effect of duty cycle on catalytic thruster degradation_archive

6
8/19/2019 Effect of Duty Cycle on Catalytic Thruster Degradation_archive http://slidepdf.com/reader/full/effect-of-duty-cycle-on-catalytic-thruster-degradationarchive 1/6 216 J. SPACECRAFT VOL. 18,  NO. 3 AIAA 81-4151 Effect  of Duty Cycle on Catalytic Thruster Degradation H. C. Hearn* Lockheed  Missiles &  Space  Company,  Inc. Sunnyvale,  Calif. The thermal cycling and low-temperature operation inherent in three-axis stabilization attitude control can lead  to  several forms  of  hydrazine catalytic thruster degradation including catalyst attrition  and  voiding catalyst bed compaction chamber pressure spiking and injector tube thermal effects. Each of these mechanisms is influenced  by the  thruster operating characteristics  or  iring  duty cycle and the duty cycle plays a  major role  in determining the type  and  rate of  thruster degradation. Test experience shows that particular thruster designs  may be  greatly affected  by a  change  in  duty cycle  and  that testing over  a  variety  of  duty cycles  is  required  to demonstrate insensitivity to mission application. Introduction I T is  generally known within  the  industry  that  the  life  of hydrazine catalytic thrusters  is  dependent  on the way  they ar e  operated.  Total  impulse, number  of  pulses, pulse width an d  frequency, operating temperature,  and the  operating environment  all  contribute  to  thruster wear  an d  degradation. This duty cycle dependence  has  become increasingly evident  in th e  application  of  these thrusters  to  three-axis stabilization  of spacecraft; differences  have been observed in the  rate  of performance degradation  and in the  type  of  anomalies  ex- perienced.  It has  become clear,  for  example,  that  demon- stration  of  great capability in one  application does  not necessarily imply  a  similar capability under  a different  type  of use. These  findings  have significance with regard to the  goal of producing standardized thrusters that  will satisfy  the requirements of a variety of missions and thus minimize costs fo r  thruster development and qualification. This  paper addresses  the  effects  of  duty cycle  on  per- formance of  5-lbf  (22-N) thrusters used  for  three-axis thermal  effects.  Catalyst  bed  poisoning  due to  aniline  or decomposition gases  is not  included since  data  relative  to  5-lbf (22-N) thrusters  are not  conclusive. Poisoning  has  been identified  in  primarily  0.1-0.2-lbf (0.44-0.89-N)  thrusters operating  at  temperatures below  400  °F  (478  K), and  this phenomenon  has  been discussed  in  other  papers. 3> 4  Following th e  treatment  of  these individual  effects,  the  overall  in- teraction between duty cycle  an d  thruster design  will  be illustrated in the  section  on  duty-cycle sensitivity. Catalyst Attrition and V oiding Although  a  duty cycle  can be  characterized  in  terms  of  cold starts,  pulse width, pulsing frequency, thermal cycling, and other variables,  the key  parameter  appears  to be  catalyst  bed temperature. Analyses  an d  experiments dealing with catalyst breakup 5  show that  thruster temperature  is a  significant factor  in  several mechanisms, including catalyst particle wetting with liquid hydrazine, impingement of  liquid hydrazine on a hot  particle,  and  differential  thermal  ex-

Upload: hari-prasanna

Post on 08-Jul-2018

224 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Effect of Duty Cycle on Catalytic Thruster Degradation_archive

8/19/2019 Effect of Duty Cycle on Catalytic Thruster Degradation_archive

http://slidepdf.com/reader/full/effect-of-duty-cycle-on-catalytic-thruster-degradationarchive 1/6

216

J. SPACECRAFT

VOL. 18, NO. 3

A I A A 8 1 -4 1 5 1

Effect

 of Duty Cycle on Catalytic Thruster Degradation

H. C. Hearn*

Lockheed  Missiles & Space  Company, Inc.

Sunnyvale,

  Calif.

The thermal cycling and low-temperature operation inherent in three-axis stabilization attitude control can

lead

  to

  several forms

  of

  hyd razine catalytic thruster degradation including catalyst attrition

  and

  voiding

catalyst bed comp action chamber pressure spiking and injector tube thermal effects. Each of these mechanism s

is

  influenced

 b y the

 thruster operating characteristics

 or

  i r i n g

 duty cycle

and the

 duty cycle plays

 a

 m ajor role

 in

determining the

 type

 and

 rate

 of

  thruster degradation. Test exp erience show s that p articular thruster designs

 m ay

be  greatly affected  b y a  change  in  duty cycle  and   that testing over   a

  variety

  of

  duty

  cycles  is  required  to

demonstrate insensitivity to m ission ap plication.

Introduction

I

T is

  general ly known within

  th e

  industry  that

  th e

  life

  of

hydrazine catalyt ic thrusters

  is

  dependent

  on the way

  they

ar e  operated.

  Total

  impulse, number

  of

  pulses, pulse width

an d  frequency, operat ing temperature,  and the  operating

environment  all  contr ibute  to  thruster wear  an d  degradation.

This duty cycle dependenc e

 ha s

 become increasingly evident

 in

th e

 application

  of

 these thrusters

  to

 three-axis stabilization

  of

spacecraf t ;  differences  have been observed in the  rate  of

per fo rmance  degradat ion

  and in the

  type

  of

  anomalies

  ex -

perienced.  It has  become clear,  for  example,  that  demon-

stration  of  great capability  in one  application does  not

necessarily imply

 a

  similar capability under

 a di f ferent

  type

 o f

use. These

  findings

  have significance with regard

  to the

  goal

of

  producing s tandardized thrusters that  will satisfy  th e

requirements of a variety of missions and thus minimize costs

fo r  thruster development and quali f icat ion.

This  paper addresses  th e

  effects

  of  duty cycle  on  per-

formance of

  5-lbf  (22-N) thrusters used

  for

  three-axis

thermal  effects.  Catalyst  bed  poisoning  due to  aniline  or

decomposition gases

 is not

 included since data relative

 to

 5-lbf

(22-N) thrusters

  are not

  conclusive. Poisoning

  has

  been

identified

  in

  primarily

  0.1-0.2-lbf (0.44-0.89-N)

  thrusters

operating

  at

  temperatures below  400

 °F

  (478

  K), and

  this

phenomenon

  has

 been discussed

 i n

 other papers .

3> 4

 Following

th e  treatment  of  these individual  effects,  th e  overall  in -

teraction between duty cycle

  an d

  thruster design

  will  be

illustrated

 in the

 section

 on

 du ty-cycle sensitivity.

Catalyst Attrition and V oiding

Although

  a

 duty cycle

 can be

 characterized

  in

 terms

  of

  cold

starts,  pulse width, pulsing frequency, thermal cycling, and

other variables,

  the key

 parameter

  appears  to be

 catalyst

  bed

temperature. Analyses

  an d

  experiments dealing with catalyst

breakup

5

  show  that  thruster temperature

  is a

  significant

factor

  in

  several mechanisms, including catalyst particle

wetting with liquid hydrazine, impingement of   liquid

hydrazine  on a hot  particle,  an d  differential  thermal  ex -

Page 2: Effect of Duty Cycle on Catalytic Thruster Degradation_archive

8/19/2019 Effect of Duty Cycle on Catalytic Thruster Degradation_archive

http://slidepdf.com/reader/full/effect-of-duty-cycle-on-catalytic-thruster-degradationarchive 2/6

M A Y - JU N E   1981

C A T A L Y T I C T H R U S T E R D E G R A D A T I O N

21 7

u

£

  100

  -

H

 f

u

Q

LU

Q Q

at

50

 -

PULSES/DAY

D

2 5 0 0

  x

O

  3 0 0 0

A

  4000

+ 5000

_  0 6000

X

s~~ ~~  

J

[)   10 20 30

 

A

  6000 1-—

• • ^ ^ c T

i   i i

  i

  i

40 50 60 70 80

TOTAL  IMPULSE  Ib

f

-sec,  THOUSANDS)

Fig. 1   Effect   of   duty  cycle on  catalyst  loss.

D

  z:>u

D

u

22

°

S

I

F

r

o

o

O 1.0

 

A

T

H

R

U

S

R

o

 

0

1° °

U

AA

A

A

A

A

/ A

A

  ^

A

>0(

b  1

o  o   ^

0

  00

 0

0

o

°co

  i

0  

INJ

  TUBE

  CLOGCIN

CATALYST

^COMPACTION

INJECTOR

r

  /THERMAL

~

CHOKING

tr

  I 1  

3   100 200 300 400 500 600

PULSES THOUSANDS)

the engine.  Figure  2 shows  that  performance did steadily

degrade unti l the thruster was shut down  after  536,000 pulses .

The 73%

 reduction

 in steady-state thrust was

 accompanied

 b y

a comparable drop in

 pulsing impulse

 bit, and

 there

 w as

 also

 a

gradua l decrease in steady-state 7

sp

.

The   relatively

  detailed

  analysis  devoted to  this thruster

during the

 test

  revealed

  that

  bed

 com pact ion

 was the primary

cause

  of thrust

  degradation  even

  before disassembly and

injector

  flow  were conducted.

 Since the thru ster w as receiving

a progressively lower  than

  normal

  flow  dur ing the  test,  th e

problem   was to

  distinguish between

  catalyst  bed  effects  an d

injector  tube clogging.  It was

 known

  that

  some  clogging was

occurring

 based

 on previous experience, a review of chamber-

pressure  traces,  and the  effect  of thruster

  temperature

  on

impulse bit.

 However ,

 for injector-passage

 clogging

 to explain

th e

  entire

  thrust decay  would  have  required  a  decrease  of

about 0.012

  in .

  (0.305

  mm) in the

  original  0.017-in. (0.432

mm) diameter injector

  passages.

  Since this would  have been

abou t

  three times the reduction experienced in earlier testing,

it  w as

  considered

  unlikely. Also,

 7

sp

  variations

 during the test

were consistent

 with

 catalyst effects.

  Fo r

 example, following

  a

repressurization

  from

  120 to 200

 psia (827-1379 kPa) ,

 the

 next

health

  check

  at 90  psia

  (621

  k Pa )

  revealed a  25 f low-rate

increase

  accompanied by a 6-s

  increase

  in

 7

sp

.  Subsequent

  to

this event,  th e

  flow

  rate

  an d

  7sp

  resumed  a  steady  decrease.

Although  the 7

sp

 is

 affected

  by flow

  rate

 to a

 small

 degree, th e

magnitude of the changes observed was more consistent

  with

th e  effect  of  catalyst  fines  on bed  impedance  an d  ammonia

dissociation.

  In  fact ,  th e  shifts  in  ammonia dissociation

required

  (approximately

  15-20%) are  within  th e

  range

  which

has

 been observed

 i n

 other

 thruster testing.

The

  repressur izat ions  tha t

  were  a

 part

  of the

  mission duty

cycle  provided

  a way in

  which

  to

  separate

  th e

  effects

  of bed

compaction  from  thermal choking in the  injector  passages.

When the

  feed

  pressure was increased

  significantly,

  the in-

creased

  flow

  and injector  cooling

  eliminated

  the hydrazine

boiling in the injector  which

  caused  part

  of the

  thrust

reduction

  at low

  feed  pressures.

  A

  catalyst

  bed

  flow

  coef-

ficient  (describing the

  physical

  state  of the  bed)  can be

Page 3: Effect of Duty Cycle on Catalytic Thruster Degradation_archive

8/19/2019 Effect of Duty Cycle on Catalytic Thruster Degradation_archive

http://slidepdf.com/reader/full/effect-of-duty-cycle-on-catalytic-thruster-degradationarchive 3/6

218

H . C . H E A R N

J .  S P A C E C R A F T

200

160

a:

a.

C Q

0 .2 0.3 0 .4

TIME  SEC)

Fig.  3

  Chamber

 pressure spik e.

1000

ID

I-

<

5

X

u

3 PSIA

FEED PRESSURE

1

PSIA

 H

HIGH ST

  SPIKE

AMPLITUDES

SEVERE I

SPIKING  I

DECREASING  AMPLITUDE

I

I

I

I I

10

15

2 2 5

Fig. 4

PULSE

  NUMBER

Effect of thruster temp erature on spik ing.

 

3000

2000

CQ

1

1

20

30

70

NUMBER OF MANEUVER  SEQUENCES

Fig.

 5

  Effect

  of

  duty

  cycle on spiking.

Z

o

200 

100

I

  1 2 3 4 5 6 7 8 9 1

Page 4: Effect of Duty Cycle on Catalytic Thruster Degradation_archive

8/19/2019 Effect of Duty Cycle on Catalytic Thruster Degradation_archive

http://slidepdf.com/reader/full/effect-of-duty-cycle-on-catalytic-thruster-degradationarchive 4/6

M A Y - JU N E

  1981

C A T A L Y T IC T H R U S T E R D E G R A D A T I O N

219

Pressure  spiking  has been

  shown

  to be

  more than

  just  a

curiosity; it can have a  significant  im pact on thruster  life  and

performance. Experiments

  have shown

5

  that  spiking  causes

pressure and temperature transients  which

  subject  catalyst

particles to

  severe

  impact

  loads,

  pressure  crushing,  an d

abrasion.

  These  effects  result in  particle  fracture and

generation   of  fines  at a  rate  dependent on magnitude and

number of spikes. The

  role that

  spiking  can play in catalyst

attrition  and performance has  been clearly  demonstrated  in

thruster

  testing

  (discussed in a

  later

  section) and by

  flight

experience. In the

  case

  of one

  flight

  thruster ,

  severe spiking

resulted in the rupture of a chamber  pressure  transducer line.

In   another  case,

  intermittent

  thruster valve  leakage was at-

tributed to

 spiking

 magnitudes greater than the

  feed

  pressure.

Equat ions

  were  derived

  to model the

  injector

  tube

  fluid

dynamics  resulting  from  pressure  spiking in the

  catalyst

  bed

and predictions were

 made

 regarding the

 transport

 of

  particle

contaminat ion  back to the  valve  seat  area.  The analysis

verified  that the duration and

  magnitude

  of the  spikes  ob-

served

  was  sufficient  to

  reverse

  th e

  injector

  flow  an d  cause

valve

 contaminat ion.

Injector Tube Thermal Effects

A general  review  of

  thruster

  flow  anomalies due to

  con-

tamin ants in the

 propellant

  an d

  feed

  system was reported in a

recent

 paper .

9

  That  review

  covered

 instances

 of tube

 plugging

an d  flow

  reduction

  as  well  as

  thruster

  valve  leakage  fo r

primarily 0.1-Ibf

  (0.44-N)  level  thrusters. This  paper

  will

examine

  thermal

  anomalies that

  have

  been

  observed on

  5-lbf

(22-N)

  thrusters

  an d  that  ar e  associated  with  contaminant

deposition in injector

  tubes.

 M o st of the deposition i s believed

to occur  after a pulse is

 completed,

  as

 propellant

 evaporation

in

  the small

  injector  passages

  leads to an accumulation of

soluble contam inants on the tube walls . Hydrazine

 impu ri t ies

that

  have

  been implicated are the nonvolatiles,

  with

  some

experience

  indicating  a predominance of  silicon

  compounds .

The

 roughening

 of the tube  surface  can lead to an increase in

heat  t ransfer  to the  propellant,  resulting  in boiling and two-

phase  f low.  This

  thermal

 choking

  can cause sharp

 reductions

u.uz

g

l/>

 

V4-

.0

~ 0.01

Q

O

U

~ 0.0

03

I

P  -0.01

0

- -0.02

0%

< b

00°

0 0 00

0

0

00

o °

 

0

I

  I I I I

100

500

00   300 400

PULSES (THOUSANDS)

Fig.

 7

  Impulse

 b it

 degradation.

that

  involved

  0.025-,0.050-, an d

 0.100-s

 pulsing

 at a rate of 1

per second. This pulsing w as

 performed

  subsequent to steady-

state  firings  which resulted in high injector

  temperatures

  of

approximately 775°F (686 K)  prior  to the pulsing. On two

occasions

 when  th e initial

  temperature

 was higher

  than

  usual

[approximately 865°F

 (736 K )]  and the feed

  pressure

 was low

[approximately 110

  psia

  (758  kPa)],  the thruster chamber

pressure and impulse

  bits

  were  sharply reduced during the

pulsing;

 a

  significantly

  lower

  nozzle

 temperature at the end of

each

  sequence was

  indicative

  of

  reduced  flow

  through the

engine. On subsequent  pulsing health checks where the initial

injector  temperature was lower, the

  chamber

  pressures and

impulse bits returned

  to  normal .  It  appears that  when  th e

initial

 injector

  temperature is

 above

 a certain level, the pulsing

flow

  rate is reduced by boiling in the  passages and thu s is not

sufficient  to

  cool

  th e  injector  an d

  allow impulse recovery

  to

norm al values. The

 occurrence

 of these phenom ena illustrates

th e  importance  of evaluating  each  mission

  application

  fo r

dut y cycles that might cause adverse thruster

 performance.

Page 5: Effect of Duty Cycle on Catalytic Thruster Degradation_archive

8/19/2019 Effect of Duty Cycle on Catalytic Thruster Degradation_archive

http://slidepdf.com/reader/full/effect-of-duty-cycle-on-catalytic-thruster-degradationarchive 5/6

220

H.C. H E A R N

J. SPACECRAFT

Q

01

CO

20

10

THRUSTER

  A

10

20

30

50

TOTAL

  IMPULSE

 (lb-sec,  THOUSANDS)

Fig. 8 Duty-cycle  sensitivity—thruster A .

 

30

20

10

THRUSTER  B

III

10 20 30 40 50

T O T A L   I M P U L S E

  (l b

f

-sec,  T H O U S A N D S )

Fig.

 9

  Duty-cycle

 sensitivity—thruster

 B .

thermal

  choking.

 Although  the possibility of some change in

u

Q

50

40

30

20

10

THRUSTER C

10

20

30 40

50

TOTAL

  IMPULSE

 (lb

f

-sec,

  THOUSANDS)

Fig. 10

  Duty-cycle sensitivity—thruster

 C .

formance

  degradation and

  early

  test termination. Although

thruster

  C was not tested to these

  specific  duty cycles,

  th e

A F R P L

  test

  at

  2500

 pulses/day

  showed

  that  it was probably

the best of the three

 thrusters

 for the Type I

 duty cycle.

Type II is a 90-min

  duty cycle involving

  a

  mixture

  of

minimum

  impulse bits

 an d

  longer

  pulse widths

 while

 the

  level

of activity

  an d

  thruster

  temperature is much

  lower

  than  Type

I. Type Ila

 involved

  an  average

  rate

  of  about  65 0

 pulses/day

and a

 temperature range

  of

 275-650°F (408-617

  K).

 Type lib

had a

 rate

 of 4 20 pulses/day and a temperature range of 225-

350°F

  (381-450

  K). It is  first  seen  from  th e  figures  tha t  th e

thrusters exhibit a higher catalyst loss rate on the Type-II duty

cycle

  than

  on  Type  I; this is  consistent

  with

  the lower  tem-

Page 6: Effect of Duty Cycle on Catalytic Thruster Degradation_archive

8/19/2019 Effect of Duty Cycle on Catalytic Thruster Degradation_archive

http://slidepdf.com/reader/full/effect-of-duty-cycle-on-catalytic-thruster-degradationarchive 6/6

M A Y - JU N E   1981

CATALYTIC THRUSTER

 DEGRADATION

221

occurred  after  valve  closure,

  and the

  total  delivered impulse

w as  4 0

greater

 than normal.

 Analysis

 showed

 that  flow  into

the thruster was

  higher

  due to the

  lower

  pressure in the

chamber

 and the

 liquid

 hydrazine

 tha t

 collected in the thruste r

subsequently

  decomposed and

  resulted

  in a late and ab-

normally

 high impulse bit.

The test results described here

  reveal

 a situation in  which  a

dif ferent

  thruster

  design was  more  suitable for

  each

  of the

three  types of  duty cycle.

  Conversely,

  it was not

  possible

  to

select a

 single

 design

  that

  would

 perform

  satisfactorily

  for all

duty

  cycles.

  For example, the change in

  duty cycle

  showed

that

  one

  thruster design

  w as

 mor e

 prone to

  pressure spiking;

this  led to a  sharp  increase in the  catalyst  attrition  rate,

creating an increase in

  flow

  impedance as

  well

  as  hazardous

operat ion.  Although the

  results

  obtained here are not

necessarily

  transferrable

  to

 other

  thruster

 designs, they serve

to illustrate the role

  that

  duty  cycle  plays in thruster per-

formance and

  life.  They

  also

  help

  to explain why

 claims

  of

duty cycle insensitivity

  have been greeted  with  skepticism

  in

cases  where

 a particular thruster

  design

 has not

  actually

 been

tested to a

 variety

 o f duty cycles.

Conclusions

The degradation and types of anomalies

  experienced

  in

hydrazine catalytic thrusters are determined by the mission

duty  cycle  and length of

  operat ion.

  Experience  with 5-lbf

thrusters

 shows

 that the thermal

 cycling

  and low-temperature

operation  inherent in three-axis stabilization

  duty cycles

  can

be a source of concern  with  regard to catalyst  attrit ion,  bed

compact ion,

 pressure spiking, and injector tube effects.

  These

degradation   modes

  ar e

  influenced

  by operating

  temperature,

feed

  pressure,

  pulse width, and pulse  frequency  and are

themselves

  interdependent. It is  significant  that  a particular

thruster

  design

  may be  greatly  affected  by a  change  in

  duty

cycle,

  an d  that  a design

  shown

  to be superior in one ap-

plication  may not be optimum should

  requirements

  change.

Therefore,

  testing over a

  variety

  of  du ty

  cycles

  is required to

demonstrate  relative insensitivity to mission app lication.

A c k n o w l e d g m e n t

The p reparat ion  of

  this

  paper was aided by W. Zeber, who

provided information and

  helpful

  comments and who has

made

  significant

  contributions

  in the  areas  of  thruster

spiking,

 injector-tube

 effects,  and thruster life prediction.

References

^ackheim,

  R.L., Carlson, R.A.,  M ackl in ,

  H., and  Lee,  D.H.,

  Evolution of a S tandardized M onoprope l lan t

  Rocket Engine Design

Concept,

AIAA/SAE  10th

  Propulsion Conference,

  Paper

  74-1133,

Oct.

 1974.

2

Pylan t ,  A.J.,  Evanson,  B.E. , and Hood,  J.F.,  Product  Im -

provement of a 5-Pound

  Thrust

  R C S

  Reaction

  Engine  Module,

AIAA/SAE 10th Propulsion Conference, Paper 74-1137, Oct. 1974.

3

H o l c o mb ,  L .,  M a t ts o n ,  L. , and Oshico, R. ,

  Ef fects

  of  Aniline

Impurities on  M onopropel lant  Hydrazine Thruster  Performance,

Journal of

  Spacecraft

  and

 Rockets Vol. 14,

 M arc h

 1977, pp.

  141-148.

4

Ri c h a r d s ,

  R.E.  and Grabbi ,  R .,

  0.2Ib

  M onoprope l lan t

Hydrazine Thruster

  Test

  Results  with  M IL-Grade and  Viking-Grade

Propellant,

AIAA/SAE  12th

 Propuls ion

 C onference ,

 Paper 76-657,

July

 1976.

5

Tavlor, W.F.

  et

  al., External

  Catalyst

  Breakup

  Phenomena,

AFRPL-TR-76-47, June 1976.

6

M o s el ey ,  V . A . ,

  Fricke,

  H.D.,

  Hin te rman ,

  T.H.,

  Long

  Life

Monopropellant Design Criteria, AFRPL-TR-75-45 , July 1975.

7

Saenz, A., Life  Eva lua t ion of  Long-Life

  Hydrazine

  Engines ,

JANNA F Propuls ion

 M ee ting,

 Vol. 3,

 CPIA

 Pub. 300, July 1979.

8

Greer,

  H.,  Vacuum

  Startup of Reactors for Catalytic

  Decom-

position

  of

  Hydrazine, Journal of

  Spacecraft

  a nd

 Rockets Vol. 7,

M ay 1970,

 pp. 522-528.

9

Schre ib ,  R.,

  Flow  Anomalies in

  Small Hydrazine  Thrusters,

AIAA/SAE/ASME  15th

  Joint Propulsion

  Conference ,

  Paper  79 -

1303, June 1979.

10

Technical  Interchange

  M eeting

  a t LM S C ,

  Rocket Research

  C o.

presentation,

 Docum ent No. 79-H-245,

 Feb.  16, 1979.