

concentrations, obtained using confocal microscopy; (B) Example of a model curve obtained for the number of pores by confocal

microscopy. ** The values are means of the replicates (n = 6). EN: Enzyme; PTN: Protein.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

5 10 15 20 25 30 35 40

Nu

mb

er

of

po

res

p

er

µm

2

Time (min)

EN 0.07%_PTN 3.0% EN 0.05%_PTN 3.0% EN 0.03%_PTN 3.0%

EN 0.05%_PTN 1.5% EN 0.05%_PTN 6.0%

(A) (B)

Page 115: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

115

Table 4.3. Evaluation of the parameters obtained by confocal microscopy during the enzymatic milk coagulation process with

different enzyme and protein concentrations.

Sample

Porosity Average pore area (µm2) Number of pores per µm2 Δ number of pores between B’ and C’

Time in B’ (min)

Time in C’ (min)

ΔT between B’ and C’

(min) A’ D’ A’ B’ C’ D’ A’ B’ C’ D’

EN 0.07%_ 3.0% PTN

0.40b 0.33b 0.98b 0.97b 2.38b 2.65b 0.41a 0.41b 0.16d 0.12d 0.26a 10.25a 17.00a 6.75b

EN 0.05%_ 6.0% PTN

0.33c 0.27c 0.76c 0.75c 1.14d 1.11d 0.43a 0.43a 0.28a 0.24a 0.15d 20.25d 24.50c 4.25a

EN 0.05%_ 3.0% PTN

0.39b 0.32b 0.94b 0.96b 1.70c 2.03c 0.42a 0.39c 0.20c 0.16c 0.19c 15.50c 22.81b 7.31b

EN 0.05%_ 1.5% PTN

0.44a 0.42a 1.25a 1.27a 4.33a 5.23a 0.35b 0.33d 0.10e 0.08e 0.23b 13.81b 23.38b 9.56c

EN 0.03%_ 3.0% PTN

0.39b 0.32b 0.96b 0.88b 1.36cd 1.46d 0.41a 0.38c 0.24b 0.22b 0.14d 23.75e 32.75d 9.00c

Significant differences evaluated by the Tukey test (p < 0.05) between samples in the same column are indicated by different

superscripts a, b, c, d, e.** Values are means of replicates (n = 6). EN: Enzyme; PTN: Protein.

Page 116: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

116

Deceleration of the reduction in the number of pores and increase in their

mean size (as from point C’) could be attributed to the accommodation/stabilization of

the protein network formed. Thus between points C’ and D’ there was probably only

an increase in the interaction forces between the proteins of the structures formed,

which was corroborated by the small differences between the values at points C’ and

D’ for the number of pores and their mean size. The images obtained using confocal

microscopy also corroborated this idea, there being practically no differences between

the structures formed at times C’ and D’, as shown in Figure 4.3.

4.3.4 Comparative evaluation between the methodologies

The results obtained for the three methodologies used showed that all can

be used to accompany the milk coagulation process, translating the coagulation steps

into measurable parameters. Some of the parameters obtained by the different

methodologies were equivalent whereas others were specific. Table 4.4 compiles the

equivalent parameters determined by the three methodologies studied (beginning of

aggregation) and data about the final gel characteristics.

The results of the beginning of aggregation established the same levels of

differences between the samples studied, indicating complete equivalence between

the results. Despite this, the time determined by each methodology was different, being

up to 13% shorter in confocal microscopy than other methods. This possibly indicates

that protein aggregation (measured directly by confocal microscopy), occurred some

instants before the increase in consistency (rheology assays) and in the ΔBS (NIR light

scanning) induced by this aggregation. In addition, the increase in consistency

occurred before the increase in ΔBS for samples with (enzyme:protein) ratios above

7.8, and after the increase in ΔBS for samples with (enzyme:protein) ratios below 5.6,

which could have a direct relationship with the amount of hydrolyzed protein at the start

of aggregation.

Page 117: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

117

Table 4.4. Compilation of the equivalent data established by the three methods studied for the time when aggregation started and

for the final gel characteristics.

Process

Start aggregation (min) Final gel – 40 min

Rheological

method

Turbidimetric

method

Confocal

microscopy G' value k' ΔBS value

Number of

pores per µm2

Average

pore

area

Porosity

EN 0.07%_3.0% PTN 11.5a 11.3a 11.0a 14.6b 26.8b 6.7b 0.12d 2.65b 0.33b

EN 0.05%_6.0% PTN 22.6d 23.7d 21.0d 20.4a 46.4a 7.9a 0.24a 1.11d 0.27c

EN 0.05%_3.0% PTN 16.7c 18.0c 16.3c 9.7c 19.2c 5.5c 0.16c 2.03c 0.32b

EN 0.05%_1.5% PTN 16.0b 15.3b 14.5b 2.0e 3.9e 3.0e 0.08e 5.23a 0.42a

EN 0.03%_3.0% PTN 25.7e 26.7e 24.5e 3.2d 8.1d 3.9d 0.22b 1.46d 0.32b

Significant differences evaluated by the Tukey test (p < 0.05) between samples in the same column are indicated by different

superscripts a, b, c, d, e.** Values are means of replicates (n = 6). EN: Enzyme; PTN: Protein; ΔBS: delta backscattering.

Page 118: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

118

An evaluation of the data obtained at the end of coagulation showed that

parameters such as G’ and k’ (from the rheological analyses) and ΔBS (from the NIR

light backscattering profile) were equivalent and can be used to differentiate the milk

gels produced using different protein and enzyme concentrations. Despite this, the

ranges of G’ and k’ values are higher than ΔBS, indicating that rheological method

would better distinguish similar samples. In contrast, the parameters obtained by

confocal microscopy showed that the final microstructure (represented by the number

of pores and their mean area) just have a direct relationship with the consistency and

ΔBS readings for gels formed with different protein content. For gels produced with

different enzyme concentration, it was the parameter of ‘mean pore size’ that showed

results proportional to the obtained values of G’, k’ and ΔBS.

In addition to the initial and final parameters, various other data were

obtained using the different methodologies studied, that helped in understanding the

milk coagulation process. Figure 4.5 shows the results obtained from the multivariate

factorial analysis (MFA) using the data extracted from the methodologies applied. It

was shown that 94.49% of the data were explained, indicating an excellent correlation

between parameters obtained. Thus using the rheology and NIR light backscattering

methodologies it was possible to determine that the processes carried out with greater

enzyme and protein concentrations were mainly characterized by the parameters of

greater coagulation rates and higher values of G’, k’ and ΔBS after 40 minutes,

indicating gels with a greater degree of bonding, that is, more consistent gels.

Page 119: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

119

Figure 4.5. Multivariate factorial analysis (MFA) of the parameters obtained for the

methodologies evaluated as a function of the different coagulation processes. EN:

Enzyme; Ptn: Protein; REO: Rheological assays; NIR: near-infrared; CSLM: Confocal

laser scanning microscopy; RCT: Rennet coagulation time; ΔBS: delta

backscattering; Var.: Variation.

The three methodologies showed greater values for RCT for the processes

with smaller enzyme concentrations or higher protein concentrations, this fact being

explained by the different enzyme:protein ratios. Moreover, the parameters from the

ΔT between points B and C in the trials carried out by NIR light backscattering and

confocal microscopy explains that more fragile gels (lower enzyme and/or protein

concentrations) took longer time to start aggregation and induce the stabilization of the

protein network. These two methodologies, mainly confocal microscopy (variation in

the number of pores between points B’ and C’), indicates that greater alteration in gel

EN 0.07%_3.0% PTN

EN 0.05%_6.0% PTN

EN 0.05%_3.0% PTN

EN 0.05%_1.5% PTN

EN 0.03%_3.0% PTN

RCT by REO RCT by NIR

RCT by CLSM

Max MilkRate

Curve Slope

G' (40 min)

k' (40 min)NIR ΔT B-C

NIR Var % ΔBS A-B

NIR Var % ΔBS B-CNIR Rate A-B

NIR Rate C-D

% ΔBS em D 40 min

CLSM Δ num pore B'-C'

CLSM ΔT B'-C'

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

F2 (

35.0

3 %

)

F1 (59.46 %)

Biplot (eixos F1 e F2: 94.49 %)

Page 120: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

120

microstructure is linked with high enzyme concentration (due to rapid aggregation) or

lower protein content (due to the greater displacement of the protein network formed).

Thus, as from the information obtained in a comparative way between the

different methods used, it was possible to draw parallels and highlight the advantages

and disadvantages of each milk coagulation evaluation method (Table 4.5). From

these data, it can be concluded that the method should be chosen as a function of the

responses required and according to which coagulation phase details are desirable. In

general, the NIR light backscattering method is more adequate to accompany the first

phase of coagulation and three methods can be equally used to describe the second

phase of coagulation, although only the rheological method provides data about gel

consistency, which can be considered a parallel response of the expected yield and

sensory perception. Additionally, the NIR light backscattering method allows for

inferences of gel syneresis and aggregation, which are also related to the expected

yield and stability of the cheese. The confocal data (final porosity) allows for inferences

of the expected yield and moisture content of the cheese, which have a direct

relationship with the water holding capacity.

Page 121: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

121

Table 4.5. Comparative evaluation between the different methods used: advantages and disadvantages of each method in the

evaluation of enzymatic milk coagulation

Method Advantages Disadvantages

Rheological trial

1. Parameter related to gel consistency/mechanical strength (parallel with sensory perception) 2. Precision in determining the start of aggregation 3. Sensitivity to differentiate the gels 4. No reagents required 5. Good results with consistent gels

1. Responses only describe the second coagulation phase 2. Analytical parameters should be pre-determined to avoid gel breakage 3. Does not measure syneresis

NIR light backscattering

scan

1. Good evaluation of first coagulation phase (CMP liberation rate) 2. Adequate to evaluate the start of coagulation (start of phase 2) 3. Adequate for fragile gels 4. Non destructive 5. No reagents required 6. Good evaluation of syneresis/ aggregation/ particle sedimentation

1. Does not measure gel strength 2. High protein concentrations affect curve behavior and make it difficult to evaluate the start of gel aggregation

Confocal microscopy

1. Evaluates the start of aggregation (detected before the other methods) 2. Establishes the relationship between the number and size of the pores in the gel formed 3. Non destructive 4. Determines syneresis and protein aggregation 5. Allows for visualization of the gel microstructure formation 6. Capable of evaluating gel formation with diverse enzyme and protein concentrations

1. Provides no data concerning the first phase of coagulation 2. Does not measure the mechanical strength of the gel 3. Requires the addition of dyes

Page 122: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

122

4.4 Conclusions

The three methods evaluated were capable of describing the enzymatic milk

coagulation process, presenting advantages and disadvantages to be used. NIR light

backscattering scanning presented the response concerning the first coagulation

phase. The second phase could be evaluated by the three methods as follows: the

rheological trial allowed for the determination of consistency, NIR light backscattering

scanning allowed for measurement of the degree of bonding between the particles and

confocal microscopy allowed for visualization of the formation of the gel protein

network. Of the gels evaluated it was determined that higher enzyme or protein

concentrations presented greater aggregation rates, resulting in more consistent gels,

whereas those produced with lower enzyme or protein concentrations were more

fragile, due to limited aggregation.

4.5 Acknowledgments

The authors would like to thank the São Paulo Research Foundation

(FAPESP) for the financial support (project no. 2012/13509-6) and for awarding a

scholarship to B. R. C. Leite Júnior (2014/17782-4). We thank the access to equipment

and assistance provided by the National Institute of Science and Technology on

Photonics Applied to Cell Biology (INFABIC) at the University of Campinas (FAPESP

no. 2008/57906-3 and CNPq no. 573913/2008-0).

4.6 References

Dalgleish, D. G. (1979). Proteolysis and aggregation of casein micelles treated with

immobilized or soluble chymosin. Journal of Dairy Research, 46, 653–661.

Dalgleish, D. G. (1993). The enzymatic coagulation of milk. In P. F. Fox (Ed.) Cheese:

Chemistry, Physics and Microbiology, v.1, (pp. 69-100). London: Chapman and Hall.

Fox, P. F., Mc Sweeney, P. L. H., Cogan, T. M., & Guinee, T. P. (2004). Cheese:

Chemistry, Physics and Microbiology. London: Chapman e Hall. 617p.

Page 123: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

123

Horne, D. S., & Banks, J. M. (2004). Rennet-induced Coagulation of Milk. In P. F. Fox,

P. L. H. McSweeney, T. M. Cogan, & T. P. Guinee (Eds.), Cheese: Chemistry, Physics

and Microbiology (Third Edi., pp. 47-70). London: Elsevier Academic Press.

Hussain, I., Grandison, A. S., & Bell, A. E. (2012). Effects of gelation temperature on

Mozzarella-type curd made from buffalo and cows’ milk. 1: Rheology and

microstructure. Food Chemistry, 134, 1500-1508.

Hussain, I., Bell, A. E., & Grandison, A. S. (2013). Mozzarella-type curd made from

buffalo, cows’ and ultrafiltered cows’ milk. 1. Rheology and microstructure. Food and

Bioprocess Technology, 6, 1729–1740.

Impoco, G., Carrato, S., Caccamo, M., Tuminello, L., & Licitra, G. (2006) Image

analysis methods for industrial application: Quantitative analysis of cheese

microstructure using SEM imagery. In: ADSA–ASAS Joint Annual Meeting.

Minneapolis, Minn., USA.

Janhøj, T., & Qvist, K. B. (2010). The Formation of Cheese Curd. In B. A. Law & A. Y.

Tamime (Eds.), Technology of Cheesemaking (Second Edi., pp. 130-165). Blackwell

Publishing Ltd.

Karlsson, A. O., Ipsen, R., & Ardö, Y. (2007). Rheological properties and microstructure

during rennet induced coagulation of UF concentrated skim milk. International Dairy

Journal, 17(6), 674–682.

Leite Júnior, B. R. C., Tribst, A. A. L., & Cristianini, M. (2014). Proteolytic and milk-

clotting activities of calf rennet processed by high pressure homogenization and the

influence on the rheological behavior of the milk coagulation process. Innovative Food

Science and Emerging Technology, 21, 44–49.

Leite Júnior, B. R. C., Tribst, A. A. L., Oliveira, M. M., & Cristianini, M. (2014).

Characterization of rennet-induced gels using calf rennet processed by high pressure

homogenization: Effects on proteolysis, whey separation, rheological properties and

microstructure. Innovative Food Science and Emerging Technology, 26, 517–524.

Page 124: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

124

Leite Júnior, B. R. C., Tribst, A. A. L., & Cristianini, M. (2015). High pressure

homogenization of porcine pepsin protease: Effects on enzyme activity, stability, milk

coagulation profile and gel development. PloS ONE, 10, e0125061.

Lucey, J. A. (2002). Formation and physical properties of milk protein gels. Journal of

Dairy Science, 85(2), 281–294.

McMahon, D. J. and Brown, R. J. (1984). Enzymic coagulation of casein micelles: A

review. Journal of Dairy Science, 67, 919-929.

Nicolau, N., Buffa, M., O’Callaghan, D. J., Guamis, B., & Castillo, M. (2015). Estimation

of clotting and cutting times in sheep cheese manufacture using NIR light backscatter.

Dairy Science & Technology, 95, 495-507.

Oliveira, M. M., Augusto, P. E. D., Cruz, A. G., & Cristianini, M. (2014). Effect of

dynamic high pressure on milk fermentation kinetics and rheological properties of

probiotic fermented milk. Innovative Food Science and Emerging Technologies, 26,

67-75.

Ong, L., Dagastine, R. R., Kentish, S. E., & Gras, S. L. (2012). The effect of pH at

renneting on the microstructure, composition and texture of Cheddar cheese. Food

Research International, 48, 119-130.

Pandey, P. K., Ramaswamy, H. S., & St-Gelais, D. (2000). Water-holding capacity and

gel strength of rennet curd as affected by high pressure treatment of milk. Food

Research International, 33, 655-663.

Sandra, S., & Corredig, M. (2013). Rennet induced gelation of reconstituted milk

protein concentrates: The role of calcium and soluble proteins during reconstitution.

International Dairy Journal, 29(2), 68–74.

Page 125: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

125

Sandra, S., Cooper, C., Alexander, M., & Corredig, M. (2011). Coagulation properties

of ultrafiltered milk retentates measured using rheology and diffusing wave

spectroscopy. Food Research International, 44(4), 951–956.

Walstra, P. (1990). On the stability of casein micelles. Journal of Dairy Science, 73,

1965-1979.

Walstra, P., Wouters, J. T. M., & Geurts, T. J. (2006). Dairy Science and Technology,

Boca Raton, FL: CRC Press.

Zhao, L., Zhang, S., Uluko, H., Liu, L., Lu, J., Xue, H., Lv, J. (2014). Effect of ultrasound

pretreatment on rennet-induced coagulation properties of goat’s milk. Food Chemistry,

165, 167–174.

Page 126: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

126

Capítulo 5. The effect of high pressure processing on

recombinant chymosin, bovine rennet and porcine pepsin:

Influence on the proteolytic and milk-clotting activities and

on milk-clotting characteristics

Trabalho publicado na revista LWT – Food Science and

Technology: LEITE JÚNIOR, B. R. C.; TRIBST, A.A.L.;

CRISTIANINI, M. The effect of high pressure

processing on recombinant chymosin, bovine rennet

and porcine pepsin: Influence on the proteolytic and

milk-clotting activities and on milk-clotting

characteristics. LWT – Food Science and

Technology, v. 76, p. 351-360, 2017. doi:

http://dx.doi.org/10.1016/j.lwt.2016.04.018

Page 127: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

127

Abstract

This study evaluated the effect of high pressure processing (HPP) on the

proteolytic and milk-clotting activities of recombinant chymosin, bovine rennet and

porcine pepsin. The optimum process conditions were established considering the

maximum increase on milk-clotting activity, which was 10% for recombinant chymosin

(212 MPa / 5min / 10°C) and the bovine rennet (222 MPa / 5 min/ 23 °C) and 6% for

the porcine pepsin (50 MPa / 5 min / 20°C). The high pressure (HP) processed

enzymes promoted faster milk-clotting and the gels produced were more consistent

(values of G' >6% and k’ >5%). Processed enzymes produced gels with higher Δ

backscattering measured using near-infrared (NIR) light (at least 6%), indicating higher

degree of protein aggregation. Images obtained by confocal microscopy showed a

faster reduction in the total number of pores, with an increased average pore area for

gels obtained with the HP processed enzymes. Furthermore, the wet yields of the gels

obtained from HP processed enzymes were up to 4.3% greater than gels obtained with

non-processed enzymes. Thus, HPP emerges as an interesting alternative to improve

the performance of milk-clotting enzymes, accelerating milk-clotting and allowing for

an increase in cheese yield.

Key-words: High Pressure Processing • Milk-Clotting Enzymes • Rheological Assay •

Near-Infrared Light Backscatter • Confocal Microscopy

Page 128: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

128

Resumo

Este estudo avaliou o efeito do processamento de alta pressão (AP) sobre as

atividades proteolíticas e de coagulação do leite da quimosina recombinante, coalho

bovino e pepsina suína. As condições ótimas do processo foram estabelecidas

considerando o aumento máximo da atividade de coagulação do leite, que foi de 10%

para a quimosina recombinante (212 MPa / 5 min / 10 °C) e o coalho bovino (222 MPa

/ 5 min / 23 °C) e 6% para a pepsina suína (50 MPa / 5 min / 20 °C). As enzimas

processadas por alta pressão (AP) promoveram a coagulação do leite mais rápida e

os géis produzidos foram mais consistentes (valores de G’ > 6% e k’ > 5%). As

enzimas processadas produziram géis com maior Δ de retroespalhamento medido

usando a espectroscopia no infravermelho próximo (NIR) (pelo menos 6%), indicando

maior grau de agregação proteica. As imagens obtidas por microscopia confocal

mostraram uma redução mais rápida no número total de poros, com uma área de poro

média aumentada para os géis obtidos com as enzimas processadas AP. Além disso,

o rendimento dos géis obtidos a partir das enzimas processadas por AP foi em até

4,3% maior em comparação com os géis obtidos com as enzimas não processadas.

Assim, o processamento por AP surge como uma alternativa interessante para

melhorar o desempenho das enzimas coagulantes do leite, acelerando a coagulação

do leite e permitindo um aumento na produção de queijo.

Palavras-Chave: Processamento por Alta Pressão • Enzimas Coagulantes do Leite •

Ensaio Reológico • Espectroscopia no Infravermelho Próximo • Microscopia de

Confocal

Page 129: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

129

5.1 Introduction

The milk coagulation is promoted by clotting enzymes and this coagulation

process can be divided into two phases: specific enzymatic hydrolysis of the κ-casein

(cleavage preferably at the Phe105-Met106 site) and aggregation of the para-ƙ-casein

(formed from the cleaved casein micelles) in the presence of calcium ions (Fox et al.,

2004). Characteristics such as the water holding capacity, strength and porosity are

important in the cheese making process, once they affect parameters such as the yield,

moisture content and texture of the product (Pandey, Ramaswamy, & St-Gelais, 2000).

Several enzymes have the ability to promote milk-clotting, however different

enzymes have different abilities to cleave the κ-casein specifically at the Phe105-

Met106 site, and also to cleave the casein in other unspecific fractions. Chymosin

(obtained from the abomasum of ruminants or by fermentation using recombinant

microorganisms) is the milk-clotting enzyme with the greatest specificity, which is

widely in cheese production. Bovine rennet (~80% of pepsin and 20% of chymosin)

can be used as an optional milk-clotting enzyme, especially for the production of

cheese destined for markets that reject the use of genetically modified microorganisms

and to produce cheeses with a desirable degree of proteolysis during maturation.

Pepsin is not commonly used in cheese production, due to its low specific activity,

resulting in cheeses with low yield and undesirable sensory attributes.

High pressure processing (HPP), also known as high isostatic pressure

(HIP) or high hydrostatic pressure (HHP), is an emerging technology able to promote

changes in enzyme activity. The activation or inactivation effect is dependent on the

conditions applied such as pressure, time, temperature, pH of the solution and food

matrix (Knorr, 1999; Eisenmenger & Reyes-de-Corcuera, 2009). In molecular terms,

the pressurization process promotes an increase in the conformational flexibility of the

enzyme (Eisenmenger & Reyes-de-Corcuera, 2009) which may increase the exposure

of active sites with subsequent activation. Thus, HPP could be an interesting tool to

improve the hydrolytic characteristics of enzymes. Therefore, this study evaluated the

effect of HPP on the proteolytic and milk-clotting activities of recombinant chymosin,

bovine rennet and porcine pepsin and effect on milk-clotting process and the milk gel

characteristics.

Page 130: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

130

5.2 Materials and Methods

5.2.1 Enzymes

The enzymes used in the assays were: recombinant chymosin with activity

of 2500 IMCU.g-1 (CHY-MAX® M 2500 Power NB, Chr Hansen, Hoersholm, Denmark);

adult bovine rennet with activity of 200 IMCU.mL-1 (Coalho Líquido BV®, Bela Vista

Ltda, Santa Catarina, Brazil, containing 80-90% of bovine pepsin and 10-20% of

bovine chymosin) and porcine pepsin protease with activity of 3000 IMCU.g-1 (freeze

dried powdered Porcine Pepsin, PEPSINA SUINA TS®, Bela Vista Ltda, Santa

Catarina, Brazil).

5.2.2 Sample preparation

Aliquots of 100 mL of the enzyme solutions at a concentration of 1.5

IMCU.mL-1 for recombinant chymosin, adult bovine rennet and porcine pepsin were

prepared in sodium acetate buffer (0.2 M, pH 5.6) – conditions preliminarily stablished

as optimum for enzyme activity (data non showed) – and vacuum-packed in plastic

bags (LDPE-Nylon-LDPE).

5.2.3 High pressure processing

The experiments were carried out in a high pressure equipment (QFP 2L-

700 Avure Technologies, OH, USA). This equipment works at pressures of up to 690

MPa and temperatures up to 90 °C. The temperature of the equipment chamber block

was set for different process conditions. The initial temperature of the water in the

chamber was set considering the rate of temperature increase expected to occur under

adiabatic conditions in this equipment (3 °C / 100 MPa). The control (non-processed)

was not subjected to pressure. Each sample was processed in triplicate under each

process condition.

Page 131: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

131

Experimental design

The samples were subjected to the HP process to evaluate the

simultaneous effect of three independent variables: isostatic pressure (X1) ranging

from 50 to 600 MPa, process time (X2) ranging from 5 to 30min and temperature (X3)

ranging from 15 to 55 °C on the proteolytic profile of the enzyme. The variables were

studied using a central composite rotational design (CCRD) with eight linear levels +1

and -1, six axial points (α ±1.682) and three assays at the central point, totalizing 17

experiments. Furthermore, a control enzyme sample (non processed enzyme) was

also prepared for comparative evaluation. The assays were performed in random

order, and the data fitted to a second order polynomial model (Equation 5.1).

𝑌 = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖 + 2𝑖=1 ∑ 𝛽𝑖𝑖𝑋𝑖

22𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗𝑗=𝑖+1𝑖 (Eq. 5.1)

where Y was the predicted response, β0 the constant (intercept), βi the linear

coefficient, βii the quadratic coefficient and βij the cross product coefficient. Xi and Xj

were levels of the coded independent variables. The dependent variables were RPA

and RMCA and these variables were analyzed according to 5.2.4.

The results were analyzed using the software Statistica® 7.0 and the

responses were: significance of the effects and analysis of variance (ANOVA). In the

ANOVA it was used the F-test to assess the significance of the regression and the lack

of fit (pure error), calculated using a 95% confidence level (p ≤ 0.05). The R2 values

were also calculated. The regressions approved in the F test (for regression and lack

of fit) were used to generate a mathematical model (Myers & Montgomery, 2002).

Validation of the mathematical models obtained was carried out in sextuplicate under

the optimal process conditions (the point of maximum milk-clotting activity) for each

enzyme, by evaluating the proteolytic activity and milk-clotting activity immediately

after the process (time 0h) and after 7, 14, 21, 28 and 35 days of storage at 4 °C.

Furthermore, non-processed samples were also prepared on day 0 and assessed over

time for a comparative evaluation.

Page 132: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

132

5.2.4 Determination of the proteolytic and milk-clotting activities

The proteolytic (PA) and milk-clotting activities (MCA) of the samples were

assessed in sextuplicate immediately after the HP process (time 0h). Both activities

were measured using the methods described by Leite Júnior, Tribst, & Cristianini

(2014). The relative proteolytic activity (RPA) and relative milk-clotting activities

(RMCA) were calculated by using the following Equations 5.2 and 5.3:

𝑅𝑃𝐴 = (PA after HPPandorstorage

PA non−processedsampleat0h

) ∙ 100 (Eq. 5.2)

𝑅𝑀𝐶𝐴 = (MCA after HPPandorstorage

MCA non−processedsampleat0h

) ∙ 100 (Eq. 5.3)

5.2.5 Evaluation of milk-clotting process and milk gels formed using HP

processed enzymes under the optimal conditions

Aliquots of 100 mL of enzyme solutions were prepared according to section

5.2.2. The HP processes were carried out under the optimal conditions for each

enzyme, which were established as 212 MPa / 5 min / 10 °C for recombinant chymosin;

222 MPa / 5 min / 23 °C for bovine rennet and 50 MPa / 5 min / 20 °C for porcine

pepsin. A control for each enzyme sample (non-processed enzyme) was also prepared

for a comparative evaluation.

Rheological profile of milk-clotting induced by the addition of non-

processed and HP processed clotting enzymes

The milk-clotting process was monitored by way of a time sweep using a

low deformation oscillatory test in a rheometer with controlled stress (AR2000ex, TA

Instruments, USA) using the procedure described by Leite Júnior, Tribst, & Cristianini

(2014) for 60 min of clotting at 35 °C. After, the formed gel was evaluated using

frequency sweep assays according to the procedures described by Oliveira et al.

(2014). For the evaluation of the experimental results, values obtained before breaking

of the gel were used according to the power law model (Eq. 5.4).

Page 133: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

133

𝐺′ = 𝑘′. 𝜔𝑛′ (Eq. 5.4)

where G′ is the storage modulus, which represents the elastic solid behavior (Pa), k′ is

the consistency index (Pa·sn′), ω is the oscillation frequency (Hz) and n′ is the behavior

index. The parameters of the model were obtained by linear regression using the

software Microsoft Excel 2007, with a significant probability level of 95%.

Near-infrared (NIR) light backscatter of the milk-clotting process

Milk-clotting was monitored using a near-infrared (NIR) light backscatter at

880 nm (TurbiscanTM LAB, Formulaction, Ramonville St. Agne, France). For this, 15

mL of skimmed milk powder reconstituted at 10 g/100mL (w/v) (pH 6.65, 3.2 g/100mL

protein, 9.2 g/100mL non-fat solids, Tagará Foods, Brazil) added by 0.01M of CaCl2

were mixed with 0.2 mL of each enzyme solution (prepared as described in section

5.2.2). The mixture was immediately transferred to borosilicate glass tubes (12 mm

inner diameter and 30 mm high) and the time started. The light source scanned the

sample at 1 min intervals from top to bottom and measured the percentage of light

backscattered during 40 min at 35 °C. The variation of backscattering (ΔBS) was

determined from the difference in backscattering between control samples (milk with

no added enzyme) and samples with enzyme. The data were analyzed using the

Turbisoft 2.0 software (Zhao et al., 2014).

Three dimensional microstructure of the gels formed during the milk-

clotting process determined by confocal scanning laser microscopy

An aliquot of 3 mL of reconstituted skimmed milk with added by CaCl2

(prepared as described in item 5.2.5.2) was mixed with 40 µL of each enzyme solution

(prepared as described in section 5.2.2) and 75 µL of fast-green FCF (0.1 g/100mL, in

distilled water, Sigma–Aldrich, Ireland) (used to observe the protein matrix in a confocal

microscope). Immediately after addition, the time count was started and 200 µL of the

solution transferred to an 8 chamber coverglass (a 10 mm deep cavity dish) covered

with a glass coverslip (0.17 mm thick) (Lab-Tek® II Chambered Coverglass, USA), and

Page 134: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

134

confocal imaging carried out using a Zeiss Upright LSM780-NLO microscope (Carl

Zeiss AG, Germany) at 35 °C.

Confocal scanning laser microscopy (CSLM) imaging carried out using the

method described by Leite Júnior, Tribst, Oliveira & Cristianini (2014). The porosity,

number of pores, average pore and total pore areas were determined by image

analysis of the CLSM micrographs using image J software (Research Service Branch,

National Institute of Health, Maryland, USA) equipped with “Pore Analysis” and

“ComputeStats” plug-ins, according to the parameters and methodology described by

the same authors.

Evaluation of the yield of the milk-clotting enzyme induced gels

The yield in gels was determined using the centrifugation method described

by Zamora et al. (2007). For this, 30 mL of reconstituted skimmed milk added by CaCl2

(prepared as described in item 5.2.5.2) was mixed with 0.4 mL of each enzyme solution

(prepared as described in item 5.2.2) and the time count started. After 60min of the

coagulation process at 35 °C, the tubes were centrifuged at 13,000 g and 5 °C for 15

min. The wet yield of the gels, expressed as grams of retained mass per one hundred

grams of milk, was determined by weighing the pellets obtained after draining the

supernatant. Eq. (5.5) was used to calculate the wet yield:

Wet yield (%) = (weight of drained gels

weight of sample) x 100 (Eq. 5.5)

5.2.6 Statistical analysis

The processes and analyses (rheological assays, NIR light scanning,

confocal microscopy and wet yield) were carried out with three repetitions and each

experimental unit was carried out in triplicate. The analysis of variance (ANOVA) was

applied to compare the effects of the different treatments (processed and non-

processed), and the Tukey test used to determine the differences between them at a

95% confidence level. The statistical analyses were carried out using the STATISTICA

7.0 software–(StatiSoft, Inc., Tulsa, Okla., U.S.A.) and the results represented as the

mean ± standard deviation.

Page 135: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

135

5.3 Results and Discussion

5.3.1 The effect of high pressure processing on the proteolytic and milk-clotting

activities

The proteolytic activity measures the peptides released by enzymatic

cleavage of any casein micelle fraction. Thus, proteolytic activity can be used as an

indicative of the unspecific hydrolysis of the casein by enzyme activity (Leite Júnior,

Tribst, & Cristianini, 2015). On the other hand, the milk-clotting activity is an indirect

way of evaluating the specificity of milk coagulants in the cleavage of the site Phe105-

Met106 of κ-casein. This cleavage destabilizes the casein micelles, which coagulate in

the presence of Ca2+ (Andrén, 2011). The results obtained for these two activities in

the CCRD were statistically evaluated and the ANOVA results confirmed the

significance of the regressions (the values for Fcal were greater than those for Ftab under

all conditions (p<0.05)), indicating that the models obtained were predictive with good

reproducibility. Furthermore, the lack of fit was not significant (p>0.05) (Fcal less than

Ftab), except for the RPA porcine pepsin. Table 5.1 shows the models generated for

each enzyme and the R2 of each model, which were in the expected range for all the

models.

Table 5.1. Coded model and R2 considering the significant coefficients for RPA (%)

and RMCA (%) of the milk-clotting enzymes processed by HP

Enzyme Model R2

Recombinant chymosin RPA=108.63-15.25*P-20.52*P2-8.75*T 77.29%

RMCA=104.07-15.66*P-16.54*P2-9.51*T 75.15%

Bovine rennet RPA=87.15-26.05*P-13.38*P2-8.39*t-30.33*T-11.55*T2 95.52%

RMCA=85.56-15.89*P-12.58*P2-35.92*T-12.63*T2 80.10%

Porcine pepsin RMCA=34.60-16.34*P-30.90*T / 74.92%

Where P is the isostatic pressure (MPa); T is the process time (min); RPA: Relative

proteolytic activity (%); and RMCA: Relative milk-clotting activity (%).

Page 136: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

136

Figure 5.1 shows the response surfaces obtained for the RPA and RMCA

of the enzymes, evaluated immediately after HPP. For recombinant chymosin, the RPA

and RMCA it was observed that pressures above 400 MPa reduces enzyme activity

and when associated with high process temperatures and time, this reduction is more

pronounced. However, at moderate pressures (≤ 275 MPa), increases in proteolytic

and milk-clotting activities were observed. For the bovine rennet, the HPP promoted

inactivation at process at higher pressures (≥ 500 MPa) associated with high

temperatures (≥ 40ºC). On the other hand, at lower pressures (up to 325 MPa), an

increase in RPA and RMCA was observed. Similarly, for porcine pepsin, the results

indicated that pressures above 350 MPa reduces enzyme activity and extreme process

conditions (pressure ≥ 500 MPa and temperature of 55 °C) caused inactivation.

However, lower pressures (≤ 160 MPa) and temperatures (≤ 27 °C) an increase of

activity was observed.

The difference on the enzymatic activities may be attributed to the different

conformational changes caused by different processing conditions (pressure, time and

temperature) but, for the enzymes evaluated it is possible to generalizes that activation

occurred at mild conditions (pressure and temperature). Comparing the individual

results of each enzyme, porcine pepsin was more sensitive to the HPP than

recombinant chymosin, might suggesting that pepsin is less stable under high

pressures than chymosin.

Page 137: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

137

Figure 5.1. Response surfaces for the relative proteolytic activity (RPA) (%) and the

relative milk-clotting activity (RMCA) (%) of the recombinant chymosin (A and B,

respectively), bovine rennet (C and D, respectively) and porcine pepsin (E for RMCA)

processed by HP as a function of the operating pressure (MPa) and temperature (°C)

with a processing time (min) = 5 min (-1.682).

Page 138: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

138

Validation was carried out under the process conditions capable of

maximizing the RMCA of each enzyme, according to the models generated (Table 5.1).

Table 5.2 shows the results obtained in the validation process and those expected

according to the model. The results obtained in the validation experiments showed a

variation between 5 and 15% (relative error), which can be considered an acceptable

result, since slight alterations caused by the process variation can strongly impacts in

the enzymes activity.

Table 5.2. Validation for the optimal enzyme processing conditions

Enzyme Process RPA (%) RMCA (%)

Recombinant chymosin

Non-processed 100.00 ± 7.85 100.00 ± 1.60

212 MPa / 5 min / 10 °C 111.77 ± 6.75 109.58 ± 3.51

212 MPa / 5 min / 15 °C 106.36 ± 4.23 106.22 ± 2.75

Model** 212 MPa / 5 min / 15 °C 125.96 123.78

Bovine rennet

Non-processed 100.00 ± 5.11 100.00 ± 0.55

222 MPa / 5 min / 23 °C 113.75 ± 4.53 110.34 ± 5.18

Model** 222 MPa / 5 min / 23 °C 132.14 116.12

Porcine pepsin

Non-processed 100.00 ± 5.08 100.00 ± 0.58

50 MPa / 5 min / 20 °C 105.44 ± 6.46 106.18 ± 1.77

Model** 50 MPa / 5 min / 20 °C - 114.03

**: estimated by the model at the same point; -: Not determined by the model due to

significant lack of fit. RPA: Relative proteolytic activity (%); and RMCA: Relative milk-

clotting activity (%).

Previous results evaluated impact of HPP and high pressure

homogenization (HPH) on PA and MCA of milk-clotting enzymes (Leite Júnior, Tribst,

& Cristianini, 2014; Leite Júnior, Tribst, & Cristianini, 2015; Leite Júnior et al., 2016).

Using HPP similar results were observed for calf rennet (maximum activation at 280

MPa / 20 min / 25 °C) (Leite Júnior, et al., 2016). HPH was also able to improve the

milk-clotting profile of calf rennet (Leite Júnior, Tribst, & Cristianini, 2014) and porcine

pepsin (Leite Júnior, Tribst, & Cristianini, 2015) at pressures 190 MPa / 23 °C inlet

temperature. Therefore, it was observed that both technologies were able to improve

the performance of these milk-clotting enzymes and can be industry applied to

Page 139: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

139

accelerate the coagulation process, improving the gels consistency and increasing the

yield of fresh cheeses.

5.3.2 Stability of the enzymes processed by HP during refrigerated storage

The stability of the enzymes after processing at optimum conditions was

assessed in solution during 35 days of storage at 4 °C by analyzing the RPA and

RMCA (Table 5.3). The results showed that the HPP reduced the rates of loss of the

proteolytic and milk-clotting activities (p < 0.05) of all the enzymes studied when

compared with the non-processed sample.

Table 5.3. Rate of loss of RPA (%) and of RMCA (%) during 35 days of storage at 4

°C of the enzymes processed by HP under the optimal conditions

Enzyme Process Rate of loss for

RPA (% RPA.d-1)

R2 Rate of loss for

RMCA (% RMCA.d-1)

R2

Recombinant chymosin

Non-processed -0.82 ± 0.09 a 0.92 -0.27 ± 0.01 a 0.96

212 MPa / 5 min / 10 °C -0.67 ± 0.07 b 0.89 -0.21 ± 0.02 b 0.93

Bovine rennet

Non-processed -0.62 ± 0.16 a 0.93 -0.33 ± 0.03 a 0.95

222 MPa / 5 min / 23 °C -0.43 ± 0.08 b 0.90 -0.26 ± 0.03 b 0.90

Porcine pepsin

Non-processed -0.51 ± 0.07 a 0.87 -0.37 ± 0.06 a 0.92

50 MPa / 5 min / 20 °C -0.40 ± 0.06 b 0.86 -0.31 ± 0.03 b 0.91

Significant differences evaluated by the Tukey test (p < 0.05) between non-processed

and corresponding processed-samples in the same column are indicated by different

superscripts a,b.** Values are means of replicates (n = 6). RPA: Relative proteolytic

activity (%); and RMCA: Relative milk-clotting activity (%).

For RPA, the processed samples showed reductions in the rates of loss of

18, 31 and 22% as compared to the non-processed samples for recombinant

chymosin, bovine rennet and porcine pepsin, respectively, and for RMCA these values

were 22, 21 and 16%, respectively. Thus, in addition to increasing the values for RPA

and RMCA immediately after processing, this technology is capable of increasing the

stability of the milk-clotting enzymes in solution during storage. This increase of stability

can be explained because HPP induces intramolecular interactions, disruption of

Page 140: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

140

bound water, stabilization of hydrogen linkages and, mainly, hydration of non-polar and

charged groups (Eisenmenger & Reyes-de-Corcuera, 2009).

5.3.3 Evaluation of milk-clotting process and milk gels formed using HP

processed enzymes

Rheological characteristics of milk-clotting induced by the addition of

non-processed and HP processed clotting enzymes

The ability of native and processed enzymes to form milk gels was

evaluated by the rheological characteristics (mainly elastic modulus – G’) of the milk

during the clotting step. This allows one to compare the milk-clotting process (Figure

5.2) and the rheological properties of the milk gels (Table 5.4) using native and HP

processed enzymes under optimized conditions.

Page 141: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

141

Figure 5.2. Rheological assays of milk clotting by (A1) HP-processed recombinant

chymosin immediately after processing; (A2) Amplification of the start of milk

aggregation; (B1) HP-processed bovine rennet immediately after processing; (B2)

Amplification of the start of milk aggregation; and (C1) HP-processed porcine pepsin

immediately after processing; (C2) Amplification the start of milk aggregation. ** The

values are means of the replicates (n = 6).

Page 142: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

142

Table 5.4. Rheological properties and wet yields of the gels obtained by the action of the HP-processed milk-clotting enzymes

Sample RCT (min)

Storage modulus - G' (Pa)

k' (Pa·sn') n' R2 Wet yield (%)

After 60 min

Recombinant chymosin

Non-processed 22.5 ± 1.4b 12.6 ± 1.2b 21.3 ± 2.4b 0.212 ± 0.002a 0.996 20.7 ± 0.3b

212 MPa / 5 min / 10 °C 20.1 ± 1.1a 15.2 ± 1.1a 26.7 ± 3.0a 0.210 ± 0.003a 0.996 21.6 ± 0.5a

Bovine rennet

Non-processed 25.3 ± 0.5b 7.6 ± 0.4b 10.9 ± 0.1b 0.193 ± 0.003a 0.997 19.8 ± 0.1b

222 MPa / 5 min / 23 °C 23.2 ± 0.4a 8.7 ± 0.4a 11.4 ± 0.2a 0.192 ± 0.011a 0.998 20.6 ± 0.4a

Porcine pepsin

Non-processed 20.2 ± 0.4b 10.3 ± 0.4a 18.5 ± 0.9a 0.188 ± 0.007a 0.996 20.5 ± 0.3b

50 MPa / 5 min / 20 °C 19.3 ± 0.5a 10.9 ± 0.9a 19.8 ± 1.0a 0.181 ± 0.007a 0.995 20.9 ± 0.2a

Significant differences evaluated by the Tukey test (p < 0.05) between non-processed and corresponding processed-samples in the

same column are indicated by different superscripts a,b.** Values are means of replicates (n = 6). RCT: Rennet coagulation time.

Page 143: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

143

In the first phase of milk-clotting, the κ-casein (κ-CN) is cleaved by the

enzyme, and in the second phase, the remaining protein structure aggregates. This

process forms an extended network, which results in an increase in the storage

modulus measured over time, for both enzymes. The storage modulus (G') describes

the elastic (solid) behavior of the product, and can represent the phenomenon of milk-

clotting (Figure 5.2). According to the results (Table 5.4), the aggregation process

(rennet coagulation time = RCT) started after 22.5, 25.3, and 20.2 min for the sample

with the non-processed recombinant chymosin, bovine rennet, and pepsin porcine,

respectively. Comparing these results with the obtained with HP processed enzymes

it was observed that clot using HP processed enzymes occurred 10.7 (chymosin), 8.3

(bovine rennet), and 4.5% (pepsin) quicker (p<0.05).

This can be attributed to the fast cleavage of the specific hydrophilic

glycomacropeptide, preferably at the Phe105-Met106 site of the κ-CN, in the first phase

of clotting using the processed enzymes. These results are in agreement with the

increase of milk-clotting activity observed for the HP processed enzymes. In addition,

at the end of clotting, the gels clotted with HP processed enzymes showed higher

values for G' than the non-processed enzymes (20.6% higher G' value for recombinant

chymosin, 14.5% for bovine rennet, and 5.8% for porcine pepsin).

The G’ value obtained under low oscillatory strain conditions was evaluated

according to Eq. 5.4, in which the values fitted the power law model well (0.995 ≤ R2

≤ 0.998). The k’ value (Table 5.4) represents the elastic component of the gel formed

and is related to the protein–protein interactions, since a greater number of interactions

provides greater mechanical resistance. The parameter n’ (Table 5.4) indicates the

behavior index of the gels and its variation indicates changes in the type of

intermolecular forces of the milk gels (Oliveira et al., 2014). The gels obtained using

the HP processed enzymes showed greater k’ values as compared to the gels

produced with non-processed enzymes (p < 0.05), which confirms that the clots formed

by the HP processed enzymes were more consistent. To the contrary, gels clotted with

processed and non-processed enzymes showed no difference in their n’ values (p >

0.05). These results indicate that despite the gels produced by HP processed enzymes

being more consistent, the electrostatic and hydrophobic interactions did not change

in comparison with those produced by non-processed enzymes. Changes in the milk

protein structure were not expected since the HP processing was only carried out on

the enzyme solutions.

Page 144: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

144

NIR light backscatter profile of the milk-clotting process

The milk-clotting process can be accompanied by infrared scanning

(880nm), since the backscattering (BS) increases at the beginning of milk aggregation

(Zhao et al., 2014) and the ΔBS is associated to protein aggregation (network

formation). Figure 5.3 shows the results of difference backscattering (ΔBS) throughout

the milk-clotting process using both non-processed and HP processed enzymes.

The results showed that the beginning of the increase in ΔBS occurred

significantly quicker in the milk gels clotted with processed enzymes than in those

induced by non-processed ones (p < 0.05). The initial increase in ΔBS probably

occurred due to destabilization of the casein micelles during the enzymatic action.

Micelle aggregation occurred after the slight decrease in ΔBS (shoulder), which was

determined by a comparison of the rheological, confocal microscopy and NIR light

results (Table 5.5 and Figures 5.2 and 5.3). After the shoulder, the increase in ΔBS

occurred after 21 (recombinant chymosin), 23 (bovine rennet) and 19 min (porcine

pepsin) of clotting, when non-processed enzymes were used. For processed enzymes,

the increase in ΔBS after the shoulder started 14.3 (recombinant chymosin), 8.7

(bovine rennet) and 5.3% (porcine pepsin) faster than using the non-processed

enzymes. In addition, at the end of the clotting time (40 minutes), the gels produced

with processed enzymes showed ΔBS values of 6.0 (recombinant chymosin), 10.6

(bovine rennet) and 8.1% (porcine pepsin), significantly higher (p<0.05) than those

obtained with the non-processed enzymes. The higher values obtained for ΔBS in the

milk gels produced with processed enzymes indicated the greater degree of particle

aggregation in these samples.

Page 145: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

145

Figure 5.3. NIR light backscatter assays of milk clotting by (A) HP-processed

recombinant chymosin immediately after processing; (B) HP-processed bovine

rennet immediately after processing; and (C) HP-processed porcine pepsin

immediately after processing. ** The values are means of the replicates (n = 6).

Page 146: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

146

Evaluation of the HP processed milk-clotting enzymes during milk gel

formation as monitored by confocal microscopy

Confocal laser scanning microscopy (CSLM) is an important tool to

understand gel microstructure formation during milk-clotting (Leite Júnior, Tribst,

Oliveira & Cristianini, 2014). Figure 5.4 shows the images obtained by CSLM of the

milk-clotting using the HP processed enzymes and non-processed after 25 min of

enzyme addition. It can be seen that the protein aggregation was more evidenced

(faster gel formation) in milk gels produced with the HP processed enzymes.

Table 5.5 shows the number of pores per µm2 and the average pore area

determined by the images of CSLM of the milk-clotting using HP processed enzymes

and non-processed ones. The number of pores decreased and the average pore area

increased with clotting time, which is directly linked to protein aggregation. The gel

obtained with the HP processed enzymes showed a faster reduction in the total number

of pores and increment in the average pore area. The onset of aggregation

(characterized by the beginning of the reduction in the number of pores and increase

in the average pore area) occurred earlier for milk gels produced with HP processed

enzymes than for those produced with non-processed enzymes. This phenomenon

could be attributed to the greater MCA of the HP processed enzymes, resulting in faster

aggregation of the protein network. In addition, at the end of milk-clotting, the gels

produced with processed chymosin and bovine rennet showed a smaller number of

pores with a higher average size at both 5 and 20 µm (p<0.05). The accelerated clotting

process observed for gels produced with the HP processed enzymes possibly resulted

in the formation of a larger number of links between the casein micelles over the time,

resulting in stronger gels with a reduced number of pores.

Page 147: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

147

Figure 5.4. CLSM micrographs of milk coagulation at 25 min using milk-clotting

enzymes processed by HP under the optimal conditions. The fast-green FCF stained

protein appears red and the serum phase appears black in these images. The scale

bars are 20 µm in length.

Page 148: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

148

Table 5.5. Number of pores per µm2 and average pore area in milk clotted using milk-clotting enzymes processed by HP

during a 40 minutes period at 35 °C

Sample

Number of pores per µm2 Average pore area (µm2)

Sample height - 5µm Sample height - 20µm Sample height - 5µm Sample height - 20µm

5 min 25 min 40 min 5 min 25 min 40 min 5 min 25 min 40 min 5 min 25 min 40 min

RC

Non-processed

0.53±0.01a 0.39±0.01a 0.14±0.01a 0.45±0.02a 0.36±0.02a 0.16±0.01a 0.55±0.03a 0.78±0.05a 2.55±0.05a 0.74±0.02a 0.94±0.07a 2.17±0.11a

Processed 0.53±0.01a 0.26±0.02b 0.12±0.01b 0.44±0.02a 0.25±0.02b 0.13±0.01b 0.58±0.05a 1.22±0.12b 3.04±0.11b 0.78±0.05a 1.41±0.08b 2.78±0.35b

BR

Non-processed

0.58±0.03a 0.42±0.01a 0.14±0.01a 0.42±0.01a 0.34±0.02a 0.17±0.01a 0.56±0.07a 0.69±0.03a 2.35±0.21a 0.86±0.04a 0.97±0.13a 1.95±0.17a

Processed 0.57±0.04a 0.27±0.02b 0.11±0.01b 0.44±0.01a 0.25±0.02b 0.13±0.01b 0.58±0.09a 1.17±0.15b 3.12±0.14b 0.84±0.04a 1.45±0.17b 2.71±0.22b

PP

Non-processed

0.52±0.01a 0.42±0.01a 0.14±0.01a 0.41±0.02a 0.40±0.02a 0.20±0.02a 0.59±0.04a 0.68±0.05a 2.65±0.25a 0.79±0.06a 0.78±0.05a 1.79±0.21a

Processed 0.52±0.03a 0.39±0.01b 0.13±0.01a 0.42±0.02a 0.37±0.01a 0.17±0.01b 0.61±0.05a 0.73±0.02a 2.81±0.17a 0.81±0.05a 0.91±0.07a 2.05±0.19a

RC: Recombinant Chymosin; BR: Bovine Rennet; PP: Porcine pepsin. The results are expressed as the mean ± the standard

deviation (n = 6). Significant differences evaluated by the Tukey test (p < 0.05) between non-processed and corresponding

processed-samples in the same column are indicated by different superscripts a,b.

Page 149: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

149

Yield evaluation of the milk gels induced by HP processed enzymes

The wet yields of the milk gels induced by HP processed milk-clotting

enzymes were significantly greater (4.3, 4.0 and 2.0 % for recombinant chymosin,

bovine rennet and porcine pepsin, respectively) than those obtained from the non-

processed enzymes (p < 0.05) (Table 5.4). Therefore, additionally to reduce the time

to coagulation and to improve the cheese structure and consequently texture, the HP

processing of the enzymes is able to improve the wet yield of the cheese, reducing the

final product cost.

Comparison of the effects of HPP on the different milk-clotting enzymes

studied

This study evaluated the effect of HPP on the different milk-clotting enzymes

under conditions (pressure, time and temperature) that provides the maximum

increase in MCA of the enzymes. The comparison between the gels obtained using

processed and non-processed enzymes showed that HP processed enzymes were

able to produce gels faster and with higher yield. In addition, these gels were

characterized by being more consistent and aggregated and by having larger pores,

which can be attributed to their stronger protein matrices. Although positive changes

were observed in the milk gels produced with the three enzymes studied, a comparison

of the results obtained showed that the process modified the enzymes in different

ways.

Table 5.6 summarizes the main changes observed in the milk gels produced

with the HP processed enzymes. Comparing these results, it was observed that

chymosin presented the greatest improvement in milk-clotting time, which can be

associated with the specificity of recombinant chymosin to cleave κ-casein at the

Phe105-Met106 site, indicating a higher potential for an increase in MCA after HPP.

Complementarily, due to the low ability of this enzyme to promote unspecific hydrolysis,

and due to the early aggregation caused by using HP processed chymosin (the

aggregates formed had more time to form stronger linkages), the milk gels formed after

coagulation were comparatively stronger (cohesive protein matrix formed) than those

obtained with the other enzymes. Bovine rennet, which had ~80% of pepsin and 20%

of chymosin, showed an intermediate increase in the consistency and reduction in the

Page 150: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

150

clotting time. To the contrary, the results obtained for the pepsin isolate (porcine

pepsin) presented the least improvement in final gel consistency and clotting time. The

yield increase of gels produced using HP processed enzymes followed the same order

observed for reduction of time to coagulation and increase of consistency, being more

relevant for chymosin and bovine rennet (~4%) than for porcine pepsin (2%).

Data about the structure of the gels formed, represented by the number and

average area of the pores and final backscattering measurements, showed that more

alterations occurred with the bovine rennet, followed by recombinant chymosin.

Therefore, the changes in microstructure may be linked to an improvement in the

chymosin fraction, associated with some unspecific proteolytic activity, which possibly

reduced the size of the aggregates, and consequently increased the average pore

area. The results obtained for porcine pepsin showed smaller increments in the

average pore area, highlighting the importance of the chymosin fraction in the changes

caused by HPP on the milk-clotting enzymes.

Page 151: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

151

Table 5.6. Relative difference (%) between gels clotted with non-processed and processed milk-clotting enzymes

Milk-clotting enzyme

Start of aggregation (min) Final gel

Wet yield Rheological method

Turbidimetric method

Confocal microscopy

G' value ΔBS value Number of

pores per µm2 at 5 µm

Average pore area at 5µm

Recombinant chymosin

-10.7 -14.3 -14.3 20.6 6.0 -14.8 19.2 4.3

Bovine rennet -8.3 -8.7 -10.0 14.5 10.6 -18.6 32.8 4.0

Porcine pepsin -4.5 -5.3 -5.3 5.8 8.1 -6.1 6.0 2.0

Relative difference (%) = (parameters evaluated for gels using processed enzyme - parameters evaluated for gels using respective

non-processed enzyme) x 100)/(parameters evaluated for gels using respective non-processed enzyme). ** The values are means

of the replicates (n = 6).

Page 152: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

152

5.4 Conclusions

The use of moderate pressure conditions is promising for the modification

of the milk coagulating enzymes, promoting an increase in the milk-clotting activity and

stability of recombinant chymosin, adult bovine rennet and porcine pepsin. Considering

the clotting process, it occurred faster with the HP processed enzymes and the gels

produced were more consistent and exhibited lower number of pores with higher

average pore area indicating a greater degree of particle aggregation. Furthermore,

the yields of gels obtained from HP processed enzymes were significantly greater than

those of gels obtained from the respective non-processed enzymes. In general, it can

be concluded that HPP can improve the performance of milk-clotting enzymes,

especially those that have chymosin fractions, accelerating milk-clotting and allowing

for an increase in cheese yield.

5.5 Acknowledgments

The authors are grateful to the São Paulo Research Foundation (FAPESP)

for their financial support (project no. 2012/13509-6) and for awarding a scholarship to

B.R.C.Leite Júnior (2014/17782-4).

.

5.6 References

Andrén, A. (2011). Cheese: Rennets and Coagulants. In J. W. Fuquay, P. F. Fox, & P.

L. H. McSweeney (Eds.), Encyclopedia of Dairy Sciences, 2nd ed., (pp. 574-578).

London: Elsevier Academic Press.

Eisenmenger, M.J., & Reyes-De-Corcuera, J.I. (2009) High pressure enhancement of

enzymes: a review. Enzymes and Microbial Technology, 45, 331-347.

Fox, P. F., Mc Sweeney, P. L. H., Cogan, T. M., & Guinee, T. P. (2004). Cheese:

Chemistry, Physics and Microbiology. (vol. 1, 617p.) London, UK: Elsevier Applied

Science.

Page 153: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

153

Knorr, D. (1999). Novel approaches in food-processing technology: new technologies

for preserving foods and modifying function. Current Opinion in Biotechnology, 10,

485-491.

Leite Júnior, B. R. C., Tribst, A. A. L., & Cristianini, M. (2014). Proteolytic and milk-

clotting activities of calf rennet processed by high pressure homogenization and the

influence on the rheological behavior of the milk coagulation process. Innovative Food

Science and Emerging Technology, 21, 44–49.

Leite Júnior, B. R. C., Tribst, A. A. L., Oliveira, M. M., & Cristianini, M. (2014).

Characterization of rennet-induced gels using calf rennet processed by high pressure

homogenization: Effects on proteolysis, whey separation, rheological properties and

microstructure. Innovative Food Science and Emerging Technology, 26, 517–524.

Leite Júnior, B. R. C., Tribst, A. A. L., & Cristianini, M. (2015). High pressure

homogenization of porcine pepsin protease: effects on enzyme activity, stability, milk

coagulation profile and gel development. PloS ONE, 10(5), e0125061.

Leite Júnior, B. R. C., Tribst, A. A. L., Bonafe, C. F. S., & Cristianini, M. (2016).

Determination of the influence of high pressure processing on calf rennet using

response surface methodology: Effects on milk coagulation. LWT – Food Science and

Technology, 65, 10-17.

Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: Process

end product optimization using designed experiments (2nd edn., 798p.) New York:

John Wiley & Sons.

Oliveira, M. M., Augusto, P. E. D., Cruz, A. G., & Cristianini, M. (2014). Effect of

dynamic high pressure on milk fermentation kinetics and rheological properties of

probiotic fermented milk. Innovative Food Science and Emerging Technologies, 26,

67-75.

Page 154: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

154

Pandey, P. K., Ramaswamy, H. S., & St-Gelais, D. (2000). Water-holding capacity and

gel strength of rennet curd as affected by high pressure treatment of milk. Food

Research International, 33, 655 –663.

Zamora, A., Ferragut, V., Jaramillo, P. D., Guamis, B., & Trujillo, A. J. (2007). Effects

of ultra-high pressure homogenization on the cheese-making properties of milk.

Journal of Dairy Science, 90, 13-23.

Zhao, L., Zhang, S., Uluko, H., Liu, L., Lu, J., Xue, H., & Kong, F. (2014). Effect of

ultrasound pretreatment on rennet-induced coagulation properties of goat’s milk. Food

Chemistry, 165, 167-174.

Page 155: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

155

Capítulo 6. Assessing casein hydrolysis by high pressure

processed coagulants using capillary electrophoresis

Trabalho submetido em 29 de Setembro de 2016 para

publicação na revista Food Chemistry: LEITE JÚNIOR,

B. R. C.; RIBEIRO, L. R.; TRIBST, A.A.L.;

CRISTIANINI, M. Assessing casein hydrolysis by high

pressure processed coagulants using capillary

electrophoresis. Food Chemistry.

Page 156: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

156

Abstract

This study evaluated the casein fractions hydrolysis induced by high pressure

(HP) processed milk-clotting enzymes at previously established conditions. After the

HP process, recombinant rennet (212 MPa / 5 min / 10 °C), calf rennet (280 MPa / 20

min / 25 °C), bovine rennet (222 MPa / 5 min / 23 °C) and porcine pepsin (50 MPa / 5

min / 20 °C) were added to the k-casein or to the casein solutions and the hydrolysis

degree was evaluated by capillary electrophoresis (CE) up to 60 min/ 35 °C. The HP

processed recombinant chymosin and calf rennet promoted faster hydrolysis of

standard κ-CN (p<0.05) than non-processed ones. In casein solution, these enzymes

and HP processed bovine rennet showed faster caseinomacropeptide (CMP)

formation than non-processed ones. Additionally, the bovine rennet and porcine pepsin

(processed or non-processed) showed higher hydrolysis on α and β-CN fractions.

Thus, HPP can be used to improve the specific activity of milk-clotting enzymes,

especially on the chymosin fraction, and EC analysis can be successfully applied to

assess the enzymatic hydrolysis.

Key-words: High Pressure Processing • Milk-Clotting Enzymes • Casein • Milk

Coagulation • Capillary Electrophoresis

Page 157: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

157

Resumo

Este estudo avaliou a hidrólise das frações de caseína induzida por coagulantes

processados por alta pressão (AP) em condições previamente estabelecidas. Após o

processo de AP, quimosina recombinante (212 MPa / 5 min / 10 °C), coalho de vitelo

(280 MPa / 20 min / 25 °C), coalho de bovino (222 MPa / 5 min / 23 °C) e pepsina

suína (50 MPa / 5 min / 20 °C) foram adicionados na solução de k-caseína ou caseína

e o grau de hidrólise foi avaliado por eletroforese capilar (EC) até 60 min / 35 °C. A

quimosina recombinante e o coalho de vitelo processados por AP promoveram uma

hidrólise mais rápida da κ-CN padrão (p <0,05) em comparação com as respectivas

enzimas não processadas. Na solução de caseína, estas enzimas e o coalho de

bovino processado por AP apresentaram uma formação de caseinomacropeptídeo

(CMP) mais rápida em comparação com as respectivas enzimas não processadas.

Adicionalmente, o coalho de bovino e a pepsina suína (processada ou não)

apresentaram maior grau de hidrólise sobre as frações de α e β-CN. Assim, o

processamento por AP pode ser utilizado para melhorar a atividade específica dos

coagulantes, especialmente para aqueles que contêm elevada concentração de

quimosina, e a análise da EC pode ser aplicada com sucesso para avaliar a hidrólise

enzimática.

Palavras-chave: Processamento por Alta Pressão • Enzimas Coagulantes do Leite •

Caseína • Coagulação do Leite • Eletroforese Capilar

Page 158: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

158

6.1 Introduction

The milk coagulation is promoted by several enzymes and can be divided

into two phases: specific enzymatic hydrolysis of the κ-casein (Phe105-Met106 site) and

aggregation of the para-κ-casein in the presence of calcium ions (Fox et al., 2004).

Ideally, milk-clotting enzymes should have high specificity and little general proteolytic

activity, aiming to obtain cheeses with a high yield, and minimum bitter flavor or brittle

texture (Andrén, 2011).

In this context, the chymosin (obtained from the abomasum of ruminants or

as fermentation-produced chymosin - FPC) is the milk-clotting enzyme with the

greatest specificity. Rennet (compound of different ratios of chymosin: pepsin,

according to the animal age) can be used as an optional milk-clotting enzyme,

especially for the cheese production destined for markets that reject the use of

genetically modified microorganisms (Andrén, 2011). However, pepsin has a high

nonspecific activity which may promote undesirable changes in fresh cheeses.

High pressure processing (HPP) is an emerging technology able to promote

changes in enzyme activity (Mozhaev et al., 1996; Knorr, 1999; Eisenmenger & Reyes-

de-Corcuera, 2009; Leite Junior et al., 2016; Leite Júnior, Tribst, & Cristianini, 2016)

and was proven to be an interesting tool to improve the performance of milk-clotting

enzymes (Leite Júnior et al., 2016; Leite Júnior, Tribst, & Cristianini, in press),

increasing the milk gels consistency and yield (Leite Júnior et al., 2016; Leite Júnior,

Tribst, & Cristianini, in press). This effect may be attributed to the increase in the

specific enzyme activity to hydrolysis κ-casein; however, no study have directly

evaluated comparatively the impact of HP processed and non-processed enzymes in

the hydrolysis profile of casein. Therefore, this study aimed to assess, by capillary

electrophoresis (CE), the casein fractions hydrolysis degree using HP processed milk-

clotting enzymes under optimum conditions.

6.2 Material and Methods

6.2.1 Enzymes preparation

The enzymes used in the assays were: recombinant chymosin with activity

of 2500 IMCU.g-1 (CHY-MAX® M 2500 Power NB, Chr Hansen, Hoersholm, Denmark);

Page 159: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

159

calf rennet with activity of 1700 IMCU.g-1 (Carlina®, Danisco, Vinay, France), adult

bovine rennet with activity of 200 IMCU.mL-1 (Coalho Líquido BV®, Bela Vista Ltda,

Santa Catarina, Brazil) and porcine pepsin protease with activity of 3000 IMCU.g-1

(PEPSINA SUINA TS®, Bela Vista Ltda, Santa Catarina, Brazil). Aliquots of 100 mL of

the enzyme solutions at a concentration of 1.05 IMCU.mL-1 for recombinant chymosin,

calf rennet, adult bovine rennet and porcine pepsin were prepared in sodium acetate

buffer (0.2 M, pH 5.6) and vacuum-packed in plastic bags (LDPE-Nylon-LDPE-

TecMaq®, São Paulo, Brazil).

6.2.2 High isostatic pressure processing

The experiments were carried out in a high pressure equipment (QFP 2L-

700 Avure Technologies, OH, USA) with a 2 L chamber capacity and able to work at

pressures ≤ 690 MPa and temperatures ≤ 90ºC.

The HP processes were carried out under the optimal conditions previously

stablished for each enzyme (Leite Júnior et al., 2016; Leite Júnior, Tribst, & Cristianini,

in press). The conditions were 212 MPa / 5 min / 10 °C for recombinant chymosin; 280

MPa / 20 min / 25 °C for calf rennet; 222 MPa / 5 min / 23 °C for adult bovine rennet

and 50 MPa / 5 min / 20 °C for porcine pepsin. Furthermore, a control for each enzyme

(non-processed sample) was also prepared for a comparative evaluation. The

pressurizing rate was 4.6 MPa.s-1 and decompression was practically instantaneous.

The temperature of the equipment chamber block was set considering the different

process conditions and the initial temperature of the water (pressuring fluid) in the

chamber and enzyme sample were set considering the rate of temperature increase

under adiabatic conditions for this equipment (3 ºC/ 100 MPa). The control (non-

processed) was not subjected to pressure. Each sample was processed in triplicate.

6.2.3 Capillary zone electrophoresis of the degree of standard κ-CN hydrolysis

and casein hydrolysis

The CE analysis was determined according to the conditions described by

Leite Júnior et al. (2014) with modifications. The samples were prepared as follows:

an aliquot of 2 mL of k-casein solution (4 mg.mL-1) (κ-casein from bovine milk with

≥70% of purity by polyacrylamide electrophoresis (PAGE), lyophilized powder, Sigma

Page 160: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

160

Aldrich®, code C-0406, St. Louis, USA) or sodium casein solution (30 mg.mL-1) (Sigma

Aldrich®, from bovine milk, code C8654, St. Louis, USA) were diluted in sodium acetate

buffer (0.2 M, pH 5.6) and pre-incubated at 35 °C/ 10 min. Subsequently, 100 µL of

each enzyme solution (processed by HP and control samples) was added and the time

count started. After 3, 6, 9, 12, 15, 20, 30 and 60 min of κ-CN hydrolysis or sodium

casein hydrolysis at 35 ºC, the hydrolyzed solutions were subjected to boiling (100 °C)

for 1 min to stop the reaction. Subsequently, the solutions were centrifuged at 15.000

g / 5 min / 4 °C and 0.65 mL of supernatants were collected and dissolved in 0.35 mL

of 10 mM sodium phosphate buffer solution containing 8 M urea (Merck, Darmstadt,

Germany) and 10 mM of dithiothreitol (DTT, Sigma Aldrich ®, St. Louis, USA) at pH 8,

and left for 1 h at 23 ºC before filtration (0.22 µm Millex-GV13, Millipore, Molsheim,

France). For analysis at 0 min, the enzyme solutions were added to the κ-CN and

sodium casein solutions under boiling (100 °C) and maintained at that temperature for

1 min.

Capillary zone electrophoresis (CZE) was carried out using a Beckman

P/ACE MDQ system (Beckman Coulter, Santana de Parnaiba, SP, Brazil) controlled

by 32 Karat software (Beckman Coulter) and the separations/injections were carried

out according to Leite Júnior et al., 2014. The running buffer was prepared according

to Leite Júnior et al., 2014 and the pH of the running buffer was adjusted to 2.60 with

1 M HCl.

The peaks and standard curves were assigned based on previous reports

by Recio et al., 1997, Ortega, Albillos, & Busto (2003), Møller et al., 2012, and Zamora

et al., 2015. The degree of standard κ-CN hydrolysis was determined by κ-CN area

integration over time. In sodium casein, the κ-CN hydrolysis degree was indirectly

measured by the integrated area of caseinomacropeptide (CMP) peak formed over

hydrolysis time. The areas integrations was performed using the 32 Karat software

(Beckman Coulter). The area was defined by the software as arbitrary units (AU). The

area of the standard κ-CN was defined as 100% of κ-CN integrity (or 0% of κ-CN

hydrolysis) and the areas of the samples collected over time was calculated as %

residual κ-CN (% residual κ-CN = 100* (area of ƙ-CN at time t/area of standard κ-CN).

An exponential model was adjusted to residual standard κ-CN over

hydrolysis time (Eq. 6.1) and other exponential model was adjusted to CMP formation

(Eq. 6.2). Considering a constant temperature and specific pH, the exponential models

can be written as Eq. 6.1 and Eq. 6.2.

Page 161: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

161

𝑦 = 𝑎 ∙ 𝑒𝑏𝑥 (Eq. 6.1)

where y is the residual κ-CN at time t, a is the initial residual κ-CN at time 0 min, b is

the negative curve slope and x is time t (min).

𝑦 = 𝑐(1 − 𝑒−𝑑𝑥) (Eq. 6.2)

where y is the CMP formation at time t, c is the final CMP formation at time 60 min, d

is the positive curve slope and x is time t (min). The parameters of the model were

obtained using the software Curve Expert Professional 2.2.0, using a significant

probability level of 95%.

6.2.4 Statistical analysis

The processes and hydrolysis were carried out with three determinations

per analysis. Data was analyzed via Analysis of variance (ANOVA), using the

STATISTICA 7.0 software–(StatiSoft, Inc., Tulsa, Okla., U.S.A.), to compare the effects

of the different treatments (processed and non-processed) and Tukey test was used

to determine the differences among the treatment means at the 95% confidence level.

Data were represented as the mean ± standard deviation.

6.3 Results and Discussion

The comparative evaluation of standard κ-CN and sodium casein hydrolysis

performed by processed and non-processed enzymes elucidates the change in

proteolytic profile induced by HPP in the studied enzyme. The Figure 6.1A shows an

example of standard κ-CN hydrolysis and the Figure 6.1B shows an example of sodium

casein hydrolysis induced by recombinant chymosin during 60 minutes. It can be

observed that in both figures the κ-CN show a peak migrated at 38 min and three

lowers peaks at long time (41,42 and 45 min - showed only Fig 6.1A) that are

glycosylates variants of κ-CN (Otte, Midtgaard, & Qvist, 1995; Møller et al., 2012).

During the reaction it was observed the hydrolysis of κ-CN (at linkage Phe105 – Met106)

forming p-κ-CN (1-105 – 27 min) and CMP (106-169 – 65 min) (Recio et al., 1997).

Page 162: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

162

From the integrate area of κ-CN peak it was determined the standard κ-CN

hydrolysis (Figure 6.2) and CMP formation from sodium casein (Figure 6.3) over the

time. The models used showed good adjustment, with 0.980 < R2 < 0.998 (Table 6.1

and 6.2). Table 6.1 showed that recombinant chymosin and calf rennet processed by

HP induced higher hydrolysis degree on standard κ-CN than non-processed samples,

determined by lower curve slope (p<0.05). Additionally, the CMP formation (Table 6.2)

was faster for HP processed recombinant chymosin, calf rennet and also bovine

rennet, in comparison to non-processed ones (p<0.05), corroborating the hypothesis

that HPP has minimum effect on the pepsin behavior at the studied process conditions

(Leite Júnior, Tribst, & Cristianini, in press). These results agrees with the increase of

10, 10 and 9% of milk-clotting activity of recombinant chymosin, bovine rennet (Leite

Júnior, Tribst, & Cristianini, in press) and calf rennet (Leite Júnior et al., 2016)

subjected to HPP at the same optimized process conditions, respectively.

Page 163: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

163

Figure 6.1A. Example of hydrolysis profile of the standard κ-casein solutions using recombinant chymosin. Identification of peaks κ-

CN (κ-casein); para-κ-CN (para-κ-casein) and CMP (caseinomacropeptide) were according to Recio et al. (1997); Otte, Midtgaard,

& Qvist. (1995); and Møller et al. (2012).

Page 164: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

164

Figure 6.1B. Example of hydrolysis profile of the standard sodium casein solutions using recombinant chymosin. Identification of

peaks κ-CN (κ-casein); para-κ-CN (para-κ-casein); CMP (caseinomacropeptide); αs1-CN; αs2-CN; and β-CN were according to

Recio et al. (1997); Otte, Midtgaard, & Qvist. (1995); and Møller et al. (2012).

Page 165: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

165

Figure 6.2. Residual standard k-CN (%) by action of recombinant chymosin (A), calf

rennet (B), bovine rennet (C) and porcine pepsin (D) processed by HP under

optimum conditions

Page 166: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

166

Figure 6.3. CMP formation (AU) by action of recombinant chymosin (A), calf rennet

(B), bovine rennet (C) and porcine pepsin (D) processed by HP under optimum

conditions in sodium casein solution.

Page 167: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

167

Table 6.1. Parameters obtained by model of standard k-CN hydrolysis by action of HP processed milk-clotting enzymes

Parameters Recombinant chymosin Calf rennet Bovine rennet Porcine pepsin

Control Processed Control Processed Control Processed Control Processed

a* 97.0 ± 5.5a 97.3 ± 4.3a 98.3 ± 8.9a 98.7 ± 2.1a 98.8 ± 5.6a 98.3 ± 6.3a 97.3 ± 15.3a 97.2 ± 3.7a

b** -0.051 ± 0.004b -0.058 ± 0.003a -0.054 ± 0.003b -0.063 ± 0.006a -0.062 ± 0.003a -0.064 ± 0.004a -0.067 ± 0.003a -0.068 ± 0.002a

R2 0.980 ± 0.006 0.984 ± 0.004 0.987 ± 0.000 0.988 ± 0.006 0.991 ± 0.003 0.992 ± 0.002 0.990 ± 0.002 0.992 ± 0.002

a* is the initial residual k-CN (%) at time 0 min; b** is the negative curve slope (the smaller the curve slope the greatest is degree of

hydrolysis). Different letters mean a significant difference (p<0.05) between the processed sample with the respective non-processed

sample (n = 3).

Table 6.2. Parameters obtained by model of CMP formation by action of HP processed enzymes in sodium casein solution

Parameters Recombinant chymosin Calf rennet Bovine rennet Porcine pepsin

Control Processed Control Processed Control Processed Control Processed

c* 114999 ± 2392a 119551 ± 2066a 101684 ± 1304a 101642 ± 1902a 102662 ± 1036 a 103549 ± 669a 65419 ± 2839a 65362 ± 3852a

d** 0.071 ± 0.005b 0.081 ± 0.004a 0.059 ± 0.006b 0.072 ± 0.005a 0.063 ± 0.006b 0.075 ± 0.005a 0.062 ± 0.004a 0.064 ± 0.002a

R2 0.998 ± 0.001 0.997 ± 0.001 0.993 ± 0.004 0.995 ± 0.003 0.985 ± 0.006 0.982 ± 0.009 0.994 ± 0.002 0.997 ± 0.001

c* is the final CMP formation (arbitrary units - AU) at time 60 min; d** is the positive curve slope (the higher the curve slope the

greatest is degree of CMP formation). Different letters mean a significant difference (p<0.05) between the processed sample with the

respective non-processed sample (n = 3).

Page 168: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

168

Considering the hydrolysis of the other casein fractions (after 60 min at 35

°C – Figure 6.4), it was observed that porcine pepsin and bovine rennet (processed or

non-processed) were the enzymes that induced higher level of hydrolysis of αs1, αs2

(formation of peak 1 (αs1- CN f1–23 - Recio et al., 1997; Zamora et al., 2015) and peak

12 (αs1-I-CN - Recio et al., 1997; Zamora et al., 2015)) and β-CN (formation of peak 3

(2-CN - Recio et al., 1997; Zamora et al., 2015) and peak 7 (3-CN - Recio et al., 1997;

Otte et al., 1997)). Thus, it is possible to conclude that HPP in optimized conditions did

not change the hydrolytic profile of the enzymes on the other casein fractions.

Page 169: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

169

Figure 6.4. Capillary electropherogram of the sodium casein control (A) and sodium casein hydrolysates using non-processed and

processed recombinant chymosin (B1 and B2), calf rennet (C1 and C2), bovine rennet (D1 and D2) and porcine pepsin (E1 and

E2), respectively after 60 min at 35 °C. Peak identification: 1: αs1-CN f(1–23); 2: para-κ-CN; 3: 2-CN; 4: αs2-CN; 5: αs1-CN; 6: αs0-

CN; 7: 3-CN; 8: κ-CN; 9: β-CNB; 10: β-CNA1; 11: β-CNA2; 12: αs1-I-CN; 13: CMP (caseinomacropeptide) as identified by Recio et al.,

1997; Otte et al., 1997; Ortega, Albillos, & Busto, 2003; Zamora et al., 2015

Page 170: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

170

6.4 Conclusion

The HP processed milk-clotting enzymes promoted faster hydrolysis of

κ-CN than non-processed ones, except for porcine pepsin, indicating that the HPP on

the enzyme increased its ability to hydrolysis on κ-CN, probably due to improvement

of chymosin fraction activity. As expected, the bovine rennet and porcine pepsin shown

higher hydrolysis on α and β-CN fractions and this behavior was not altered by HPP.

Thus, HPP emerges as an interesting alternative to improve the specific activity of milk-

clotting enzymes. In addition, results highlights that capillary electrophoresis can be

used to quantify milk protein hydrolysis degree.

6.5 Acknowledgements

The authors are grateful to the São Paulo Research Foundation (FAPESP) for

their financial support (project no. 2012/13509-6) and for awarding a scholarship to

B.R.C. Leite Júnior (2014/17782-4).

6.6 References

Albillos, S. M., Busto, M. D., Perez-Mateos, M., & Ortega, N. (2006). Prediction of the

ripening times of ewe’s milk cheese by multivariate regression analysis of capillary

electrophoresis casein fractions. Journal of Agricultural and Food Chemistry, 54, 8281-

8287.

Eisenmenger, M. J., & Reyes-De-Corcuera, J. I. (2009) High pressure enhancement

of enzymes: a review. Enzymes and Microbial Technology, 45, 331-347.

Fox, P. F., & Kelly. A, L. (2004). The caseins. In. R. Y. Yada (Ed.), Proteins in Food

Processing, (pp. 29-71). Boca Raton, FL: CRC Press.

Knorr, D. (1999). Novel approaches in food-processing technology: new technologies

for preserving foods and modifying function. Current Opinion in Biotechnology, 10,

485-491.

Page 171: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

171

Leite Júnior, B. R. C., Tribst, A. A. L., Oliveira, M. M., & Cristianini, M. (2014).

Characterization of rennet-induced gels using calf rennet processed by high pressure

homogenization: Effects on proteolysis, whey separation, rheological properties and

microstructure. Innovative Food Science and Emerging Technology, 26, 517–524.

Leite Júnior, B. R. C., Tribst, A. A. L., Bonafe, C. F. S., & Cristianini, M. (2016).

Determination of the influence of high pressure processing on calf rennet using

response surface methodology: Effects on milk coagulation. LWT – Food Science and

Technology, 65, 10-17.

Leite Júnior, B. R. C., Tribst, A. A. L., & Cristianini, M. (2016). Comparative effects of

high isostatic pressure and thermal processing on the inactivation of Rhizomucor

miehei protease. LWT – Food Science and Technology, 65, 1050-1053.

Leite Júnior, B. R. C., Tribst, A, A, L., & Cristianini, M. (in press). The effect of high

pressure processing on recombinant chymosin, bovine rennet and porcine pepsin:

Influence on the proteolytic and milk-clotting activities and on milk-clotting

characteristics. LWT - Food Science and Technology,

http://dx.doi.org/10.1016/j.lwt.2016.04.018.

Mozhaev, V. V., Lange, R., Kudryashova, E. V., & Balny, C. (1996). Application of high

hydrostatic pressure for increasing activity and stability of enzymes. Biotechnology and

Bioengineering, 52, 320-331.

Ortega, N., Albillos, S. M., & Busto, M. D. (2003). Application of factorial design and

response surface methodology to the analysis of bovine caseins by capillary zone

electrophoresis. Food Control, 14, 307-315.

Otte, J., Midtgaard, L., & Qvist, K. B. (1995). Analysis of caseinomacropeptide(s) by

free solution capillary electrophoresis. Milchwissenschaft, 50, 75−79.

Otte, J., Zakora, M., Kristiansen, K. R., & Qvist, K. B. (1997). Analysis of bovine caseins

and primary hydrolysis products in cheese by capillary zone electrophoresis. Lait, 77,

241-257.

Page 172: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

172

Recio, I., Amigo, L., Ramos, M., & López-Fandiño, R. (1997). Application of capillary

electrophoresis to the study of proteolysis of caseins. Journal of Dairy Research, 64,

221-230.

Zamora, A., Juan, B., & Trujillo, J. (2015). Compositional and biochemical changes

during cold storage of starter-free fresh cheeses made from ultra-high-pressure

homogenised milk. Food Chemistry, 176, 433-440.

Page 173: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

173

Capítulo 7. Milk-clotting activity of high pressure

processed coagulants: evaluation at different pH and

temperatures and pH influence on the stability

Trabalho submetido em 11 de Outubro de 2016 para

publicação na revista Innovative Food Science and

Emerging Technologies: LEITE JÚNIOR, B. R. C.;

TRIBST, A.A.L.; YADA, R. Y.; CRISTIANINI, M. Milk-

clotting activity of high pressure processed coagulants:

evaluation at different pH and temperatures and pH

influence on the stability. Innovative Food Science

and Emerging Technologies.

Page 174: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

174

Abstract

This study evaluated the milk-clotting activity (MCA) at different pH values (5.6-

6.6) and at different temperatures (25-45 °C) of milk and the effect of pH (range to 4.0-

9.0) on the stability of the coagulants processed by high pressure (HP). For the majority

of pH and temperature studied conditions, the pressurized enzymes showed higher

MCA as compared to those samples which were not exposed to HP; however, different

enzyme sources reacted differently (i.e., recombinant camel chymosin>bovine

rennet>calf rennet>porcine pepsin) with the differences more pronounced at higher

temperatures and lower pH values. In conditions industrially used in the milk

coagulation for cheese production (i.e. pH 6.6 at 35 °C), the HP processes induced

increases of 27, 9, 8, and 5% in MCA for recombinant camel chymosin, bovine rennet,

calf rennet, and porcine pepsin, respectively. In addition, HP increased the pH stability

for most of the enzymes. Therefore, HP emerges as an interesting technology to

improve the hydrolytic profile of these enzymes as a function of pH and temperature.

Key-words: High Pressure Processing • Coagulants • Milk-Clotting Activity • pH

Stability

Page 175: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

175

Resumo

Este estudo avaliou a atividade de coagulação do leite (ACL) em diferentes

valores de pH (5,6 - 6,6) e em diferentes temperaturas (25-45 °C) do leite e o efeito

do pH (variação de 4,0-9,0) na estabilidade dos coagulantes processados por alta

pressão (AP). Para a maioria das condições de pH e temperatura estudadas, as

enzimas pressurizadas apresentaram ACL mais elevada em comparação com as

enzimas que não foram processadas por AP; contudo, as enzimas apresentaram

diferentes níveis de aumento (quimosina recombinante de camelo > coalho de bovino

> coalho de vitelo > pepsina suína) com as diferenças mais pronunciadas a

temperaturas mais elevadas e valores de pH inferiores. Em condições industriais

utilizadas na coagulação do leite para a produção de queijo (pH 6,6 a 35 ° C), os

processos de AP promoveram aumentos de 27, 9, 8 e 5% na ACL para quimosina

recombinante de camelo, coalho de bovino, coalho de vitelo e pepsina suína,

respectivamente. Além disso, a AP aumentou a estabilidade ao pH para a maioria das

enzimas avaliadas. Desta forma, a AP surge como uma tecnologia interessante para

melhorar o perfil hidrolítico destas enzimas em função do pH e da temperatura.

Palavras-chave: Processamento por Alta Pressão • Coagulantes • Atividade de

Coagulação do Leite • Estabilidade ao pH

Page 176: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

176

7.1 Introduction

High pressure processing (HPP), also known as high isostatic pressure

(HIP), is an emerging technology able to promote changes in enzyme activity and

stability, thereby, improving their performance with a consequent reduction in costs

(Cano, Hernández, & Ancos, 1997; Mozhaev et al., 1996; Kudryashova et al., 1998;

Knorr, 1999; Sila et al., 2007; Eisenmenger & Reyes-de-Corcuera, 2009). In molecular

terms, pressurization promotes an increase in the conformational flexibility of the

enzyme (Eisenmenger & Reyes-de-Corcuera, 2009) which may increase the exposure

of active sites and subsequent activation. Thus, HPP could be an interesting tool to

improve the hydrolytic characteristics of enzymes (Eisenmenger & Reyes-de-

Corcuera, 2009).

The rennet present in the bovine abomasum is composed of chymosin and

pepsin and the proportion of each enzyme is dependent on the animal age (Rolet-

Répécaud et al., 2013). In calves, the proportion is 80% chymosin and 20% pepsin,

which reverses in adult animals (Fox et al., 2004; Jacob, Jaros, & Rohm, 2011).

Chymosin is unique in that it exhibits high substrate specificity during the coagulation

phase (Fox et al., 2004; Møller et al., 2012). On the other hand, pepsin is highly non-

specific leading to the release of bitter-flavored medium-chain peptides (Fox et al.,

2004; Agudelo et al., 2004; Papoff et al., 2004). The availability of calf rennet has

become limited due to increased cheese production, globally (approximately 4% per

year (Euromonitor International, 2012)) and corresponding reduction in the slaughter

of calves due to their low meat production (Food Agriculture Organization [FAO], 2010).

Thus, the search for potential calf rennet substitutes is increasing (Walstra et al., 2006;

Jacob, Jaros, & Rohm, 2011; Møller et al., 2012; Rolet-Répécaud et al., 2013).

Recombinant chymosin (100% chymosin) is produced by fermentation using a

genetically modified (GM) yeast. It is considered the best substitute for calf rennet due

its high specific activity for к-casein. However, traditional markets that do not use

products derived from genetically modified organisms (GMO) reject this kind enzyme

(Andrén, 2011). Therefore, the search for non-GM coagulants is required.

It has been found that the HPP is able to increase the activity of these

coagulants in traditional conditions of milk coagulation process (pH 6.6 and 35 °C)

(Leite Júnior et al., 2016; Leite Júnior, Tribst, & Cristianini, in press), but the effect at

different pH and temperature and the pH stability of these enzymes are unknown.

Page 177: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

177

Therefore, this study evaluated the milk-clotting activity at different pH values and

temperatures of milk and the influence of pH on the stability of commercial coagulants

processed by high pressure.

7.2 Materials and Methods

7.2.1 Enzymes

The assays were carried out using four commercial enzymes: recombinant

camel chymosin with an activity of 2500 IMCU.g-1 (CHY-MAX® M 2500 Power NB, Chr

Hansen, Hoersholm, Denmark); calf rennet with an activity of 1700 IMCU.g-1 (freeze-

dried CarlinaTM Animal Rennet 1650, Danisco, Vinay, France, containing 94% of

chymosin and 6% of pepsin); adult bovine rennet with activity of 200 IMCU.mL-1

(Coalho Líquido BV®, Bela Vista Ltda, Santa Catarina, Brazil, containing 80-90% of

bovine pepsin and 10-20% of bovine chymosin); and porcine pepsin protease with an

activity of 3000 IMCU.g-1 (freeze dried powdered Porcine Pepsin, PEPSINA SUINA

TS®, Bela Vista Ltda, Santa Catarina, Brazil).

7.2.2 High pressure processing

The experiments were carried out in a high pressure equipment (QFP 2L-

700 Avure Technologies, OH, USA) which consists of a cylindrical chamber with a 2

L capacity and works at pressures of up to 100,000 psi (690 MPa), using deionized

water as the pressurizing fluid. The temperature of the chamber was measured by a

type K thermocouple set inside the chamber and the pressure was captured by a

pressure transducer. The temperature of the equipment chamber block was set for

different process conditions. The initial temperature of the water in the chamber was

set according to the rate of temperature increase under adiabatic conditions for this

equipment (3 °C/ 100 MPa). The control (non-processed) was not subjected to

pressure.

Aliquots of 100 mL of recombinant chymosin (10.0% w/v), calf rennet

(10.0% w/v), bovine rennet (10.0% w/v), and porcine pepsin (10.0% w/v) solutions

were prepared in sodium acetate buffer (0.2M, pH 5.6) and vacuum-packed in plastic

bags (LDPE-Nylon-LDPE, 16 μm thickness - TecMaq, São Paulo, Brazil). The HIP

Page 178: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

178

processes were carried out at conditions determined previously as able to induce the

maximum increase in milk clotting activity for each enzyme: 212 MPa / 5 min / 10 °C

for recombinant chymosin (Leite Júnior, Tribst, & Cristianini, in press); 280 MPa / 20

min / 25°C for calf rennet (Leite Júnior et al., 2016); 222 MPa / 5 min / 23 °C for bovine

rennet (Leite Júnior, Tribst, & Cristianini, in press) and 50 MPa / 5 min / 20 °C for

porcine pepsin (Leite Júnior, Tribst, & Cristianini, in press) and inactivation conditions

for all enzyme at 600 MPa / 10 min / 25 °C (Leite Júnior, Tribst, & Cristianini, 2016;

Leite Júnior, Tribst, & Cristianini, in press). Furthermore, a control for each enzyme

sample (non-processed enzyme) was also prepared. After processing, the samples

were lyophilized and stored at -80 °C prior to conducting the MCA assays.

7.2.3 Determination of relative milk-clotting activity (RMCA) after HPP

The milk-clotting activity was determined according to Leite Júnior, Tribst, &

Cristianini (2014). In order to determine the MCA per milligram of protein (U.mg-1) the

protein concentration of enzymatic solutions was measured using the Pierce® 660nm

Protein Assay Reagent using BSA for the standard curve (R2 = 0.99).

The relative MCA (RMCA) was calculated considering the MCA of the HPP

and the non-processed samples, according to Equation 7.1.

𝑅𝑀𝐶𝐴 (%) = (MCA after HPP

MCA non−processed) ∙ 100 (Eq. 7.1)

7.2.4 Determination of RMCA of HPP processed coagulants at different pH and

temperature of milk

Aliquots of skimmed milk powder reconstituted to 10% (w/v) with 0.01 M

CaCl2 were adjusted to pH 5.60, 6.10, 6.60 with HCl (1 M) or NaOH (1 M) solutions

and incubated at 25, 30, 35, 40 or 45 °C for 10 min (to allow for temperature

equilibration) before assessing milk-clotting activity as per section 7.2.3. The RMCA,

according to Equation 7.2, for each enzyme under different pH and temperature

conditions was determined in relation to the non-processed sample pH 6.60, 35 °C

(conditions commonly used in the cheese making process).

Page 179: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

179

𝑅𝑀𝐶𝐴 (%) = (

MCA of HPPandor non−processed sampleat different pH and temperature

MCA of non−processedsamplein pH 6.60 at 35 °C

) ∙ 100 (Eq. 7.2)

7.2.5 Determination of pH stability

The pH stability of the coagulants (HPP processed or non-processed) was

evaluated for activity after 48 h of storage at different pH values (4.0; 4.5; 5.0; 5.5; 6.0;

6.5; 7.0; 8.0; 9.0) under refrigeration at 4 °C. Samples (0.01%, w/v) were adjusted for

different pH values with 100 mM sodium acetate buffer (pH 4–5.5), 100 mM potassium

phosphate buffer (pH 6–7.5), and 100 mM Tris-HCl buffer (pH 8–9). The actual pH of

the samples were measured after incubation. The milk-clotting activity was determined

as per section 7.2.3. The RMCA for each enzyme after storage at different pH was

determined in relation to their respective sample before storage, according to Equation

7.3.

𝑅𝑀𝐶𝐴 (%) = (MCA after storage

MCA of respective sample before storage) ∙ 100 (Eq. 7.3)

7.2.6 Statistical analysis

Each sample treatment was carried out in triplicate with 3 determinations

per analysis. Data was analyzed via Analysis of variance (ANOVA) using the

STATISTICA 7.0 software–(StatiSoft, Inc., Tulsa, Okla., U.S.A.). Tukey test was used

to test to determine the differences among the treatment means at the 95% confidence

level when appropriate. Data was represented as the mean ± standard deviation.

7.3 Results and Discussion

7.3.1 Milk-clotting activity after high pressure processing

Milk-clotting activity is an indirect evaluation of the specificity of milk

coagulants during the coagulation step (Andrén, 2011). Table 3.1 shows the RMCA for

the HP processed enzymes under activation conditions where 27.9%, 8%, 9%, 5%

increases in MCA for recombinant camel chymosin, calf rennet, bovine rennet, and

Page 180: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

180

porcine pepsin were seen, respectively. Similar increases in RMCA values for

enzymes in solution immediately after HPP were observed by Leite Júnior et al. (2016)

and Leite Júnior, Tribst, & Cristianini (in press) (increases of 9%; 10%; 6% for calf

rennet, bovine rennet, and porcine pepsin, respectively). Conversely, a drastic

reduction in MCA was seen under inactivation conditions after HPP and lyophilization

of the samples. For recombinant camel chymosin, the differences observed for enzyme

activity measured immediately after HPP and after lyophilization was higher (10 and

27.9%, respectively). Leite Júnior, Tribst, & Cristianini (in press) using the

mathematical model adjusted for recombinant chymosin predicted an expected

increase on enzyme activity of around 23% after HPP was applied. Therefore, results

indicated that lyophilization did not affect the RMCA of pressurized enzymes and that

drying does not alter the relative activity of these enzymes.

Table 7.1. MCA and RMCA of milk-clotting enzymes after high pressure processing

Milk-clotting enzymes Milk-clotting Activity

(MCA) (U.mg-1) RMCA (%)

Recombinant camel chymosin

Non-processed 76547 ± 2641B 100.0 ± 3.5

212 MPa / 5 min / 10 °C 97896 ± 6190A 127.9 ± 8.1

600 MPa / 10 min / 25 °C 1755 ± 42C 2.3 ± 0.1

Calf rennet

Non-processed 38309 ± 913B 100.0 ± 2.4

280 MPa / 20 min / 25 °C 41279 ± 812A 107.8 ± 2.1

600 MPa / 10 min / 25 °C 526 ± 24C 1.4 ± 0.1

Bovine rennet

Non-processed 5883 ± 158B 100.0 ± 2.7

222 MPa / 5 min / 23 °C 6411 ± 141A 109.0 ± 2.4

600 MPa / 10 min / 25 °C 3408 ± 103C 57.9 ± 1.8

Porcine pepsin

Non-processed 158558 ± 2863B 100.0 ± 1.8

50 MPa / 5 min / 20 °C 165761 ± 3275A 104.5 ± 2.1

600 MPa / 10 min / 25 °C 12182 ± 691C 7.7 ± 0.4

Significant differences evaluated by the Tukey test (p < 0.05) between non-processed

and corresponding processed-samples in the same column are indicated by different

superscripts A, B, C. RMCA: Relative milk-clotting activity (%).(n = 9)

7.3.2 The effect of high pressure processing on the milk-clotting activity of

coagulants at different pH and temperature of milk

Figures 7.1 to 7.4 show the RMCA (%) values of non-processed enzyme

and processed by HP (activation conditions) in milk with different pH values (5.6-6.6)

and temperature (25-45 °C). For each figure, the MCA of the control enzyme (non-

Page 181: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

181

processed) evaluated in milk at pH 6.6 / 35 °C (the condition most commonly used in

cheesemaking) was defined as 100%.

In general, it was found that increasing temperature and decreasing pH

promoted an increase on the MCA of enzymes (up to 4.6 times). This result can be

explained by the increase in kinetic energy promoted by temperature rise and by the

destabilization of the casein micelles with solubilization of colloidal calcium phosphate

and reduction of steric hindrance between casein micelles promoted by lowering the

pH (Fox et al., 2004). In addition, the enzymes used in the present study are acidic

proteases and therefore perform better at lower pH than at the natural pH of milk

(Chitpinityol & Crabbe, 1998).

Page 182: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

182

Figure 7.1. RMCA (%) of non-processed recombinant camel chymosin and processed at 212 MPa/ 5 min/ 10 °C at different

temperatures and pH. 100% was defined as the milk-clotting activity of the non-processed enzyme in pH 6.6 at 35 °C. Significant

differences evaluated by the Tukey test (p < 0.05) among the samples are indicated by different superscripts A-R. (n = 9)

Page 183: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

183

Figure 7.2. RMCA (%) of non-processed calf rennet and processed at 280 MPa/ 20 min/ 25 °C at different temperatures and pH.

100% was defined as the milk-clotting activity of the non-processed enzyme in pH 6.6 at 35 °C. Significant differences evaluated by

the Tukey test (p < 0.05) among the samples are indicated by different superscripts A-Q. (n = 9)

Page 184: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

184

Figure 7.3. RMCA (%) of non-processed bovine rennet and processed at 222 MPa/ 5 min/ 23 °C at different temperatures and pH.

100% was defined as the milk-clotting activity of the non-processed enzyme in pH 6.6 at 35 °C. Significant differences evaluated by

the Tukey test (p < 0.05) among the samples are indicated by different superscripts A-S. (n = 9)

Page 185: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

185

Figure 7.4. RMCA (%) of non-processed porcine pepsin and processed at 50 MPa/ 5 min/ 20 °C at different temperatures and pH.

100% was defined as the milk-clotting activity of the non-processed enzyme in pH 6.6 at 35 °C. Significant differences evaluated by

the Tukey test (p < 0.05) among the samples are indicated by different superscripts A-Q. (n = 9)

Page 186: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

186

Comparatively, the results showed that the pressurized enzymes under

optimized conditions had higher MCA compared to the non-processed ones in most of

the evaluated conditions (p < 0.05). The largest differences in activity between native

and processed samples followed the same profile observed for the enzymes evaluated

at pH 6.6 and 35 °C (commonly used in cheese manufacturing process), i.e.,

recombinant camel chymosin > bovine rennet > calf rennet > porcine pepsin. The data

showed that the HP process is more effective for activation of the enzymes under lower

pH or higher temperature (conditions for activity maximization).

For some enzymes, especially recombinant camel chymosin, the

pressurization increased the MCA at a natural pH of the milk (pH 6.6), resulting in

activity similar to that observed for native enzyme at lower pH and higher temperatures

thereby allowing coagulation to occur at lower temperatures or at a higher pH then that

required for coagulation to normally occur. Such conditions could possibly lead to cost

reductions such as: (i) energy savings for heating the milk to produce fresh cheeses;

(ii): use of less enzyme. Moreover, results indicated that if the purpose is reduce the

maximum enzyme concentration to perform the coagulation process without altering

its time, the optimum coagulation temperature should be 45 °C (condition with higher

RMCA and with greater difference in MCA between the non-processed and processed

enzyme at pH 6.6 - up to 57% for recombinant camel chymosin - Figure 7.1).

7.3.3 The effect of high pressure processing on pH stability of the coagulants

Figure 7.5 shows the results of pH stability (in the range 4.0 to 9.0) of the

non-processed enzymes and processed by HP under activation conditions. In general,

the results showed that the increase of pH 4.0 to 5.5 increased the enzyme stability.

At pH between pH 6.0 and 7.0 a drastic reduction was observed and complete

inactivation occurred at pH ≥8.0 for all enzymes.

Page 187: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

187

Figure 7.5. Effect of pH stability in RMCA (%) of recombinant camel chymosin (A); calf rennet (B); bovine rennet (C); and porcine pepsin

(D) processed by HP. 100% was defined as the milk-clotting activity of each sample in relation to their respective sample before storage.

Significant differences evaluated by the Tukey test (p < 0.05) between non-processed and corresponding processed-samples in the same

pH are indicated by different superscripts A, B. (n = 9)

Page 188: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

188

These results are consistent with those found in previous studies (Vallejo et

al., 2012; Kappeler et al., 2006), emphasizing that the enzymes studied have higher

stabilities in low acid pH. Under acidic conditions (pH ≤ 4), the loss of activity was likely

due to auto-degradation, while under alkaline conditions (pH ≥ 8) the loss is due to an

irreversible denaturation (Cheeseman, 1965).

Among the enzymes, it was found that the bovine rennet was the most

sensitive within the range evaluated (pH 4.0-9.0) and the porcine pepsin was the most

sensitive enzyme at alkaline pH (inactivated at pH 7.0). In addition, recombinant camel

chymosin and calf rennet showed similar stability profiles, possibly due to the chymosin

fraction, which is present in higher concentrations in their compositions. Thus, it was

observed that the fraction of pepsin (bovine or porcine) is less stable compared with

the chymosin fraction (derived from bovine or camel).

In general, HP process induced an increase in pH stability of the enzymes

with the difference depending on the enzyme studied, e.g., higher increases in stability

of bovine rennet (higher stability throughout the pH range 4.0 to 6.0, p<0.05) and

recombinant camel chymosin (an increase in the pH values of 5.0, 5.5, 6.5 and 7.0,

p<0.05). However, for calf rennet and porcine pepsin similar values were observed,

except at pH 5.5 and 7.0 for calf rennet and pH 6.0 for porcine pepsin, where the HP

processed enzymes showed higher stability (p <0.05). In molecular terms, the increase

in stability may have occurred due to increased molecular interactions, hydrogen

bonds stabilization and, especially, hydration of non-polar and charged groups

(Eisenmenger & Reyes-de-Corcuera, 2009).

7.4 Conclusions

In conclusion, HPP was able to promote increased in enzymatic activity

and stability of coagulants at different temperatures and pH values, and therefore,

would be relevant to conditions where milk coagulation was undertaken without pre-

acidification. Additionally, it was also shown that lyophilization preserved the changes

induced by the HPP in enzymes solution. Therefore, HPP technology is a unit operation

can be used to increase activity and stability of milk coagulants.

Page 189: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

189

7.5 Acknowledgments

The authors would like to thank the São Paulo Research Foundation

(FAPESP) for the financial support (project no. 2012/13509-6) and awarding a

scholarship to B. R. C. Leite Júnior (2014/17782-4 and 2016/01425-3).

7.6 References

Agudelo, R. A., Gauthier, S. F., Pouliot, Y., Marin, H., & Savoie, L. (2004). Kinetics of

peptide fraction release during in vitro digestion of casein. Journal of the Science of

Food and Agriculture, 84, 325–333.

Andrén, A. (2011). Cheese: Rennets and Coagulants. In J. W. Fuquay, P. F. Fox, & P.

L. H. McSweeney (Eds.), Encyclopedia of Dairy Sciences, 2nd ed., (pp. 574-578).

London: Elsevier Academic Press.

Cano, M. P., Hernández, A., & Ancos, B. (1997). High pressure and temperature

effects on enzyme inactivation in strawberry and orange products. Journal of Food

Science, 62, 85-88.

Cheeseman, G. C. (1965). Denaturation of rennin: Effect on activity and molecular

configuration. Nature, 205, 1011-1012.

Chitpinityol, S., & Crabbe, M. J. C. (1998). Chymosin and aspartic proteinases. Food

Chemistry, 61, 395-418.

Eisenmenger, M.J., & Reyes-De-Corcuera, J.I. (2009). High pressure enhancement of

enzymes: a review. Enzymes and Microbial Technology, 45, 331-347.

Euromonitor International - Related Analysis. (2012) Cheese in Brazil. Available from

http://www.portal.euromonitor.com/Portal/Pages/Statistics/Statistics.aspx. Accessed

July, 2016.

Food Agriculture Organization, (2010). Milk and Milk Products. Available from

http://www.fao.org/docrep/011/ai474e/ai474e10.htm Accessed June, 2016.

Page 190: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

190

Fox, P. F., Mc Sweeney, P. L. H., Cogan, T. M., & Guinee, T. P. (2004). Cheese:

Chemistry, Physics and Microbiology. London: Chapman e Hall.

Jacob, M., Jaros, D., & Rohm, H. (2011). Recent advances in milk clotting enzymes.

International Journal of Dairy Technology, 64, 14-33.

Kappeler, S. R., van den Brink, H. J. M., Rahbek-Nielsen, H., Farah, Z., Puhan, Z.,

Hansen, E. B., & Johansen, E. (2006). Characterization of recombinant camel

chymosin reveals superior properties for the coagulation of bovine and camel milk.

Biochemical and Biophysical Research Communications, 342, 647-654.

Knorr, D. (1999). Novel approaches in food-processing technology: new technologies

for preserving foods and modifying function. Current Opinion in Biotechnology, 10,

485-491.

Kudryashova, E. V., Mozhaev, V. V, & Balny, C. (1998). Catalytic activity of thermolysin

under extremes of pressure and temperature: modulation by metal ions. Biochimica et

Biophysica Acta, 1386, 199-210.

Leite Júnior, B. R. C., Tribst, A. A. L., & Cristianini, M. (2014). Proteolytic and milk-

clotting activities of calf rennet processed by high pressure homogenization and the

influence on the rheological behavior of the milk coagulation process. Innovative Food

Science and Emerging Technology, 21, 44–49.

Leite Júnior, B. R. C., Tribst, A. A. L., Bonafe, C. F. S., & Cristianini, M. (2016).

Determination of the influence of high pressure processing on calf rennet using

response surface methodology: effects on milk coagulation. LWT - Food Science and

Technology, 65, 10-17.

Leite Júnior, B. R. C., Tribst, A. A. L., & Cristianini, M. (2016). Comparative effects of

high isostatic pressure and thermal processing on the inactivation of Rhizomucor

miehei protease. LWT - Food Science and Technology, 65, 1050-1053.

Page 191: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

191

Leite Júnior, B. R. C., Tribst, A. A. L., & Cristianini, M. The effect of high pressure

processing on recombinant chymosin, bovine rennet and porcine pepsin: Influence on

the proteolytic and milk-clotting activities and on milk-clotting characteristics. LWT -

Food Science and Technology, in press.

Møller, K. K., Rattray, F. P., Sørensen, J. C., & Ardo, Y. (2012). Comparison of the

hydrolysis of bovine κ-casein by camel and bovine chymosin: A kinetic and specificity

study. Journal Agricultural and Food Chemistry, 60, 5454-5460.

Mozhaev, V.V., Lange, R., Kudryashova, E.V., & Balny, C. (1996). Application of high

hydrostatic pressure for increasing activity and stability of enzymes. Biotechnology and

Bioengineering, 52, 320-331.

Papoff, C. M., Mauriello, R., Pirisi, A., Piredda, G., Addis, M., & Chianese, L. (2004).

Proteolytic activity of animal rennet on ovine casein. Michwissenschaft, 59, 414–417.

Rolet-Répécaud, O., Berthier, F., Beuvier, E., Gavoye, S., Notz, E., Roustel, S.,

Gagnaire, V., & Achilleos, C. (2013). Characterization of the non-coagulating enzyme

fraction of different milk-clotting preparations. LWT - Food Science and Technology,

50, 459-468.

Sila, D.N., Smout, C., Satara, Y., Truong, V., Loey, A.V., & Hendrickx, M. (2007).

Combined thermal and high pressure effect on carrot pectinmethylesterase stability

and catalytic activity. Journal of Food Engineering, 78, 755-764.

Vallejo, J. A., Ageitos, J. M., Poza, M., & Villa, T. G. (2012). A comparative analysis of

recombinant chymosins. Journal of Dairy Science, 95, 609-613.

Walstra, P., Wouters, J. T. M., & Geurts, T. J. (2006). Dairy Science and Technology,

Boca Raton, FL: CRC Press.

Page 192: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

192

Capítulo 8. Biophysical evaluation of milk-clotting enzymes

processed by high pressure

Trabalho submetido em 25 de Janeiro de 2017 para

publicação na revista Food Research International:

LEITE JÚNIOR, B. R. C.; TRIBST, A.A.L.; YADA, R. Y.;

CRISTIANINI, M. Biophysical evaluation of milk-clotting

enzymes processed by high pressure. Food Research

International.

Page 193: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

193

Abstract

High pressure processing (HPP) is able to promote changes in enzymes

structure. This study aimed to evaluate the effect of HP on the structural changes in

milk-clotting enzymes processed under activation conditions for recombinant camel

chymosin (212 MPa / 5 min / 10 °C), calf rennet (280 MPa / 20 min / 25°C), bovine

rennet (222 MPa / 5 min / 23 °C) and porcine pepsin (50 MPa / 5 min / 20 °C) and

inactivation conditions for all enzymes (600 MPa / 10 min / 25 °C) including the

protease from R. miehei. In general, it was found that the HPP increased the intrinsic

fluorescence under activation conditions and promoted a drastic reduction of this

fluorescence under inactivation conditions, possibly indicating unfolding of the

proteins. Higher S0 values were observed with increasing pressure with the greatest

impact under activation conditions. ATR-FTIR analysis showed that HP process

resulted in changes to the secondary structures with greater alterations being observed

at higher pressures. In conclusion, HP process resulted in the unfolding of the milk-

clotting enzymes with a reduction in the exposure of Trp (measured by intrinsic

fluorescence) directly linked with inactivation conditions.

Key-words: High pressure processing • Milk-clotting Enzymes • Intrinsic Fluorescence

• Surface Hydrophobicity • ATR-FTIR spectroscopy

Page 194: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

194

Resumo

O processamento de alta pressão (AP) é capaz de promover mudanças na

estrutura das enzimas. Este estudo teve como objetivo avaliar o efeito da AP sobre as

alterações estruturais dos coagulantes processados em condições de ativação para

quimosina recombinante de camelo (212 MPa / 5 min / 10 °C), coalho de vitelo (280

MPa / 20 min / 25 °C), coalho de bovino (222 MPa / 5 min / 23 °C) e pepsina suína (50

MPa / 5 min / 20 °C) e condições de inativação para todas as enzimas (600 MPa / 10

min / 25 °C) incluindo a protease de R. miehei. Em geral, verificou-se que a AP

aumentou a fluorescência intrínseca em condições de ativação e promoveu uma

redução drástica desta fluorescência sob condições de inativação, indicando

possivelmente desdobramento das proteínas. Valores de hidrofobicidade de

superfície (S0) mais elevados foram observados com aumento da pressão com maior

impacto sob condições de ativação. A análise de ATR-FTIR mostrou que o processo

AP resultou em alterações nas estruturas secundárias com maiores alterações sendo

observadas em pressões elevadas. Em conclusão, o processo AP resultou no

desdobramento das enzimas de coagulação do leite com uma redução na exposição

de Trp (medida por fluorescência intrínseca) o que está diretamente relacionado as

condições de inativação.

Palavras-chave: Processamento por Alta Pressão • Enzimas Coagulantes do Leite •

Fluorescência Intrínseca •Hidrofobicidade de Superfície • Espectroscopia de ATR-

FTIR

Page 195: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

195

8.1 Introduction

High pressure processing (HPP), also known as high isostatic pressure

(HIP), is an emerging technology known to promote changes in molecular structures

of proteins and enzymes (Liu et al., 2005; He et al., 2014). The effect of the HPP on

the molecular structure is a function of the conditions applied. High pressures promote

denaturation (>400 MPa) and these modifications are generally intensified with

increasing processing time and temperature (Eisenmenger & Reyes-de-Corcuera,

2009), although the degree of change is enzyme dependent. In this light, depending

on the enzyme, HPP has been shown to promote activation, inactivation or to have no

effect on the enzymatic activity (Eisenmenger & Reyes-de-Corcuera, 2009). At low

pressures (< 400 MPa) milk-clotting enzymes (calf rennet, bovine rennet, recombinant

camel chymosin, and porcine pepsin), intracellular peptidases, and glycolytic enzymes

from Lactococcus lactis subsp. cremoris have been shown to be activated (Malone,

Wick, Shellhammer & Courtney, 2003; Eisenmenger & Reyes-de-Corcuera, 2009;

Leite Junior, et al., 2016; Leite Junior, Tribst, & Cristianini, in press), while other

enzymes such as aminopeptidase C are activated at higher pressures (700 MPa)

(Malone, Wick, Shellhammer & Courtney, 2003). For enzymes processed in absence

of substrate, the activation observed is possibly related to the increase in molecular

conformational flexibility after HPP due to hydration of the charged groups; activation

of the isoenzymes; or exposure of active sites (Eisenmenger & Reyes-de-Corcuera,

2009).

Milk-clotting enzymes play an important role in cheese production. These

enzymes act during the enzymatic phase of milk coagulation affecting syneresis, yield,

flavor and texture of the cheeses (Chitpinityol & Crabbe, 1998; Fox et al., 2000).

Traditionally calf rennet and bovine rennet are composed of mixtures of chymosin and

pepsin (Fox et al., 2000), with a higher proportion of calf rennet being preferred due to

its higher concentration of bovine chymosin. Chymosin is characterized by having a

higher milk-clotting activity and lower non-specific proteolytic activity. Other enzymes

have also been studied for use in the cheese manufacturing process including porcine

pepsin (Nielsen & Foltmann, 1995) and Rhizomucor miehei protease (Kumar, Grover,

Sharma, & Batish, 2010). With the development of genetic engineering, recombinant

chymosin has become prominent with recombinant camel chymosin being considered

Page 196: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

196

the best substitute for calf rennet due its high specific activity on the hydrolysis of k-

casein and its low general proteolytic activity (Andrén, 2011).

Knorr (1999) and Eisenmenger & Reyes-de-Corcuera (2009) reported that

structural changes resulting from HPP were observed for monomeric, dimeric and

tetrameric enzymes. In addition, it was observed that each enzyme had a limit of the

pressure, temperature and time of the process to promote structural changes with

consequent activity modification (Kudryashova et al., 1998; Eisenmenger & Reyes-de-

Corcuera, 2009). Although previous research has shown that HP process is able to

alter the structure of proteins and enzymes, no detailed work on the molecular

structures of milk coagulants has been reported. Therefore, this study aimed to

evaluate the structural changes of milk-clotting enzymes after HPP under activation

conditions of 212 MPa / 5 min / 10 °C for recombinant camel chymosin (Leite Júnior,

Tribst, & Cristianini, in press); 280 MPa / 20 min / 25°C for calf rennet (Leite Júnior et

al., 2016); 222 MPa / 5 min / 23 °C for bovine rennet (Leite Júnior, Tribst, & Cristianini,

in press) and 50 MPa / 5 min / 20 °C for porcine pepsin (Leite Júnior, Tribst, &

Cristianini, in press) and inactivation conditions for recombinant camel chymosin, calf

rennet, bovine rennet, porcine pepsin and protease from R. miehei at 600 MPa / 10

min / 25 °C (Leite Júnior, Tribst, & Cristianini, 2016; Leite Júnior, Tribst, & Cristianini,

in press).

8.2 Materials and Methods

8.2.1 Enzymes

Five commercial enzymes were examined: recombinant camel chymosin

with an activity of 2500 IMCU.g-1 (CHY-MAX® M 2500 Power NB, Chr Hansen,

Hoersholm, Denmark); calf rennet with an activity of 1700 IMCU.g-1 (freeze-dried

CarlinaTM Animal Rennet 1650, Danisco, Vinay, France, containing 94% of chymosin

and 6% of pepsin); adult bovine rennet with an activity of 200 IMCU.mL-1 (Coalho

Líquido BV®, Bela Vista Ltda, Santa Catarina, Brazil, containing 80-90% of bovine

pepsin and 10-20% of bovine chymosin); porcine pepsin protease with an activity of

3000 IMCU.g-1 (freeze dried powdered Porcine Pepsin, PEPSINA SUINA TS®, Bela

Vista Ltda, Santa Catarina, Brazil), and Rhizomucor miehei protease with an activity of

Page 197: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

197

2200 IMCU.g-1 (Marzyme 150 MG Powder Microbial Rennet, Danisco, Vinay, France,

which contains ≥ 28000 mg of protease per kg of product).

8.2.2 High pressure processing

The experiments were carried out in a high pressure equipment (QFP 2L-

700 Avure Technologies, OH, USA). This equipment consists of a cylindrical chamber

with a 2 L capacity and works at pressures of up to 100,000 psi (690 MPa), using

deionized water as the pressurizing fluid. The temperature of the chamber was

measured by a type K thermocouple set inside the chamber and the pressure was

measured by a pressure transducer. The temperature of the equipment chamber block

was set for different processing conditions. The initial temperature of the water in the

chamber was set according to the rate of temperature increase under adiabatic

conditions for this equipment (3 ºC/ 100 MPa). The control (non-processed) was not

subjected to pressure processing.

Aliquots of 100 mL of recombinant chymosin (10.0% w/v), calf rennet

(10.0% w/v), bovine rennet (10.0% w/v), porcine pepsin (10.0% w/v), and protease

from R. miehei (10.0% w/v), solutions were prepared in sodium acetate buffer (0.2 M,

pH 5.6) and vacuum-packed in plastic bags (LDPE-Nylon-LDPE, 16 μm thickness -

TecMaq, São Paulo, Brazil). The HP processes were carried out under conditions

determined in a previous study capable of inducing the maximum increase in milk

clotting activity for each enzyme or for inactivation. The activation conditions were: 212

MPa / 5 min / 10 °C for recombinant chymosin (Leite Júnior, Tribst, & Cristianini, in

press); 280 MPa / 20 min / 25°C for calf rennet (Leite Júnior et al., 2016); 222 MPa / 5

min / 23 °C for bovine rennet (Leite Júnior, Tribst, & Cristianini, in press) and 50 MPa

/ 5 min / 20 °C for porcine pepsin (Leite Júnior, Tribst, & Cristianini, in press), except

for the protease from R. miehei which has not been activated by the HPP process

(Leite Júnior, Tribst, & Cristianini (2016). The inactivation conditions for all enzymes

were 600 MPa / 10 min / 25 °C (Leite Júnior, Tribst, & Cristianini, 2016; Leite Júnior,

Tribst, & Cristianini, in press). Furthermore, a control for each enzyme sample (non-

processed enzyme) was also prepared. After processing, the samples were lyophilized

and stored at -80 °C.

Page 198: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

198

Prior to analysis, the lyophilized samples were reconstituted at 0.05% (w/v)

in sodium acetate buffer (pH 5.6, 0.02 M) and filtered by passing through a 0.22 μm

syringe filter (EMD Millipore, Billerica, Massachusetts, USA). Samples were then

dialyzed with the same extraction buffer using dialysis-tubing units with a 6-8 kDa

molecular cutoff – 5.1 mL/cm (Spectra/Por®, Spectrum Laboratories Inc., USA).

8.2.3 Structural evaluation of purified enzymes processed by high isostatic

pressure

Intrinsic fluorescence spectroscopy

Intrinsic emission fluorescence spectra of enzymes samples were carried

out according to the procedures described by Dee, Pencer, Nieh, Krueger, Katsaras,

& Yada (2006). For this, the intrinsic fluorescence was measured using a Shimadzu

RF-540 spectrofluorophotometer (Shimadzu Corporation, Kyoto, Japan) with a 1-cm

quartz cell at room temperature and the following settings: excitation at 295 nm (the

optimal excitation wavelength for measurements of Trp fluorescence), emission scan

from 305-450 nm, and excitation and emission slit widths of 5 nm.

Surface hydrophobicity of milk-clotting enzymes using ANS as probe

The determination of surface hydrophobicity (S0) of milk-clotting enzymes

using 8-anilino-1-naphthalene sulfonic acid (ANS) as the fluorescence probe were

carried out according to the methodology described by Kato & Nakai (1980).

A serial dilution was prepared for each sample (0.001−0.005 mg/mL) in

sodium acetate buffer (pH 5.6, 0.02 M). Then, 4 mL from the each dilution was mixed

with 20 μL of 2 mM ANS in the same buffer, and the mixture was kept for 15 min in the

dark before measuring the fluorescence. Samples were excited at 390 nm, and

emission was recorded for the range of 420−560 nm with fluorescence measured at

470 nm. Subsequently, the initial slope of fluorescence intensity (measured at 470 nm)

versus protein concentration plot was used as an index of the surface hydrophobicity

(S0) of each enzyme sample.

Page 199: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

199

Attenuated total reflectance-fourier transform infrared (ATR-FTIR)

spectroscopy

Samples were examined via ATR-FTIR results, as per Savadkoohi et al.

(2016). A Perkin Elmer Fourier transform infrared spectrometer equipped with a

Universal Attenuated Total Reflectance sensor was used for infrared spectral

acquisition. Lyophilized samples were applied onto the ATR-IR ZnSe crystal, and an

85 force gauge was applied on top of the sample. Spectra were collected over a

wavenumber range of 3000−100 cm−1 at 2 cm−1 spectral resolution with 32 scans for

each spectral collection with the focus on FT-IR spectral fingerprinting region (1700–

1600 cm-1- Amide I band and 1600–1500 cm-1 - Amide II band) given that targeted

functional groups appear primarily in this region. Automatic baseline correction,

deconvolution and second derivative were applied to the spectra of Amide I and Amide

II peaks, using OMNIC software version 7.0 (Thermo-Nicolet, Madison, WI, USA) to

obtain the characteristic signals that represent the secondary conformation of the

protein. A background spectrum was collected at the beginning of the measurements

and every other hour thereafter.

8.2.4 Statistical analysis

Three replicates were prepared for each analysis with duplicate

determinations undertaken for each replicate. Analysis of variance (ANOVA) was

conducted to test the means of the effects of the different treatments (processed and

non-processed), and Tukey’s test was used to determine the differences among the

means, when appropriate, at the 95% confidence level using the STATISTICA 7.0

software–(StatiSoft, Inc., Tulsa, Okla., U.S.A.). Results were reported as the mean ±

standard deviation.

Page 200: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

200

8.3 Results and Discussion

8.3.1 Intrinsic fluorescence intensity of milk-clotting enzymes

The milk-clotting activity (MCA) is an indirect way of evaluating the

specificity of milk coagulants (Andrén, 2011). Figure 8.1 (A-E) shows the spectra of

Intrinsic Fluorescence Intensities along the emission spectrum (305-450 nm) specific

to the amino acid tryptophan (Trp) when excited at 295 nm.

Under activation conditions, HPP was able to increase MCA 10, 8, 9, 5% for

recombinant camel chymosin, calf rennet, bovine rennet, and porcine pepsin,

respectively (Leite Júnior et al., 2016; Leite Júnior, Tribst, & Cristianini, in press).

Conversely, a drastic reduction in MCA was observed under inactivation conditions

after HPP (Leite Júnior, Tribst, Cristianini, 2016; Leite Júnior, Tribst, & Cristianini, in

press). In this context, Intrinsic Fluorescence Intensity can be an important tool to

evaluate the changes in tertiary structure of these enzymes during both activation and

inactivation conditions. As seen from Figure 8.1, the maximum fluorescence intensity

occurred at 340 nm (characteristic for the amino acid Trp). In comparing the HP

processed coagulants to the non-processed samples, it was observed that under

inactivation conditions (600 MPa / 10 min / 25 °C) the fluorescence intensity decreased

while under activation conditions (50-280 MPa / 5-20 min / 10-25° C) there was either

a slight increase or no change. Furthermore, at inactivation processes conditions, in

samples where pepsin was present (either bovine or porcine origin) there was a higher

decrease in fluorescence intensity, indicating a greater structural change of the pepsin

fraction compared to the chymosin fraction.

Page 201: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

201

Figure 8.1. Intrinsic Trp emission fluorescence spectra for the recombinant camel

chymosin (A); calf rennet (B); bovine rennet (C); porcine pepsin (D); and R. miehei

protease (E). (n = 6).

This reduction in fluorescence intensity at high pressure may be explained

as a result of the protein unfolding and exposure of the aromatic residues especially

tryptophan to water molecules, due to water quenching effect (Acero-Lopez et al.,

2012). The same results were observed for ovotransferrin (Acero-Lopez et al., 2012),

inulin fructotransferase (Li et al., 2015), murine Q6 ataxin-3 (Marchal et al., 2003),

human serum albumin (Tanaka et al., 1997), phosphocasein micelles and β-

lactoglobulin (Blayo et al., 2014), indicating that the high pressure processing induces

fluorescence quenching.

Page 202: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

202

8.3.2 Surface hydrophobicity of milk-clotting enzymes using ANS as probe

Hydrophobic, steric and electrical parameters are the most important factors

that affect the structure of proteins. Among these factors, hydrophobicity is the main

parameter related to the functional properties of proteins (Nakai, 1983). Figure 8.2 (A-

E) shows the results of S0 obtained for the different non-processed enzymes and

processed by HP under activation and inactivation conditions.

As can be seen in Figure 8.2, the HP process promoted an increase in S0

for all enzymes after processing (p<0.05) with a greater exposure of hydrophobic

groups with higher pressure. However, it was observed that the greatest impact of S0

increase occurred under activation conditions. Therefore, it was concluded there was

a limit to the exposure of hydrophobic groups during enzyme activation (Eisenmenger

& Reyes-de-Corcuera, 2009). On the other hand, above this limit, the intense changes

induced in the molecules by HP processing results in inactivation (enzyme unfolding),

which was also characterized by a greater exposure of hydrophobic regions. It should

be noted the above results are reflective of changes in the aromatic hydrophobicity

regions, since this probe is an anionic aromatic (Alizadeh-Pasdar & Li-Chan, 2000)

and is sensitive to aromatic/aromatic interactions (Burley & Petsko, 1985). Similar

results after the HP process were also observed for whey protein concentrate (Liu et

al., 2005), β-Lactoglobulin (Yang et al., 2001), bovine α-lactalbumin (Tanaka et al.,

1996), peanut proteins (He et al., 2014), and sarcoplasmic proteins of hake (Villamonte

et al., 2016).

Page 203: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

203

Figure 8.2. Surface hydrophobicity (S0) of the recombinant camel chymosin (A); calf

rennet (B); bovine rennet (C); porcine pepsin (D); and R. miehei protease (E) using

ANS as probe. (n = 6).

In terms of the differences among studied enzymes, the largest increase

was observed for R. miehei protease (Fig. 8.2E) > bovine rennet (Fig. 8.2C) > calf

rennet (Fig. 8.2B) > porcine pepsin (Fig. 8.2D) > recombinant camel chymosin (Fig.

8.2A) confirming that the major structural changes were observed for samples

containing higher concentrations of pepsin. Therefore, it is possible to conclude that

HP process is able to change the molecular structure of the milk-clotting enzymes.

Page 204: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

204

8.3.3 Attenuated total reflectance-fourier transform infrared (ATR-FTIR)

spectroscopy of milk-clotting enzymes

FTIR has been considered as a useful technique for characterizing the

conformation of protein structure (β-sheets, α-helices, turns and random coils) in

several systems (Wang et al., 2011). In general, peptide group vibrations in model

compounds and polypeptide systems have characteristic IR absorption bands. The

Amide I and II bands are the most prominent vibrational bands of the protein backbone.

The former band (1700-1600 cm-1) is mainly caused by the C=O stretching vibrations

of the peptide group whereas the latter absorption (1575-1480 cm-1) arises principally

from N-H bending with a contribution from C-N stretching vibrations (Savadkoohi et al.,

2016).

Figure 8.3 shows the results of the spectra of ATR-FTIR in region of 1700–

1500 cm-1 – Amide I and II band – for the five enzymes studied under activation and

inactivation conditions. It can be seen that the HP process produced changes in

secondary structures of the enzymes leading to protein unfolding, as shown by a

gradual reduction in the absorbance of the samples with increasing pressure

(Savadkoohi et al., 2016).

Page 205: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

205

Figure 8.3. ATR-FTIR results (1600–1700 cm-1 - Amide I band and 1500–1600 cm-1 - Amide II

band) of the recombinant camel chymosin (A); calf rennet (B); bovine rennet (C); porcine

pepsin (D); and R. miehei protease (E). (n = 6).

In addition, the second derivative was applied to the deconvoluted spectra

(in a specific band - Amide I) (Figure 8.4) which yields the following: 1620-1639 cm-1,

β-sheet structure for extended chains at low components; 1641-1647 cm-1, unordered

Page 206: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

206

structures (random coils); 1651-1659 cm-1, α-helix; 1660-1670 cm-1, β-turns; 1671-

1679 cm-1, β-sheet structure for extended chains at high components; 1681-1696 cm-

1, β-type turn and bend (Byler & Susi, 1986).

Figure 8.4. Second derivate of ATR-FTIR results (1600–1700 cm-1 - Amide I band) of

the recombinant camel chymosin (A); calf rennet (B); bovine rennet (C); porcine

pepsin (D); and R. miehei protease (E). (n = 6).

Based on the second derivative of the deconvoluted Amide I region the main

changes were observed in α-helix followed by unordered structures, β-turns and then

β-sheets with changes in the enzymes in the following order: porcine pepsin <

recombinant camel chymosin < calf rennet < bovine rennet < R. miehei protease.

Differences were more pronounced at higher pressure applied (600 MPa / 10 min / 25

°C) with major alterations in the secondary structures of the recombinant camel

chymosin (Fig. 8.4A), calf rennet (Fig. 8.4B) and bovine rennet (Fig. 8.4C) in the β-

sheet and α-helix structures. On the other hand, the porcine pepsin (Fig. 8.4D) showed

Page 207: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

207

the greatest changes in β-type turn and bend structures. Finally, minimal alterations

were observed for R. miehei protease (Fig. 8.4E) after the HP process, which showed

little change in secondary structures in relation to the other coagulants. Therefore, HP

process is able to change the secondary and tertiary structures of coagulants.

8.4 Conclusions

The results obtained are of significance in the development of HP

technology. Results indicated that HP process increased the intrinsic fluorescence in

the activation conditions and promoted a drastic reduction of this fluorescence under

inactivation conditions, possibly indicating a molecular unfolding of the enzymes after

HP processing. These results were confirmed by the increase of surface

hydrophobicity observed for HP processed samples. Finally, ATR-FTIR results,

confirmed that HP process produced changes in secondary structures of the enzymes

with major structural changes occurring at higher pressures. It was concluded from this

study that the HP process was able to promote changes in molecular structures of the

milk-clotting enzymes, with higher molecular unfolding and increasing exposure of

hydrophobic regions at inactivation conditions.

8.5 Acknowledgments

The authors would like to thank the São Paulo Research Foundation

(FAPESP) for the financial support (project no. 2012/13509-6) and awarding a

scholarship to B. R. C. Leite Júnior (2014/17782-4 and 2016/01425-3). The financial

support of Natural Sciences and Engineering Research Council to RYY is gratefully

acknowledged.

8.6 References

Acero-Lopez, A.,Ullah, A.,Offengenden, M.,Jung, S., Wua, J. (2012). Effect of high

pressure treatment on ovotransferrin. Food Chemistry. 135, 2245–2252.

Page 208: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

208

Alizadeh-Pasdar, N., Li-Chan, E. C. Y. (2000). Comparison of protein surface

hydrophobicity measured at various pH values using three different fluorescent probes.

Journal of Agricultural and Food Chemistry. 48, 328-334.

Andrén, A. (2011). Cheese: Rennets and Coagulants. In J. W. Fuquay, P. F. Fox, & P.

L. H. McSweeney (Eds.), Encyclopedia of Dairy Sciences, 2nd ed., (pp. 574-578).

London: Elsevier Academic Press.

Blayo, C., Marchal, S., Lange, R., Dumay, E. (2014). Retinol binding to β-lactoglobulin

or phosphocasein micelles under high pressure: Effects of isostatic high-pressure on

structural and functional integrity. Food Research International. 55, 324–335.

Burley, S. K., & Petsko, G. A. (1985). Aromatic– aromatic interaction: A mechanism of

protein structure stabilization. Science, 229, 23–28.

Byler, D. M., Susi, H. (1986). Examination of the secondary structure of proteins by

deconvolved FTIR spectra. Biopolymers, 25, 469-487.

Chitpinityol, S., Crabbe, M. J. C. (1998). Chymosin and aspartic proteinases. Food

Chemistry, 61, 395-418.

Dee, D. R., Pencer, J., Nieh, M., Krueger, S., Katsaras, J., & Yada, R. Y. (2006).

Comparison of solution structures and stabilities of native, partially unfolded and

partially refolded pepsin. Biochemistry, 45, 13982-13992.

Eisenmenger, M.J., & Reyes-De-Corcuera, J.I. (2009). High pressure enhancement of

enzymes: a review. Enzymes and Microbial Technology, 45, 331-347.

Fox, P. F.; Guinee, T. P.; Cogan, T. M.; Mc Sweeney, P. L. H. Fundamentals of cheese

science. Gaithersberg, MD, USA: Aspen Publishers, 2000.

Page 209: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

209

He, X., Liu, H., Liu, L., Zhao, G., Wang, Q., Chen, Q. (2014). Effects of high pressure

on the physicochemical and functional properties of peanut protein isolates. Food

Hydrocolloids, 36, 123-129.

Kato, A., & Nakai, S. (1980). Hydrophobicity determined by a fluorescence probe

method and its correlation with surface properties of proteins. Biochimica et Biophysica

Acta, 624, 13-20.

Knorr, D. (1999). Novel approaches in food-processing technology: new technologies

for preserving foods and modifying function. Current Opinion in Biotechnology, 10,

485-491.

Kudryashova, E. V., Mozhaev, V. V., & Balny, C. (1998). Catalytic activity of

thermolysin under extremes of pressure and temperature: modulation by metal ions.

Biochimica et Biophysica Acta, 1386, 199-210.

Kumar, A., Grover, S., Sharma, J., & Batish, V. K. (2010). Chymosin and other milk

coagulants: sources and biotechnological interventions. Critical Reviews in

Biotechnology, 30, 243-258.

Leite Júnior, B. R. C., Tribst, A. A. L., Bonafe, C. F. S., & Cristianini, M. (2016).

Determination of the influence of high pressure processing on calf rennet using

response surface methodology: effects on milk coagulation. LWT - Food Science and

Technology, 65, 10-17.

Leite Júnior, B. R. C., Tribst, A. A. L., & Cristianini, M. (2016). Comparative effects of

high isostatic pressure and thermal processing on the inactivation of Rhizomucor

miehei protease. LWT - Food Science and Technology, 65, 1050-1053.

Leite Júnior, B. R. C., Tribst, A. A. L., & Cristianini, M. The effect of high pressure

processing on recombinant chymosin, bovine rennet and porcine pepsin: Influence on

the proteolytic and milk-clotting activities and on milk-clotting characteristics. LWT -

Food Science and Technology, in press.

Page 210: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

210

Li, Y., Miao, M., Liu, M., Chen, X., Jiang, B., Feng, B. (2015). Enhancing the thermal

stability of inulin fructotransferase with high hydrostatic pressure. International Journal

of Biological Macromolecules. 74, 171–178.

Liu, X., Powers, J. R., Swanson, B. G., Hill, H. H., Clark, S. (2005). Modification of

whey protein concentrate hydrophobicity by high hydrostatic pressure. Innovative Food

Science and Emerging Technologies, 6, 310–317.

Malone, A. S., Wick, C., Shellhammer, T. H., & Courtney, P. D. (2003). High pressure

effects on proteolytic and glycolytic enzymes involved in cheese manufacturing.

Journal of Dairy Science, 86, 1139-1146.

Marchal, S., Shehi, E., Harricane, M., Fusi, P., Heitz, F., Tortora, P., Lange, R. (2003).

Structural instability and fibrillar aggregation of non-expanded human ataxin-3

revealed under high pressure and temperature. The Journal of Biological Chemistry.

278, 31554–31563.

Nakai, S. (1983). Structure-function relationships of food proteins with an emphasis on

the importance of protein functionality. J. Agric. Food Chem., 31, 676-683.

Nielsen, P.K., & Foltmann, B. (1995). Purification and characterization of porcine

pepsinogen B and pepsin B. Archives of Biochemistry and Biophysics, 322, 417-422.

Savadkoohi, S., Bannikova, A., Mantri, N., Kasapis, S. (2016). Structural modification

incondensed soy glycinin systems following application of high pressure. Food

Hydrocolloids, 53, 115–124.

Tanaka, N., Nakajima, K., Kunugi, S. (1996). The pressure-induced structural change

of bovine α-lactalbumin as studied by a fluorescence hydrophobic probe. International

Journal of Peptides and Protein Research 48, 1996, 259-264.

Page 211: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

211

Tanaka, N., Nishizawa, H., Kunugi, S. (1997). Structure of pressure-induced denatured

state of human serum albumin: a comparison with the intermediate in urea-induced

denaturation. Biochimica et Biophysica Acta. 1338, 13–20.

Villamonte, G., Pottier, L., Lamballerie, M. (2016) Influence of high‑pressure

processing on the physicochemical and the emulsifying properties of sarcoplasmic

proteins from hake (Merluccius merluccius). Eur Food Res Technol., 242, 667–675

Wang, J.M., Yang, Z. Q., Yin, S.W., Zhang, Y., Tang, C. H., Li, B. S., et al. (2011).

Structural rearrangement of ethanol-denatured soy proteins by high hydrostatic

pressure treatment. Journal of Agricultural and Food Chemistry, 59, 7324-7332.

Yang, J., Dunker, A. K., Powers, J. R., Clark, S., Swanson, B. G. (2001). β-lactoglobulin

molten globule induced by high pressure. Journal of Agricultural and Food Chemistry,

49, 3236-3243.

Page 212: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

212

Capítulo 9. Discussão Geral

Page 213: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

213

O processo de alta pressão isostática (API) foi capaz de promover ativação,

inativação ou não alterar a atividade enzimática dos coagulantes do leite em função

das condições de processo aplicado (pressão, tempo e temperatura). De forma geral,

pressões até 300 MPa por tempos e temperaturas inferiores a 10 minutos e 25 °C,

respectivamente, promoveram ativação. Por outro lado, em condições de maiores

pressões, tempos ou temperaturas, observou-se uma redução de atividade dos

coagulantes, sendo que a completa inativação dessas enzimas foi alcançada em

processos realizados acima de 550 MPa com tempos e temperaturas elevadas.

Possivelmente, esses resultados se devem aos diferentes efeitos

promovidos pelo processo sobre a estrutura e, consequentemente, funcionalidade das

enzimas. Dentre essas alterações, acredita-se que a ativação promovida pelo

processo está correlacionada com o aumento da flexibilidade conformacional da

molécula gerado pela hidratação dos seus grupos carregados (Eisenmenger e Reyes-

de-Corcuera, 2009). Essa flexibilidade pode induzir um aumento na exposição de

sítios ativos, explicando o fenômeno observado. No entanto, para cada enzima há um

limite de pressão a ser aplicado, a partir do qual se observa uma desnaturação com

perda de funcionalidade (Kudryashova et al., 1998; Sila et al., 2007; Eisenmenger e

Reyes-de-Corcuera, 2009).

De forma específica, verificou-se que a protease obtida do R. miehei foi o

coagulante mais resistente (Capítulo 2) e a pepsina suína (Capítulo 5) o coagulante

mais sensível ao processo de API. Essas diferenças podem ser explicadas pela

composição e conformação molecular de cada enzima. A maior resistência da

protease produzida pelo R. miehei ao processo de API em relação às outras enzimas

se deve à presença de um maior conteúdo de açúcares em sua molécula (enzima

mais glicosilada, com ~ 6% de carboidrato) (Rickert & McBride-Warren, 1974). Com

base em estudos de enzimas glicosiladas e glicoproteínas, Yang, Teplyakov e Quail

(1997) mostraram que esses oligossacarídeos estabilizam a estrutura terciária da

enzima (Yang, Teplyakov & Quail, 1997).

A avaliação das alterações estruturais induzidas pelo processo de API

sobre os coagulantes (Capítulo 8) mostrou que, em relação à estrutura terciária, o

processo aumentou a fluorescência intrínseca em condições de ativação e promoveu

uma drástica redução desta fluorescência em condições de inativação, indicando que

em condições de ativação ocorreu um desdobramento proteico, o qual foi intensificado

nas condições de inativação. Paralelamente, maiores valores para a hidrofobicidade

Page 214: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

214

da superfície das enzimas foram observados com aumento da pressão, com maior

impacto sob condições de ativação. A análise ATR-FTIR mostrou que o processo de

API resultou em alterações nas estruturas secundárias com maiores alterações

observadas em maiores pressões. Desta forma é possível verificar que a intensidade

do efeito do processo de API na atividade dos diferentes coagulantes está

correlacionada com as alterações promovidas pelo processo sobre as estruturas

moleculares dos mesmos.

A estabilidade dos coagulantes, medida ao longo do tempo de estocagem

e em diferentes condições de pH (Capítulos 3, 5 e 7), mostraram que os coagulantes

processados em condição de ativação apresentaram maior estabilidade, a qual pode

ser explicada possivelmente pela interação intramolecular, hidratação de grupos

carregados e estabilização das pontes de hidrogênio induzido pelo processo de API

(Eisenmenger e Reyes-DE-Corcuera, 2009a,b). Entre esses, a hidratação de grupos

carregados não polares é descrita como o principal fator capaz de fortalecer a

hidratação das proteínas, prevenindo a desnaturação.

A avaliação da ACL em diferentes condições de pH e temperatura após

ativação por API (Capítulo 7) ratificaram o aumento da atividade previamente

observada (Capítulos 3 e 5) e, adicionalmente, demonstraram que para as enzimas

processadas, maiores ACL foram obtidos em condições não usuais de coagulação,

em comparação com as respectivas enzimas não processadas. Dentre estas,

destacam-se os resultados obtidos para a quimosina recombinante, na qual a

pressurização aumentou a ACL em pH natural do leite (pH 6,6), resultando em uma

atividade semelhante à observada para a enzima nativa em pH mais baixo e

temperatura mais elevada. Tal observação permite que o processo de coagulação

ocorra a temperaturas mais baixas ou pH mais elevado, promovendo reduções de

custos como: (i) economia de energia para aquecer o leite; (ii) ganho de tempo no

processo de aquecimento e pela não necessidade de pré acidificação; e (iii) uso de

menor quantidade de enzima e/ou acidificante.

Apesar da ACL ser vastamente utilizada para avaliar a especificidade de

coagulantes sobre a clivagem específica da k-CN durante a etapa de coagulação, esta

análise é um método indireto e que, portanto, não permite aprofundada avaliação em

termos de características da hidrólise. Desta forma, para aprofundar a discussão, a

hidrólise das frações da micela de caseína pelas enzimas coagulantes processados

por API em condições de ativação foi avaliada por meio da análise de eletroforese

Page 215: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

215

capilar (Capítulo 6). Os resultados obtidos destacaram que a quimosina recombinante

e o coalho de vitelo processados por API promoveram uma hidrólise mais rápida da

κ-CN em comparação com as respectivas enzimas não processadas. Por outro lado,

na avaliação do grau de hidrólise sobre a solução de caseína, verificou-se que estas

enzimas e o coalho de bovino processados por API promoveram formação do

caseinomacropeptídeo mais rapidamente em comparação com as enzimas não

processadas. Adicionalmente, o coalho de bovino e a pepsina suína (processada ou

não por API) apresentaram maior grau de hidrólise sobre as frações de α e β-CN.

Portanto, verifica-se que o processo de API pode ser utilizado para melhorar a

atividade específica de alguns coagulantes, especialmente aqueles que possuem

fração de quimosina. Em termos práticos, tais alterações podem acelerar o processo

de coagulação e promover a formação de géis de leite mais consistentes e coesos.

O acompanhamento do processo de coagulação de leite pelas diferentes

enzimas era crucial para aplicação prática dos resultados obtidos neste trabalho,

portanto, foi realizado um ensaio inicial (Capítulo 4) visando comparar e descrever

vantagens e desvantagens de três diferentes metodologias (ensaio reológico,

espectroscopia no infravermelho próximo e microscopia confocal a laser) utilizadas

em trabalhos prévios para avaliar o processo de coagulação do leite. Os resultados

apontaram que todas as metodologias foram capazes de avaliar o processo de

coagulação e determinar o início da agregação do gel, com pequenas diferenças entre

si. De forma específica, dentre as respostas obtidas, destaca-se que a espectroscopia

no infravermelho próximo é capaz de monitorar a primeira fase de coagulação (etapa

de hidrólise enzimática). A segunda fase pode ser avaliada pelos três métodos sendo

que o ensaio reológico permitiu a determinação da consistência do gel, a

espectroscopia no infravermelho próximo permitiu a medição do grau de ligação entre

as partículas e a microscopia confocal permitiu a visualização da formação do gel

proteico.

Após conhecer as características de cada análise o processo de

coagulação foi realizado utilizando as enzimas processadas em condições ótimas em

comparação com as respectivas enzimas não processadas por API (Capítulo 3 e 5).

Os resultados obtidos mostraram que os géis produzidos com as enzimas

processadas por API em condições ótimas apresentaram uma coagulação mais

rápida, sendo mais consistentes e com um maior grau de agregação proteica. A partir

da análise das imagens obtidas por microscopia confocal verificou-se uma redução

Page 216: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

216

mais rápida no número total de poros com uma área de poro média maior para géis

obtidos com as enzimas processadas por API. Além disso, o rendimento dos géis

obtidos a partir das enzimas processadas por API foi de até 4,3% maior em

comparação com os géis obtidos com as enzimas não processadas. Desta forma,

certifica-se que tais modificações em níveis de atividade de coagulação do leite

resultaram em efeitos benéficos durante a etapa de coagulação e na obtenção dos

géis.

Com base nesses resultados é possível afirmar que o processo de API

surge como uma alternativa para melhorar o desempenho dos coagulantes do leite

(especialmente daqueles que contêm fração de quimosina), permitindo a redução da

quantidade de enzima utilizada no processo de fabricação de queijos, com

consequente redução de custos.

Page 217: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

217

Capítulo 10. Conclusões Gerais

Page 218: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

218

Os resultados obtidos nesse estudo são importantes para o

desenvolvimento da tecnologia de API na indústria de alimentos e áreas afins. Com

base nos resultados obtidos, verificou-se que o processo é capaz de promover

ativação, inativação ou não alterar a atividade das enzimas coagulantes do leite

(coalho de vitelo e de bovino, quimosina recombinante, pepsina suína e protease

obtida do Rhizomucor miehei) em função das condições de processo aplicada

(pressão, tempo e temperatura). Para cada coagulante foi necessária a otimização

das condições de processamento para maximização da atividade de coagulação do

leite. De forma geral, a utilização de condições moderadas de pressão é promissora

para promover aumento de atividade em diferentes condições de pH e temperatura

de coagulação para coalho de vitelo, quimosina recombinante, coalho bovino adulto e

pepsina suína. De forma específica, os coagulantes processados por API

(principalmente aqueles com alta concentração de quimosina) apresentaram um maior

grau de hidrólise sobre a fração da κ-CN em comparação com as enzimas não

processadas. Além disso, a pressurização melhorou a estabilidade das enzimas em

solução em diferentes valores de pH após o processamento e em pH ótimo ao longo

da estocagem. A protease obtida do R. miehei foi, entre as enzimas avaliadas, a que

apresentou maior resistência ao processo e a única com ausência de condições de

ativação. Para esta enzima, o processo apresentou resultados satisfatórios apenas

para inativação, com menor valor de D durante o processo a 600 MPa / 25 °C em

comparação com os processos térmicos de pasteurização comumente realizados em

condições industriais, sendo uma alternativa interessante para obtenção de soro de

leite sem residual de atividade enzimática.

A avaliação da estrutura molecular das enzimas indicou que o processo de

API aumentou a fluorescência intrínseca nas condições de ativação e promoveu uma

drástica redução desta fluorescência sob condições de inativação. Estes resultados

foram confirmados pelo aumento da hidrofobicidade superficial observada para

amostras processadas de API. Similarmente, os resultados do ATR-FTIR confirmaram

que o processo de API produziu mudanças significativas nas estruturas secundárias

das enzimas com maiores alterações em pressões mais drásticas, podendo-se

concluir, portanto, que pequenas alterações estruturais levaram ao aumento de

atividade (possivelmente por maior exposição de sítios ativos) e estabilidade dos

coagulantes, enquanto que alterações mais severas levaram à sua completa

inativação.

Page 219: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

219

A avaliação da aplicabilidade dos coagulantes no processo de obtenção de

gel de leite consistia em uma etapa importante do desenvolvimento deste trabalho,

uma vez que traduziria em termos de aplicações industriais os ganhos obtidos com as

alterações descritas. Para atingir este objetivo, preliminarmente se avaliou a eficácia

de três métodos (ensaio reológico, espectroscopia no infravermelho próximo e

microscopia confocal) em descrever as fases I e II de coagulação enzimática de leite.

De forma geral, todas as metodologias foram capazes de determinar o início da

agregação do gel e acompanhar o processo de coagulação. Especificamente, a

espectroscopia de infravermelho próximo foi útil para avaliar a primeira fase de

coagulação (hidrólise enzimática). A segunda fase pode ser avaliada pelos três

métodos, sendo que o ensaio reológico permitiu a determinação da consistência, a

espectroscopia de infravermelho próximo possibilitou a determinação do grau de

agregação entre as partículas e a microscopia confocal permitiu a visualização da

formação do gel proteico com informações a respeito de sua porosidade (número de

poros e tamanho médio dos poros). A utilização destes métodos para a avaliação das

enzimas processadas por API em condições otimizadas demonstrou que essas

enzimas promoviam uma coagulação mais rápida e que os géis produzidos foram mais

consistentes e com um maior grau de agregação da rede proteica em comparação

com o gel produzido utilizando as enzimas não processadas. Estes efeitos são

atribuídos ao maior grau de hidrólise da fração da k-CN durante a primeira fase de

coagulação. Do ponto de vista de rendimento, verificou-se que os géis obtidos a partir

das enzimas processadas por API apresentaram um maior rendimento em

comparação com géis obtidos a partir das respectivas enzimas não processadas

(aumento de até 4.3%). Portanto, a aplicação de alta pressão isostática pode melhorar

o desempenho e a competitividade das enzimas para coagulação do leite,

especialmente aquelas que têm frações de quimosina, permitindo a redução da

quantidade de enzima utilizada no processo de fabricação de queijos, com

consequente redução de custos.

Page 220: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

220

Sugestões para trabalhos futuros

Os resultados obtidos nesta tese ampliam as informações disponíveis

sobre o efeito da tecnologia de API em enzimas, especialmente em enzimas

comerciais utilizadas na fabricação de queijos. Para aprofundamento científico desta

linha de pesquisa, sugere-se para trabalhos futuros avaliar isoladamente o efeito do

processo API sobre quimosina e pepsina bovina de alta pureza para descrever

especificamente qual o efeito do processo para cada enzima.

Em termos de aplicabilidade industrial, um fator importante a ser avaliado

é o custo para implementação e manutenção do processamento de API em indústrias

processadoras de enzimas, determinando assim se os ganhos obtidos em termos de

maior rendimento, velocidade de coagulação e simplificação das condições de

processo (não necessidade de acidificação e menores temperaturas) são superiores

aos custos envolvidos.

Por fim, sugere-se a continuidade do trabalho com a produção de diversos

tipos de queijos (frescos ou maturados) utilizando as diferentes enzimas processadas

nas condições ótimas, visando determinar como essas alterações ocorridas nas

enzimas processadas impactam nas características finais dos queijos produzidos.

Com este viés, também é possível utilizar os processos de API de forma diferencial

para otimizar o processo de maturação de queijos, aumentando a taxa de hidrólise

inicial e/ou minimizando as reações enzimáticas quando o queijo atinge suas

características sensoriais desejáveis.

Page 221: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

221

Capítulo 11. Referências Bibliográficas

Page 222: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

222

Acero-Lopez, A.,Ullah, A.,Offengenden, M.,Jung, S., Wua, J. Effect of high pressure

treatment on ovotransferrin. Food Chemistry. v. 135, p. 2245–2252, 2012.

Agudelo, R. A., Gauthier, S. F., Pouliot, Y., Marin, H., & Savoie, L. Kinetics of peptide

fraction release during in vitro digestion of casein. Journal of the Science of Food

and Agriculture, v. 84, p. 325–333, 2004.

Albillos, S. M., Busto, M. D., Perez-Mateos, M., & Ortega, N. Prediction of the ripening

times of ewe’s milk cheese by multivariate regression analysis of capillary

electrophoresis casein fractions. Journal of Agricultural and Food Chemistry, v. 54,

8p. 281-8287, 2006.

Alizadeh-Pasdar, N., Li-Chan, E. C. Y. Comparison of protein surface hydrophobicity

measured at various pH values using three different fluorescent probes. Journal of

Agricultural and Food Chemistry, v. 48, p. 328-334, 2000.

Amenu, B.; Deeth, H. C. The impact of milk composition on Cheddar cheese

manufacture. Australian Journal of Dairy Technology, v. 62, p. 171-184, 2007.

Andrén, A. Cheese: Rennets and Coagulants. In J. W. Fuquay, P. F. Fox, & P. L. H.

McSweeney (Eds.), Encyclopedia of Dairy Sciences, 2nd ed., (pp. 574-

578). London:Elsevier Academic Press, 2011.

Anusha, R.; Singh, M. K.; Bindhu, O. Characterisation of potential milk coagulants from

Calotropis gigantea plant parts and their hydrolytic pattern of bovine casein. European

Food Research and Technology, v. 238, p. 997-1006, 2014.

Arima, K., Yu, J., Iwasaki, S. Milk-clotting enzyme from Mucor pusillus var. Lindt.

Methods in Enzymology, v. 19, p. 446-459, 1970.

Auldist, M.; Mullins, C.; O’Brien, B.; Guinee, T. A comparison of the formagraph and

low amplitude strain oscillation rheometry as methods for assessing the rennet

coagulation properties of bovine milk. Milchwissenschaft, v. 56, p. 89–92, 2001.

Page 223: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

223

Awad, S.; Lu¨thi-Peng, Q. Q.; Puhan, Z. Proteolytic activities of Suparen and Rennilase

on buffalo, cow, and goat whole casein and β-casein. Journal of Agricultural and

Food Chemistry, v. 47, p. 3632–3639, 1999.

Badiefar, L.; Ahmadian, G.; Asgarani, E.; Ghandili, S.; Salek Esfahani, M.;

Khodabandeh, M. Optimization of conditions for expression and activation of a splice

variant of prochymosin lacking exon 6 in Escherichia coli. International Journal of

Dairy Technology, v. 62, p.265–271, 2009.

Bansal, N., Drake, M. A., Piraino, P., Broe, M. L., Harboe, M., Fox, P. F., &

McSweeney, P. L. H. Suitability of recombinant camel (Camelus dromedarius)

chymosin as a coagulant for Cheddar cheese. International Dairy Journal, v. 19, p.

510−517, 2009.

Barton, S.; Bullock, C.; Weir, D. The effects of ultrasound on the activities of some

glycosidase enzymes of industrial importance. Enzyme and Microbial Technology,

v.18, p.190-194, 1996.

Ben Amira, A.; Makhlouf, I.; Petrut, R. F.; Francis, F.; Bauwens, J.; Attia, H.; Besbes,

S.; Blecker, C. Effect of extraction pH on techno-functional properties of crude extracts

from wild cardoon (Cynara cardunculus L.) flowers. Food Chemistry, v. 225, p. 258-

266, 2017a.

Ben Amira, A.; Bauwens, J.; De Pauw, E.; Besbes, S.; Attia, H.; Francis, F.; Blecker,

C. Identification of proteins from wild cardoon flowers (Cynara cardunculus L.) by a

proteomic approach. Journal Chemistry Biological, v. 10, p. 25–33, 2017b.

Blayo, C., Marchal, S., Lange, R., Dumay, E. Retinol binding to β-lactoglobulin or

phosphocasein micelles under high pressure: Effects of isostatic high-pressure on

structural and functional integrity. Food Research International, v. 55, p. 324–335,

2014.

Page 224: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

224

Bonisch, M.P.; Heidebach, T.C.; Kulozik, U. Influence of transglutaminase protein

cross-linking on the rennet coagulation of casein. Food Hydrocolloids, v.22, p. 288–

297, 2008.

Broome, M. C.; Xu, X.; Mayes, J. J. Proteolysis in Cheddar cheese made with

alternative coagulants. Australian Journal of Dairy Technology, v. 61, p. 85–87,

2006.

Burley, S. K., & Petsko, G. A. Aromatic– aromatic interaction: A mechanism of protein

structure stabilization. Science, v. 229, p. 23–28, 1985.

Byler, D. M., Susi, H. Examination of the secondary structure of proteins by

deconvolved FTIR spectra. Biopolymers, v. 25, p. 469-487, 1986.

Calzada, J.; del Olmo, A.; Picon, A.; Gaya, P.; Nuñez, M.; Olmo, A. del; Picon, A.;

Gaya, P.; Nuñez, M. High-pressure processing for the control of lipolysis, volatile

compounds and off-odours in raw milk cheese. Food and Bioprocess Technology,

v.7, p. 2207–2217, 2013a.

Calzada, J.; Olmo, A. del; Picon, A.; Gaya, P.; Nuñez, M. Using High-Pressure

Processing for reduction of proteolysis and prevention of over-ripening of raw milk

cheese. Food and Bioprocess Technology, p. 1–10, 2013b.

Calzada, J.; del Olmo, A.; Picon, A.; Nuñez, M. Effect of high-pressure-processing on

lipolysis and volatile compounds of Brie cheese during ripening and refrigerated

storage. International Dairy of Journal, v.39, p. 232–239, 2014a.

Calzada, J.; Olmo, A. del; Picon, A.; Gaya, P.; Nuñez, M. Effect of high-pressure-

processing on the microbiology, proteolysis, texture and flavour of Brie cheese during

ripening and refrigerated storage. International Dairy Journal, v. 37, p. 64–73, 2014b.

Cano, M. P.; Hernandez, A.; Ancos, B. High pressure and temperature effects on

enzyme inactivation in strawberry and orange products. Journal of Food Science, v.

62, n.1, p. 85-88, 1997.

Page 225: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

225

Carvalho, M. P.; Venturini, C. E. P.; Galan, V. B. As grandes oportunidades do

mercado de queijos no Brasil. 2016. [Documento da Internet]. Disponível em:

https://www.milkpoint.com.br/industria/radar-tecnico/mercado/as-grandes-

oportunidades-do-mercado-de-queijos-no-brasil-93301n.aspx Acessado em 13 de

Jan, 2017.

Cattaneo T. M. P.; Nigro, F.; Messina, G.; Giangiacomo, R. Effect of an enzymatic

complex from pineapple pulp on the primary clotting phase. Milchwissenschaft, v. 49,

p.269–272, 1994.

Chakraborty, S.; Kaushik, N.; Rao, P. S.; Mishra, H. N. High-pressure inactivation of

enzymes: A review on its recent applications on fruit purees and juices.

Comprehensive Reviews in Food Science and Food Safety, v.13, p. 578-596,

2014.

Chazarra, S.; Sidrach, L.; Lopez-Molina, D.; Rodriguez-Lopez, J. Characterization of

the milk-clotting properties of extracts from artichoke (Cynara scolymus, L.) flowers.

International Dairy Journal, v. 17, p. 1393–1400, 2007.

Cheeseman, G. C. Denaturation of rennin: Effect on activity and molecular

configuration. Nature, v. 205, p. 1011-1012, 1965.

Chen, C.S., & Wu, M.C. Critical review: kinetic models for thermal inactivation of

multiple pectinesterases in citrus juices. Journal of Food Science, v. 63, p. 1-4, 1998.

Chen, S. J.; Agboola, S.; Zhao, J. Use of Australian cardoon extract in the manufacture

of ovine milk cheese. A comparison with commercial rennet preparations.

International Journal of Food Science and Technology, v.38, p.799–807, 2003.

Chitpinityola, S.; Crabbe, M.J.C. Chymosin and aspartic proteinases. Food

Chemistry, v. 6, n. 4, p. 395-418, 1998.

Page 226: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

226

Costabel, L.M.; Bergamini, C.; Vaudagna, S.R.; Cuatrin, A.L.; Audero, G.; Hynes, E.

Effect of high-pressure treatment on hard cheese proteolysis. Journal of Dairy

Science, p. 1-13, 2016.

Crabbe, M. J. C. Rennets: general and molecular aspects. In. Cheese: Chemistry,

Physics and Microbiology, Vol. 1, pp. 19–46. Fox, P. F., McSweeney, P. L. H.,

Cogan, T. Mand Guinee, T. P. eds. Amsterdam: Elsevier, 2004.

Dalgleish, D. G. (1979). Proteolysis and aggregation of casein micelles treated with

immobilized or soluble chymosin. Journal of Dairy Research, v. 46, p. 653–661,

1979.

Dalgleish, D.G. Coagulation of renneted bovine casein micelles- dependence on

temperature, calcium ion concentration and ionic strength. Journal of Dairy

Researcher, v. 50, p. 331-340, 1983.

Dalgleish, D. G. Enzymatic coagulation of milk. In Developments in Dairy Chemistry,

Vol. 1, pp. 63–96. Fox P F, ed. London: Elsevier Applied Science, 1992.

Dalgleish, D. G. The enzymatic coagulation of milk. In P. F. Fox (Ed.) Cheese:

Chemistry, Physics and Microbiology, v.1, (pp. 69-100). London: Chapman and Hall.,

1993.

Dalgleish, D. G.; Spagnuolo, P. A.; Goff, H. D. A possible structure of the casein micelle

based on high-resolution field-emission scanning electron microscopy. International

Dairy Journal, .v 14, p. 1025-1031, 2004.

De Kruif, C.G.; Holt, C. Casein micelle structure, functions and interactions. In:

Advanced Dairy Chemistry. I. Proteins, 3rd edn, Fox, P.E and McSweeney, P.L.H. eds,

Kluwer, Dordrecht. pp. 233-276, 2003.

Dee, D. R., Pencer, J., Nieh, M., Krueger, S., Katsaras, J., & Yada, R. Y. Comparison

of solution structures and stabilities of native, partially unfolded and partially refolded

pepsin. Biochemistry, v. 45, p. 13982-13992, 2006.

Page 227: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

227

Devi, A.F.; Buckow, R.; Singh, T.; Hemar, Y.; Kasapis, S. Colour change and

proteolysis of skim milk during high pressure thermal-processing. Journal of Food

Engineering, v, 147, p. 102–110, 2015.

Dosualdo, G.L. Efeito do processo de homogeneização a ultra alta pressão na

redução da carga microbiana e da atividade enzimática da água de coco. 2007.

153p. Dissertação (Mestrado em Tecnologia de Alimentos) – Faculdade de

Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, 2007.

Duarte, A. R.; Duarte, M. D. R.; Moreira, K. A.; Cavalcanti, M. T. H.; de Lima, J. L.;

Porto, A. L. F. Jacaration corumbensis O. Kuntze a new vegetable source for milk-

clotting enzymes. Brazilian Archives of Biology and Technology, v.52, p. 1–9,

2009.

Egito, A. S.; Girardet, J.-M.; Laguna, L.E.; Poirson, C.; Mollé, D.; Miclo, L.; Humbert,

G.; Gaillard, J.-L. Milk-clotting activity of enzyme extracts from sunflower and albizia

seeds and specific hydrolysis of bovine k-casein. International Dairy Journal, v; 17,

p. 816-825, 2007.

Eisenmenger, M.J.; Reyes-De-Corcuera, J.I. High pressure enhancement of enzymes:

a review. Enzymes and Microbial Techology, v. 45 (5), p. 331-347, 2009a.

Eisenmenger, M.J.; Reyes-De-Corcuera, J.I. High hydrostatic pressure increased

stability and activity of immobilized lipase in hexane. Enzymes and Microbial

Techology, v. 45 (2), p. 118-125, 2009b.

Euromonitor International - Related Analysis. (2012) Cheese in Brazil. Available from

http://www.portal.euromonitor.com/Portal/Pages/Statistics/Statistics.aspx. Accessed

July, 2016.

Evert-Arriagada, K.; Hernández-Herrero, M.M.; Guamis, B.; Trujillo, A.J. Commercial

application of high-pressure processing for increasing starter-free fresh cheese shelf-

life. LWT - Food Science and Technology, v. 55, p. 498–505, 2014.

Page 228: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

228

Fadyloglu, S. Immobilization and characterization of ficin. Nahrung ⁄ Food, v. 45, p.

143–146, 2001.

Farrell Jr., H. M.; Brown, E.M.; Hoagland, P.D.; Malin, E.L. Higher order structures

in casein: a paradox. In: Fox PF, Sweeney PLH, editors. Advanced Dairy Chemistry-

1, Proteins, Part A. New York (NY): Kluwer Academic; p. 203–231, 2003.

Farrell Jr., H. M.; Jimenez-Flores, R.; Bleck, G. T.; Brown, E. M.; Butler, J. E.; Creamer,

L. K.; Hicks, C. L.; Hollar, C. M.; Ng-Kwai-Hang, K. F.; Swaisgood, H. E. Nomenclature

of the proteins of cows’ milk-sixth revision. Journal of Dairy Science, v. 87, n.6, p.

1641–1674, 2004.

Farrell Jr., H. M.; Malin, E. L.; Brown, E. M.; Qi, P. X. Casein micelle structure: what

can be learned from milk synthesis and structural biology? Current Opinion in Colloid

& Interface Science, v. 11. P. 135-147,2006.

Fernández-Salguero, J.; Prados, F.; Calixto, F.; Vioque, M.; Sampaio, P.; Tejada, L.

Use of recombinant cyprosin in the manufacture of ewe’s milk cheese. Journal of

Agricultural and Food Chemistry, v. 51, p. 7426–7430, 2003.

Foltmann, B. General and molecular aspects of rennets. In: Fox, P.F. (Ed.), Cheese

Chemistry, Physics and Microbiology, vol. 1. , 2nd ed. Chapman & Hall, London,

pp. 37–68, 1993.

Food Agriculture Organization, (2010). Milk and Milk Products. Available from

http://www.fao.org/docrep/011/ai474e/ai474e10.htm Accessed June, 2016.

Fox, P. F. Rennets and their action in cheese manufacture and ripening.

Biotechnology and Applied Biochemistry. v.10, p.522–535, 1988.

Fox, P. F.; Brodkorb, A. The casein micelle: Historical aspects, current concepts and

significance. International Dairy Journal, v.18, p.677-684, 2008.

Page 229: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

229

Fox, P. F.; Guinee, T. P.; Cogan, T. M.; Mc Sweeney, P. L. H. Fundamentals of

Cheese Science. Gaithersberg, MD, USA: Aspen Publishers, 2000.

Fox, P. F.; Kelly. A, L. The caseins. In. Proteins in Food Processing, p. 29–71. Yada

R Y, ed. Boca Raton, FL: CRC Press, 2004.

Fox, P. F.; Mc Sweeney, P. L. H. Rennets: their role in milk coagulation and cheese

ripening. In: Law, B.A. (Ed.), Microbiology and Biochemistry of Cheese and

Fermented Milk. Blackie Academic & Professional, London, p. 1–49, 1997.

Fox, P. F.; Mc Sweeney, P. L. H.; Cogan, T. M.; Guinee, T. P. Chesse: Chemistry,

Physics and Microbiology. London: Chapman e Hall, v. 1, 617p. 2004.

Fox, P.F.; McSweeney, P.L.H. Dairy Chemistry and Biochemistry. London: Blackie

Academic and Professional, 1998.

Galan, E.; Prados, F.; Pino, A.; Tejada, L.; Fernández-Salguero, J. Influence of

different amounts of vegetable coagulant from cardoon Cynara cardunculus and calf

rennet on the proteolysis and sensory characteristics of cheeses made with sheep

milk. International Dairy Journal, v. 18, p. 83–98, 2008.

Garg, S. K.; Johri, B. N. Rennet: current trends and future research. Food Reviews

International, v. 10, p. 313–355, 1994.

Garrido, M.; Contador, R.; García-Parra, J.; Delgado, F.J.; Delgado-Adámez, J.;

Ramírez, R., Volatile profile of human milk subjected to high-pressure thermal

processing. Food Research International. v. 78, p. 186–194, 2015.

GMO Compass. (2010). Chymosin. [Documento da Internet] Disponível em:

http://www.gmo-compass.org/eng/database/enzymes/83.chymosin.html. Acessado

em 10/07/2013.

Page 230: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

230

Grozdanovic, M. M.; Burazer, L.; Gavrovic-Jankulovic, M.; Kiwifruit (Actinidia deliciosa)

extract shows potential as a low-cost and efficient milk-clotting agent. International

Dairy Journal, v. 32, p. 46-52, 2013.

Haki, G.D.; Rakshit, S.K. Developments in industrially important thermostable

enzymes: a review. Biosource Technology, v. 89, p. 17-34, 2003.

Harboe, M., Broe, M.L., Qvist, K.B. The Production, Action and Application of Rennet

and Coagulants. (2010). In: Law, A., Tamime, A.Y., editors. Technology of

Cheesemaking, Barry, Second Edition Blackwell Publishing Ltd. 2010. pp. 98-129.

He, X., Liu, H., Liu, L., Zhao, G., Wang, Q., Chen, Q. Effects of high pressure on the

physicochemical and functional properties of peanut protein isolates. Food

Hydrocolloids, v. 36, p. 123-129, 2014.

Hernández, A.; Cano, M.P. High-pressure and temperature effects on enzyme

inactivation in tomato puree. Journal of Agricultural Food Chemistry, v. 46, p. 266-

270, 1998.

Holt, C. Structure and stability of bovine casein micelles. Advances in Protein

Chemistry v.43, p. 63–151, 1992.

Horne, D. S. Casein interactions: casting light on the black boxes, the structure in dairy

products. International Dairy Journal, v. 8, p. 171-177, 1998.

Horne, D. S., & Banks, J. M. (2004). Rennet-induced coagulation of milk. In P. F. Fox,

P. L. H. McSweeney, T. M. Cogan, & T. P. Guinee (Eds.), Cheese: Chemistry,

Physics and Microbiology (Third Edi., pp. 47-70). London: Elsevier Academic Press.

Huppertz, T.; Fox, P.F.; de Kruif, K.G.; Kelly, A.L. High pressure-induced changes in

bovine milk proteins: A review. Biochimica et Biophysica Acta - Proteins and

Proteomics, v. 1764, p. 593–598, 2006.

Page 231: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

231

Hussain, I., Bell, A. E., & Grandison, A. S. Mozzarella-type curd made from buffalo,

cows’ and ultrafiltered cows’ milk. 1. Rheology and microstructure. Food and

Bioprocess Technology, 6, 1729–1740, 2013.

Hussain, I., Grandison, A. S., & Bell, A. E. Effects of gelation temperature on

Mozzarella-type curd made from buffalo and cows’ milk. 1: Rheology and

microstructure. Food Chemistry, 134, 1500-1508, 2012.

Hyslop, D. B. Enzymatic coagulation of milk. In Advanced Dairy Chemistry, Vol. 1,

pp. 839–878. Fox P F, Mc Sweeney P L H, eds. New York: Kluwer, 2003.

Impoco, G., Carrato, S., Caccamo, M., Tuminello, L., & Licitra, G. (2006) Image

analysis methods for industrial application: Quantitative analysis of cheese

microstructure using SEM imagery. In: ADSA–ASAS Joint Annual Meeting.

Minneapolis, Minn., USA.

Jacob, M.; Jaros, D.; Rohm, H. Recent advances in milk clotting enzymes.

International Journal of Dairy Technology, v.64, n.1, p. 14-33, 2011

Janhøj, T., & Qvist, K. B. (2010). The Formation of Cheese Curd. In B. A. Law & A. Y.

Tamime (Eds.), Technology of Cheesemaking (Second Edi., pp. 130-165). Blackwell

Publishing Ltd.

Jayani, R.S.; Saxena, S.; Gupta, R. Microbial pectinolytic enzymes: A review. Process

Biochemistry, v. 40, p. 2931-9244, 2005.

Jian, S.; Wenyi, T.; Wuyong, C. Ultrasound-accelerated enzymatic hydrolysis of solid

leather waste. Journal of Cleaner Production, v. 16, p. 591-597, 2008.

Johnson, M. E.; Lucey, J. A. Major technological advances and trends in cheese.

Journal of Dairy Science, v. 89, p.1174–1178, 2006.

Kappeler, S. R.; van den Brink, H. J.; Rahbeck-Nielsen, H.; Farah, Z.; Puhan, Z.;

Hansen, E. B.; Johansen, E. Characterization of recombinant camel chymosin reveals

Page 232: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

232

superior properties for the coagulation of bovine and camel milk. Biochemical and

Biophysical Research Communications, v. 342, p. 647–654, 2006.

Karlsson, A. O.; Ipsen, R. Ardo, Y. Rheological properties and microstructure during

rennet induced coagulation of UF concentrated skim milk. International Dairy

Journal, v. 17, p. 674–682, 2007.

Kato, A., & Nakai, S. Hydrophobicity determined by a fluorescence probe method and

its correlation with surface properties of proteins. Biochimica et Biophysica Acta,

624, 13-20, 1980.

Katsaros, G.I.; Giannoglou, M.N.; Taoukis, P.S. Kinetic study of the combined effect of

high hydrostatic pressure and temperature on the activity of Lactobacillus delbrueckii

ssp. bulgaricus aminopeptidases. Journal of Food Science, v. 74 (5), p. 219-225,

2009.

Knnor, D. Novel approaches in food-processing technology: new technologies for

preserving foods and modifying function. Current Opinion in Biotechnology, v. 10

(5), p. 485-491, 1999.

Krajewska, B. Application of chitin- and chitosan-based materials for enzyme

immobilizations: a review. Enzyme and Microbial Technology, v. 35, p. 126-139,

2004.

Kudryashova, E.V.; Mozhaev, V.V; Balny, C. Catalytic activity of thermolysin under

extremes of pressure and temperature: modulation by metal ions. Biochimica et

Biophysica Acta, v. 1386, p. 199-210, 1998.

Kumar, A., Grover, S., Sharma, J., & Batish, V. K. Chymosin and other milk coagulants:

sources and biotechnological interventions. Critical Reviews in Biotechnology, 30,

243-258, 2010.

Page 233: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

233

Lagaude, A.; Fernandez, L.; Cuq, J.; Marchesseau, S. Characterization of curd

formation during the rennet coagulation of milk by an optical microscopic method.

International Dairy Journal, v. 14, p. 1033–1039, 2004.

Lanciotti, R.; Patrignani, F.; Iucci, L.; Saracino, P.; Guerzoni, M.E. Potential of high

pressure homogenization in the control and enhancement of proteolytic and

fermentative activities of some Lactobacillus species. Food Chemistry, v. 102 (2), p.

542-550, 2007.

Law, B. A. Microbiology and Biochemistry of Cheese and Fermented Milk, 2 ed.

London: Blackie Academic & Professional, 1997. p. 1-6.

Lee, S.H.; Nguyen, H.M.; Koo, Y-M., Ha, S.H. Ultrasound-enhance lipase activity in

the syntesis of sugar ester using ionic liquids. Process Biochemistry, v. 43, p. 1009-

1012, 2008.

Lehninger, A.L.; Nelson, D.L.; Cox, M.M. Enzymes. Lehninger, A.L.; Nelson, D.L.; Cox,

M.M. Principles of Biochemistry. New York: Worth Publishers, 1993.

Leite Júnior, B. R. C.; Tribst, A. A. L.; Cristianini, M. Proteolytic and milk-clotting

activities of calf rennet processed by high pressure homogenization and the influence

on the rheological behavior of the milk coagulation process. Innovative Food Science

and Emerging Technology, v. 21, p. 44-49, 2014a.

Leite Júnior, B. R. C., Tribst, A. A. L., Oliveira, M. M., & Cristianini, M. Characterization

of rennet-induced gels using calf rennet processed by high pressure homogenization:

Effects on proteolysis, whey separation, rheological properties and microstructure.

Innovative Food Science and Emerging Technology, 26, 517–524, 2014b.

Leite Júnior, B. R. C.; Tribst, A. A. L.; Cristianini, M. High pressure homogenization of

porcine pepsin protease: Effects on enzyme activity, stability, milk coagulation profile

and gel development. PloS ONE, 10, e0125061, 2015.

Page 234: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

234

Leite Júnior, B. R. C.; Tribst, A. A. L.; Bonafe, C. F. S.; Cristianini, M. Determination of

the influence of high pressure processing on calf rennet using response surface

methodology: Effects on milk coagulation. LWT - Food Science and Technology, v.

65, p. 10-17, 2016a.

Leite Júnior, B. R. C.; Tribst, A. A. L.; Cristianini, M. Comparative effects of high

isostatic pressure and thermal processing on the inactivation of Rhizomucor miehei

protease. LWT - Food Science and Technology, v. 65, p. 1050-1053, 2016b

Leite Júnior, B. R. C., Tribst, A. A. L., & Cristianini, M. The effect of high pressure

processing on recombinant chymosin, bovine rennet and porcine pepsin: Influence on

the proteolytic and milk-clotting activities and on milk-clotting characteristics. LWT -

Food Science and Technology, v. 76, p. 351-360, 2017.

Li, Y., Miao, M., Liu, M., Chen, X., Jiang, B., Feng, B. Enhancing the thermal stability

of inulin fructotransferase with high hydrostatic pressure. International Journal of

Biological Macromolecules, v. 74, p. 171–178, 2015.

Libouga, D. G.; Vercaigne-Marko, D.; Djangal, S. L. Study of a suitable cheese making

milk clotting agent from Balanites aegyptica fruits. Tropicultura, v. 24, p. 229–238,

2006.

Liu, X.; Powers, J.R.; Swanson, B.G.; Hill, H.H.; Clark, S. Modification of whey protein

concentrate hydrophobicity by high hydrostatic pressure. Innovative Food Science

and Emerging Technology, v. 6, p. 310–317, 2005.

Liu, W.; Liu, J.; Xie, M.; Liu, C.; Liu, W.; Wan, J. Characterization and high-pressure

microfluidization-induced activation of polyphenoloxidase from Chinese pear (Pyrus

pyrifolia Nakai). Journal of Agricultural and Food Chemistry, 57, 5376–5380,

2009a.

Liu, W.; Liu, J.; Liu, C.; Zhong, Y.; Liu, W.; Wan, J. Key, S. Activation and

conformational changes of mushroom polyphenoloxidase by high pressure

Page 235: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

235

microfluidization treatment. Innovative Food Science and Emerging Technologies,

v. 10, p. 142–147, 2009b.

Llorente, B. E.; Brutti, C. B.; Caffini, B. O. Purification and characterization of a milk-

clotting aspartic proteinase from Globe Artichoke (Cynara scolymus L.). Journal of

Agricultural and Food Chemistry, v. 52, p. 8182-8189, 2004.

Low, Y. H.; Agboola, S.; Zhao, H.; Lim, M. Y. Clotting and proteolytic properties of plant

coagulants in regular and ultrafiltered bovine skim milk. International Dairy Journal,

v. 16, p. 335–343, 2006.

Lucci, L.; Patrignani, F.; Vallicelli, M.; Guerzoni, M.E.; Lanciotti, R. E. Effects of high

pressure homogenization on the activity of lysozyme and lactoferrin against Listeria

monocytogenes. Food Control, v. 18, p. 558–565, 2007.

Lucey, J. A. Cheese | Rennet-Induced Coagulation of Milk. In: J. W. Fuquay, P. F. Fox,

& P. L. H. McSweeney (Eds.), Encyclopedia of Dairy Sciences, 2nd ed., (pp. 579-

584). London: Elsevier Academic Press, 2011.

Lucey, J. A. Formation and physical properties of milk protein gels. Journal of Dairy

Science, v.85, p.2, 281–294, 2002a.

Lucey, J. A. Rennet coagulation of milk. In: Encyclopedia of Dairy Sciences. H.

Roginski, J. W. Fuquay & P. F. Fox, eds., Academic Press, London, pp. 286-293,

2002b.

Lucey, J. A.; Johnson, M. E.; Horne, D. S. Perspectives on the basis of the rheology

and texture properties of cheese. Journal of Dairy Science, v. 86, p. 2725-2743,

2003.

Malone, A. S., Wick, C., Shellhammer, T. H., & Courtney, P. D. High pressure effects

on proteolytic and glycolytic enzymes involved in cheese manufacturing. Journal of

Dairy Science, v. 86, p. 1139-1146, 2003.

Page 236: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

236

Marchal, S., Shehi, E., Harricane, M., Fusi, P., Heitz, F., Tortora, P., Lange, R.

Structural instability and fibrillar aggregation of non-expanded human ataxin-3

revealed under high pressure and temperature. The Journal of Biological

Chemistry. v. 278, p. 31554–31563, 2003

Mason, T.J.; Paniwnyk, L.; Lorimer, J.P. The uses of ultrasound in food technology.

Ultrasonics Sonochemistry, v. 3, p. S253-S260, 1996.

McMahon, D. J. and Brown, R. J. (1984). Enzymic coagulation of casein micelles: A

review. Journal of Dairy Science, v. 67, p. 919-929, 1984.

McMahon, D. J.; Oommen, B. S. Supramolecular structure of the casein micelle.

Journal of Dairy Science, v. 91, p. 1709-1721, 2008.

Merheb-Dini, C., Gomes, E., Boscolo, M., & da Silva, R. (2010). Production and

characterization of a milk clotting protease in the crude enzymatic extract from the

newly isolated Thermomucor indicae-seudaticae N31. Food Chemistry, v. 120, p. 87-

93, 2010.

Moharib S A. Protease activities in seeds of fenugreek (Trigonella foenum-graecum).

Advances in Food Sciences, v. 26, p. 69–74, 2004.

Møller, K. K., Rattray, F. P., Sørensen, J. C., & Ardo, Y. Comparison of the hydrolysis

of bovine κ-casein by camel and bovine chymosin: A kinetic and specificity study.

Journal Agricultural and Food Chemistry, v. 60, 5454-5460, 2012.

Moschopoulou, E.; Kandarakisa, I.; Anifantakis, E. Characteristics of lamb and kid

artisanal liquid rennet used for traditional Feta cheese manufacture. Small Ruminant

Research, v.72, p.237–241, 2007.

Mozhaev, V.V.; Lange, R; Kudryashova, E.V; Balny, C. Application of high hydrostatic

pressure for increasing activity and stability of enzymes. Biotechnology and

Bioengineering, v. 52, p. 320-331, 1996.

Page 237: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

237

Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology:

Process end product optimization using designed experiments (2nd edn., 798p.)

New York: John Wiley & Sons.

Nakai, S. Structure-function relationships of food proteins with an emphasis on the

importance of protein functionality. Journal of Agricultural and Food Chemistry, v.

31, p. 676-683, 1983.

Nicolau, N., Buffa, M., O’Callaghan, D. J., Guamis, B., & Castillo, M. Estimation of

clotting and cutting times in sheep cheese manufacture using NIR light backscatter.

Dairy Science & Technology, v. 95, p. 495-507, 2015.

Nielsen, P.K., & Foltmann, B. Purification and characterization of porcine pepsinogen

B and pepsin B. Archives of Biochemistry and Biophysics, v. 322, 417-422, 1995.

Nouani, A.; Dako, E.; Morsli, A.; Belhamiche, N.; Belbraouet, S.; Bellal, M. M.; Dadie,

A. Characterization of the purified coagulant extracts derived from artichoke flowers

(Cynara scolymus) and from the fig tree latex (Ficus carica) in light of their use in the

manufacture of traditional cheeses in Algeria. Journal of Food Technology, v. 1, p.

20-29, 2009.

Oliveira, M. M., Augusto, P. E. D., Cruz, A. G., & Cristianini, M. Effect of dynamic high

pressure on milk fermentation kinetics and rheological properties of probiotic

fermented milk. Innovative Food Science and Emerging Technologies, v. 26, 67-

75, 2014.

Ong, L., Dagastine, R. R., Kentish, S. E., & Gras, S. L. Microstructure of milk gel and

cheese curd observed using cryo scanning electron microscopy and confocal

microscopy. LWT - Food Science and Technology, v. 44, p. 1291–1302, 2011.

Ong, L., Dagastine, R. R., Kentish, S. E., & Gras, S. L. The effect of pH at renneting

on the microstructure, composition and texture of Cheddar cheese. Food Research

International, v. 48, p. 119-130, 2012.

Page 238: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

238

Ortega, N., Albillos, S. M., & Busto, M. D. Application of factorial design and response

surface methodology to the analysis of bovine caseins by capillary zone

electrophoresis. Food Control, v. 14, p. 307-315, 2003.

Otte, J., Midtgaard, L., & Qvist, K. B. Analysis of caseinomacropeptide(s) by free

solution capillary electrophoresis. Milchwissenschaft, v. 50, p. 75−79, 1995.

Otte, J., Zakora, M., Kristiansen, K. R., & Qvist, K. B. Analysis of bovine caseins and

primary hydrolysis products in cheese by capillary zone electrophoresis. Lait, v. 77, p.

241-257, 1997.

Pandey, P. K.; Ramaswamy, H. S.; St-Gelais, D. Water-holding capacity and gel

strength of rennet curd as affected by high pressure treatment of milk. Food Research

International, v. 33, p. 655 –663, 2000.

Papoff, C. M.; Mauriello, R.; Pirisi, A.; Piredda, G.; Addis, M.; Chianese, L. Proteolytic

activity of animal rennet on ovine casein. Michwissenschaft, v. 59, p.414–417, 2004.

Patil, S. V.; Salunke, B. K.; Bhat, J. A. Herbal rennet from Calotropis gigantea. Journal

of Medicinal and Aromatic Plant Science, v. 25, p. 392–396, 2003.

Pereira, C. I.; Gomes, E. O.; Gomes, A. M. P.; Malcata, F. X. Proteolysis in model

Portuguese cheeses: effects of rennet and starter culture. Food Chemistry, v. 108, p.

862–868, 2008.

Phadungath, C. Casein micelle structure: a concise review. Songklanakarin Journal

of Science and Technology, v. 27, p. 201-212, 2005.

Pino, A.; Prados, F.; Galan, E.; Mc Sweeney, P. L. H.; Fernández-Salguero, J.

Proteolysis during the ripening of goats milk cheese made with plant coagulant or calf

rennet. Food Research International, v. 42, p. 324–330, 2009.

Page 239: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

239

Pontual, E. V.; Carvalho, B. E. A.; Bezerra, R. S.; Coelho, L. C. B. B.; Napoleão, T. H.;

Paiva, P. M. G. Caseinolytic and milk-clotting activities from Moringa oleifera flowers.

Food Chemistry, v. 135, p. 1848–1854, 2012.

Prados, F.; Pino, A.; Fernández-Salguero, J. Effect of a powdered vegetable coagulant

from Cynara cardunculus in the accelerated ripening of Manchego cheese.

International Journal of Food Science and Technology, v. 42, p. 556–561, 2007.

Rampilli, M.; Larsen, R.; Harboe, M. Natural heterogeneity of chymosin and pepsin in

extracts of bovine stomachs. International Dairy Journal, v.15, p.1130–1137, 2005.

Raposo, S.; Domingos, A. Purification and characterization of milk-clotting aspartic

proteinases from Centaura calciptrea cell suspension cultures. Process

Biochemistry, v. 43, p. 139–144, 2008.

Recio, I., Amigo, L., Ramos, M., & López-Fandiño, R. Application of capillary

electrophoresis to the study of proteolysis of caseins. Journal of Dairy Research, v.

64, p. 221-230, 1997.

Rejasse, B.; Lamare, S.; Legoy, M-D.; Besson, T. Influence of microwave irradiation

on enzymatic properties: application in enzyme chemistry, Journal of Enzyme

Inhibition and Medicinal Chemistry, v. 22, p. 518-526, 2007.

Rickert, W. S. & McBride-Warren, P. A. Structural and functional determinants of Mucor

miehei protease. III. Isolation and composition of the carbohydrate moiety. Biochimica

et Biophysica Acta, v. 336, p. 437-444, 1974.

Rolet-Répécaud, O.; Berthier, F.; Beuvier, E.; Gavoye, S.; Notz, E.; Roustel, S.;

Gagnaire, V.; Achilleos, C. Characterization of the non-coagulating enzyme fraction of

different milk-clotting preparations. LWT - Food Science and Technology, v.50, p.

459-468, 2013.

Rooijen, G.; Richard Glenn, K.; Shen, Y.; Boothe, J. Commercial production of

chymosin in plants. US Patent Application, US 07390936, 2008.

Page 240: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

240

Roseiro, L. B.; Wilbey, R. A.; Barbosa, M. Serpa cheese: technological, biochemical

and microbiological characterisation of a POD ewe’s milk cheese coagulated with

Cynara cardunculus L. Lait, v. 83, p. 469–481 2003.

Roy, I.; Gupta, M.N. Non-thermal effects of microwaves on protease-catalyzed

esterification and transesterification. Tetrahedrom, v. 59, p. 5431-5436, 2003.

Sales-Gomes, M.; Lima-Costa, M. E. Immobilization of endoproteases from crude

extract of Cynara cardunculus L. flowers. Food Science and Technology

International, v. 14, p. 271–276, 2008.

Sampaio, P.; Fortes, A. M.; Cabral, J. M. S.; Pais, M. S.; Fonseca, L. P. Production

and characterization of recombinant cyprosin B in Saccharomyces cerevisiae (W303-

1A) strain. Journal of Bioscience and Bioengineering, v. 105, p. 305–312, 2008.

Sandra, S., Cooper, C., Alexander, M., & Corredig, M. Coagulation properties of

ultrafiltered milk retentates measured using rheology and diffusing wave spectroscopy.

Food Research International, v. 44, p. 951–956, 2011.

Sandra, S., & Corredig, M. Rennet induced gelation of reconstituted milk protein

concentrates: The role of calcium and soluble proteins during reconstitution.

International Dairy Journal, v. 29, p.68–74, 2013.

Savadkoohi, S., Bannikova, A., Mantri, N., Kasapis, S. Structural modification

incondensed soy glycinin systems following application of high pressure. Food

Hydrocolloids, v. 53, p. 115-124, 2016.

Senthilkumar, S.; Ramasamy, D.; Subramanian, S. Isolation and partial

characterization of milk-clotting aspartic protease from Streblus asper. Food Science

and Technology Internatinal, v. 12, p. 103-109, 2006.

Page 241: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

241

Sila, D.N.; Smout, C.; Satara, Y.; Truong, V.; Loey, A.V.; Hendrickx, M. 2007.

Combined thermal and high pressure effect on carrot pectinmethylesterase stability

and catalytic activity. Journal of Food Engineering, 78, 755-764, 2007.

Silva, R. R., Oliveira, L. C. G., Juliano, M. A., Juliano, L., Oliveira, A. H. C., Rosa, J.

C.; Cabral, H. Biochemical and milk-clotting properties and mapping of catalytic

subsites of an extracellular aspartic peptidase from basidiomycete fungus

Phanerochaete chrysosporium. Food Chemistry, v, 225, p. 45-54, 2017.

Silva, R. R., Souto, T. B., Oliveira, T. B., Oliveira, L. C. G., Karcher, D., Juliano, M. A.,

Oliveira, A. H. C., Rodrigues, A. Rosa, J. C., Cabral, H. Evaluation of the catalytic

specificity, biochemical properties, and milk clotting abilities of an aspartic peptidase

from Rhizomucor miehei. Journal of Industrial Microbiology and Biotechnology, v.

43, p. 1059-1069, 2016

Sousa, M. J.; Malcata, F. X. Effects of processing conditions on the caseinolytic activity

of crude extracts of Cynara cardunculus L. Food Science and Technology

International, v. 2, p. 255–263, 1996.

Sousa, M. J.; Malcata, F. X. Advances in the role of a plant coagulant (Cynara

cardunculus) in vitro and during ripening of cheese from several milk species. Lait, v.

82, p. 151–170, 2002.

SPPAIL Syndicat Professionnel des Producteurs d’Auxiliaires Pour l’Industrie Laitière.

(2010). Les enzymes coagulantes sur le marché français [Text file].

URL.http://www.cniel.com/quifait/Syndicat/SPPAIL/pdf/SPPAIL_marchefrancaisenzy

mescoagulantes_2010.pdf.

Stryer, L. Enzymes: Basics concepts and kinetics. Stryer, L. Biochemistry. New York:

W H Freeman & Company, 1995.

Stumbo, C. R. (1973). Thermobacteriology in food processing. 2nd ed. Academic

Press, San Diego, CA.

Page 242: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

242

Tam, J. R.; Whitaker, J. R. Rate and extents of proteolysis of several caseins by

pepsin, rennin, Endothia parasitica protease and Mucor pusillus protease. Journal of

Dairy Science, v. 55, p. 1523–1533, 1972.

Tanaka, N., Nakajima, K., Kunugi, S. The pressure-induced structural change of

bovine α-lactalbumin as studied by a fluorescence hydrophobic probe. International

Journal of Peptides and Protein Research, v. 48, p. 1996, 259-264, 1996.

Tanaka, N., Nishizawa, H., Kunugi, S. Structure of pressure-induced denatured state

of human serum albumin: a comparison with the intermediate in urea-induced

denaturation. Biochimica et Biophysica Acta, v. 1338, p. 13–20, 1997.

Teixeira, G.; Santana, A. R.; Pais, M. S.; Clemente, A. Enzymes of Opuntia ficus-indica

(L.) miller with potential industrial applications. Applied Biochemistry and

Biotechnology, v. 88, p. 299–312, 2000.

Thunell, R. K., Duersch, J. W., & Ernstrom, C. A. Thermal inactivation of residual milk

clotting enzymes in whey. Journal of Dairy Science, v. 62, p. 373-377, 1979.

Tomasula, P.M., Renye, J. a, Van Hekken, D.L., Tunick, M.H., Kwoczak, R., Toht, M.,

Leggett, L.N., Luchansky, J.B., Porto-Fett, a C.S., Phillips, J.G. Effect of high-pressure

processing on reduction of Listeria monocytogenes in packaged Queso Fresco.

Journal of Dairy Science, v.97, p. 1281–95, 2014.

Torres, B.B. Elementos de enzimologia. In: Borzani, W.; Schmidell, W.; Lima, U.A.;

Aquarone, E. Biotecnologia industrial. Volume I – Fundamentos. São Paulo:

Editora Edgard Blücher, 2001.

Tribst, A. A. L.; Cristianini, M. High pressure homogenization of a fungi α-amylase.

Innovative Food Science and Emerging Technologies, v. 13, p. 107-111, 2012a.

Page 243: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

243

Tribst, A. A. L.; Cristianini, M. Increasing fungi amyloglucosidase activity by high

pressure homogenization. Innovative Food Science and Emerging Technologies,

v. 16, p. 21-25, 2012b.

Tribst, A. A. L.; Augusto, P. E. D.; Cristianini, M. The effect of the high pressure

homogenisation on the activity and stability of a commercial neutral protease from

Bacillus subtilis. International Journal of Food Science and Technology, v. 47, p.

716–722, 2012.

Tribst, A. A. L.; Junio, C.; Murakami, M. T.; Cristianini, M. Effects of high pressure

homogenization on the activity, stability, kinetics and three-dimensional conformation

of a glucose oxidase produced by Aspergillus niger. PloS One, v. 7, p.e103410, 2014.

Trujillo, A. J., Capellas, M., Saldo, J., Gervilla, R., Guamis, B. Applications of high-

hydrostatic pressure on milk and dairy products: a review. Innovative Food Science

and Emerging Technologies, v. 3, p. 295-307, 2002.

Trujillo, A. J.; Guamis, B.; Laencina, J.; Lopez, M. B. Proteolytic activities of some milk

clotting enzymes on ovine casein. Food Chemistry, v. 71, p. 449–457, 2000.

Tubesha, Z. A.; Al-Delaimy, K. S. Rennin-like milk coagulant enzyme produced by a

local isolate of Mucor. International Journal of Dairy Technology, v. 56, p. 237-241,

2003.

Vairo-Cavalli, S.; Claver, S.; Priolo, N.; Natalucci, C. Extraction and partial

characterization of a coagulant preparation from Silybum marianum flowers. Its action

on bovine caseinate. Journal of Dairy Research, v. 72, n. 3, p. 271-275, 2005.

Vallejo, J. A., Ageitos, J. M., Poza, M., & Villa, T. G. A comparative analysis of

recombinant chymosins. Journal of Dairy Science, v. 95, p. 609-613, 2012.

Vanderporten, R.; Weckx, M. Breakdown of casein by rennet and microbial milk-

clotting enzymes. Netherlands Milk and Dairy Journal, v. 26, p. 47–59, 1972.

Page 244: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

244

Vannini, L.; Lanciotti, R.; Baldi, D.; Guerzoni, M.E. Interactions between high pressure

homogenization and antimicrobial activity of lysozyme and lactoperoxidase.

International Journal of Food Microbiology, v. 94, p. 123– 135, 2004.

Varnam, A. H.; Sutherland, J. P. Milk and Milk Products, Technology, Chemistry

and Microbiology. 2. ed. London: Aspen Publishers, Inc., 2001. p. 1-13.

Villamonte, G., Pottier, L., Lamballerie, M. Influence of high‑pressure processing on

the physicochemical and the emulsifying properties of sarcoplasmic proteins from hake

(Merluccius merluccius). European Food Research and Technology, v. 242, p. 667–

675, 2016.

Walstra, P. On the stability of casein micelles. Journal of Dairy Science, v. 73, p.

1965-1979, 1990.

Walstra, P. Casein sub-micelles: do they exist? International Dairy Journal, v. 9, p.

189-192, 1999.

Walstra, P.; Geurts, T. J.; Noomen, A.; Jellema, A.; van Boekel, M. A. J. S. Dairy

Technology: Principles of Milk Properties and Processes. Marcel Dekker, Inc.,

New York, 1999.

Walstra, P.; Wouters, J. T. M.; Geurts, T. J. Dairy Science and Technology, Boca

Raton, (2nd edn., 782p.) Boca Raton, London, New York: CRC Taylor & Francis

Group, 2006.

Wang, J.M., Yang, Z. Q., Yin, S.W., Zhang, Y., Tang, C. H., Li, B. S., et al. Structural

rearrangement of ethanol-denatured soy proteins by high hydrostatic pressure

treatment. Journal of Agricultural and Food Chemistry, v. 59, p. 7324-7332, 2011.

Welti-Chanes, J.; Ochoa-Velasco, C. E.; Guerrero-Béltran, J. Á. High-pressure

homogenization of orange juice to inactivate pectinmethylesterase. Innovative Food

Science and Emerging Technologies, v.10 (4), p. 457-462, 2009.

Page 245: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

245

Whitaker, J.R. Principles of enzymology for the food science. New York: Marcel

Dekker, 1994.

Yadav, G.D.; Lathi, P.S. Synergism of microwaves and immobilized enzyme catalysis

in synthesis of adipic acid esters in nonaqueous media. Synthetic Communications,

v. 12, p. 1699-1705, 2005.

Yang, J., Dunker, A. K., Powers, J. R., Clark, S., Swanson, B. G. β-lactoglobulin molten

globule induced by high pressure. Journal of Agricultural and Food Chemistry, v.

49, p. 3236-3243, 2001.

Yang, J., Teplyakov, A., & Quail, J. W. Crystal Structure of the aspartic proteinase from

Rhizomucor miehei at 2.15 å resolution. Journal of Molecular Biology. v. 268, p. 449-

459, 1997.

Zamora, A.; Ferragut, V.; Jaramillo, P.D.; Guamis, B.; Trujillo, A.J. Effects of ultra-high

pressure homogenization on the cheese-making properties of milk. Journal of Dairy

Science, v. 90, p. 13–23, 2007.

Zamora, A., Juan, B., & Trujillo, J. Compositional and biochemical changes during cold

storage of starter-free fresh cheeses made from ultra-high-pressure homogenised

milk. Food Chemistry, v. 176, p. 433-440, 2015.

Zhao, L., Zhang, S., Uluko, H., Liu, L., Lu, J., Xue, H., Lv, J. Effect of ultrasound

pretreatment on rennet-induced coagulation properties of goat’s milk. Food

Chemistry, v. 165, p. 167–174, 2014.

Zoccal, R. Queijos: produção e importação. 2016 . [Documento da Internet].

Disponível em: http://www.baldebranco.com.br/queijos-producao-e-importacao/

Acessado em 11 de Jan, 2017.

Page 246: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

246

Anexos

Page 247: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

247

Autorização da editora para publicação do artigo apresentado no Capítulo 2

Page 248: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

248

Autorização da editora para publicação do artigo apresentado no Capítulo 3

Page 249: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

249

Autorização da editora para publicação do artigo apresentado no Capítulo 4

Page 250: EFFECT OF HIGH ISOSTATIC PRESSURE PROCESSING ON MILK ...repositorio.unicamp.br/bitstream/REPOSIP/331163/1... · de API produziu mudanças significativas nas estruturas secundárias

250

Autorização da editora para publicação do artigo apresentado no Capítulo 5