eem 3230 power system analysissezaitaskin.cbu.edu.tr/wp-content/uploads/2020/02/24_02_2020_1.pdf ·...

1

Upload: others

Post on 12-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EEM 3230 POWER SYSTEM ANALYSISsezaitaskin.cbu.edu.tr/wp-content/uploads/2020/02/24_02_2020_1.pdf · Neyrpic Kelebek vana 2.200 mm.(2,2 m. 26,8 /sn. 25 M VA 154 KUVVET TÜNELi 4.800

EEE 3230

POWER SYSTEM ANALYSIS

Lecture 2: Renewable Energy

1

Sezai Taskin, Ph.D.

[email protected]

Page 2: EEM 3230 POWER SYSTEM ANALYSISsezaitaskin.cbu.edu.tr/wp-content/uploads/2020/02/24_02_2020_1.pdf · Neyrpic Kelebek vana 2.200 mm.(2,2 m. 26,8 /sn. 25 M VA 154 KUVVET TÜNELi 4.800

Hydroelectricity4

Generation of electricity based on water power is called hydroelectricity.

Water potential or kinetic energy can be used to this purpose due to water height or flow respectively.

Hydroelectric plants:

Require no fuel have low operation/maintenance costs negligible contribution to air pollution allow parallel operation like navigation, flood control, irrigation, etc.

Page 3: EEM 3230 POWER SYSTEM ANALYSISsezaitaskin.cbu.edu.tr/wp-content/uploads/2020/02/24_02_2020_1.pdf · Neyrpic Kelebek vana 2.200 mm.(2,2 m. 26,8 /sn. 25 M VA 154 KUVVET TÜNELi 4.800

4

Hydroelectric power plant representation

There are 6 fundamental components in this type of power plant:

dam, reservoir, penstock, turbine, generator and governor.

Othersecondary elements are:

machine room, internal pipelines, and oscillation tanks

Page 4: EEM 3230 POWER SYSTEM ANALYSISsezaitaskin.cbu.edu.tr/wp-content/uploads/2020/02/24_02_2020_1.pdf · Neyrpic Kelebek vana 2.200 mm.(2,2 m. 26,8 /sn. 25 M VA 154 KUVVET TÜNELi 4.800

4

Generated electric energy of an impoundment power plant depends on some key parameters like:

the water behind the dam,

reservoir capacity,

flow rate of the water inside the penstock,

efficiencies of penstock, turbine, and generator

Hydroelectric power plant parameters

Page 5: EEM 3230 POWER SYSTEM ANALYSISsezaitaskin.cbu.edu.tr/wp-content/uploads/2020/02/24_02_2020_1.pdf · Neyrpic Kelebek vana 2.200 mm.(2,2 m. 26,8 /sn. 25 M VA 154 KUVVET TÜNELi 4.800

4

Page 6: EEM 3230 POWER SYSTEM ANALYSISsezaitaskin.cbu.edu.tr/wp-content/uploads/2020/02/24_02_2020_1.pdf · Neyrpic Kelebek vana 2.200 mm.(2,2 m. 26,8 /sn. 25 M VA 154 KUVVET TÜNELi 4.800

4

Page 7: EEM 3230 POWER SYSTEM ANALYSISsezaitaskin.cbu.edu.tr/wp-content/uploads/2020/02/24_02_2020_1.pdf · Neyrpic Kelebek vana 2.200 mm.(2,2 m. 26,8 /sn. 25 M VA 154 KUVVET TÜNELi 4.800

4

Page 8: EEM 3230 POWER SYSTEM ANALYSISsezaitaskin.cbu.edu.tr/wp-content/uploads/2020/02/24_02_2020_1.pdf · Neyrpic Kelebek vana 2.200 mm.(2,2 m. 26,8 /sn. 25 M VA 154 KUVVET TÜNELi 4.800

4

Page 9: EEM 3230 POWER SYSTEM ANALYSISsezaitaskin.cbu.edu.tr/wp-content/uploads/2020/02/24_02_2020_1.pdf · Neyrpic Kelebek vana 2.200 mm.(2,2 m. 26,8 /sn. 25 M VA 154 KUVVET TÜNELi 4.800

4

Page 10: EEM 3230 POWER SYSTEM ANALYSISsezaitaskin.cbu.edu.tr/wp-content/uploads/2020/02/24_02_2020_1.pdf · Neyrpic Kelebek vana 2.200 mm.(2,2 m. 26,8 /sn. 25 M VA 154 KUVVET TÜNELi 4.800

4

Turbine types

Some known reaction turbine designs are the Francis and Kaplan turbines, being the first suitable for mid to high heads (80m – 500m) and the last one for low heads (1.5m – 80m)

(a) Impulse Turbine (b) Reaction turbine

Page 11: EEM 3230 POWER SYSTEM ANALYSISsezaitaskin.cbu.edu.tr/wp-content/uploads/2020/02/24_02_2020_1.pdf · Neyrpic Kelebek vana 2.200 mm.(2,2 m. 26,8 /sn. 25 M VA 154 KUVVET TÜNELi 4.800

4

The hydroelectric power flow from the reservoir to the generator.

Power flow of a hydroelectric plant

Page 12: EEM 3230 POWER SYSTEM ANALYSISsezaitaskin.cbu.edu.tr/wp-content/uploads/2020/02/24_02_2020_1.pdf · Neyrpic Kelebek vana 2.200 mm.(2,2 m. 26,8 /sn. 25 M VA 154 KUVVET TÜNELi 4.800

4

Page 13: EEM 3230 POWER SYSTEM ANALYSISsezaitaskin.cbu.edu.tr/wp-content/uploads/2020/02/24_02_2020_1.pdf · Neyrpic Kelebek vana 2.200 mm.(2,2 m. 26,8 /sn. 25 M VA 154 KUVVET TÜNELi 4.800

4