ee292: fundamentals of eceb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท...

21
http://www.ee.unlv.edu/~b1morris/ee292/ EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 19 121030

Upload: others

Post on 18-Sep-2020

22 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

http://www.ee.unlv.edu/~b1morris/ee292/

EE292: Fundamentals of ECE

Fall 2012

TTh 10:00-11:15 SEB 1242

Lecture 19

121030

Page 2: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Outline

โ€ข Review

โ–ซ Phasors

โ–ซ Complex Impedance

โ€ข Circuit Analysis with Complex Impedance

2

Page 3: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Phasors

โ€ข A representation of sinusoidal signals as vectors in the complex plane

โ–ซ Simplifies sinusoidal steady-state analysis

โ€ข Given

โ–ซ ๐‘ฃ1 ๐‘ก = ๐‘‰1cos(๐œ”๐‘ก + ๐œƒ1)

โ€ข The phasor representation is

โ–ซ ๐‘ฝ1 = ๐‘‰1โˆ ๐œƒ1

โ€ข For consistency, use only cosine for the phasor

โ–ซ ๐‘ฃ2 ๐‘ก = ๐‘‰2 sin ๐œ”๐‘ก + ๐œƒ2 = ๐‘‰2 cos ๐œ”๐‘ก + ๐œƒ2 โˆ’ 90ยฐ =

๐‘ฝ2 = ๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ)

3

Page 4: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Adding Sinusoids with Phasors

1. Get phasor representation of sinusoids

2. Convert phasors to rectangular form and add

3. Simplify result and convert into phasor form

4. Convert phasor into sinusoid

โ–ซ Remember that ๐œ” should be the same for each sinusoid and the result will have the same frequency

4

Page 5: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Example 5.3 โ€ข ๐‘ฃ1 ๐‘ก = 20 cos ๐œ”๐‘ก โˆ’ 45ยฐ

โ–ซ ๐‘ฝ1 = 20โˆ  โˆ’45ยฐ

โ€ข ๐‘ฃ2 ๐‘ก = 10 sin ๐œ”๐‘ก + 60ยฐ

โ–ซ ๐‘ฝ2 = 10โˆ  60ยฐ โˆ’ 90ยฐ =

10โˆ  โˆ’30ยฐ

โ€ข Calculate

โ–ซ ๐‘ฝ๐‘  = ๐‘ฝ1 + ๐‘ฝ2

5

Page 6: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Phasor as a Rotating Vector โ€ข ๐‘ฃ ๐‘ก = ๐‘‰๐‘š cos ๐œ”๐‘ก + ๐œƒ =

๐‘…๐‘’{๐‘‰๐‘š๐‘’๐‘— ๐œ”๐‘ก+๐œƒ }

โ€ข ๐‘‰๐‘š๐‘’๐‘— ๐œ”๐‘ก+๐œƒ is a complex vector

that rotates counter clockwise at ๐œ” rad/s

โ€ข ๐‘ฃ(๐‘ก) is the real part of the vector

โ–ซ The projection onto the real axis of the rotating complex vector

6

Source: Wikipedia

Page 7: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Phase Relationships โ€ข Given

โ–ซ ๐‘ฃ1 ๐‘ก = 3 cos ๐œ”๐‘ก + 40ยฐ

โ–ซ ๐‘ฃ2 ๐‘ก = 4 cos ๐œ”๐‘ก โˆ’ 20ยฐ

โ€ข In phasor notation

โ–ซ ๐‘ฝ1 = 3โˆ  40ยฐ

โ–ซ ๐‘ฝ2 = 4โˆ  โˆ’20ยฐ

โ€ข Since phasors rotate counter clockwise

โ–ซ ๐‘ฝ1 leads ๐‘ฝ2 by 60ยฐ

โ–ซ ๐‘ฝ2 lags ๐‘ฝ1 by 60ยฐ

โ€ข Phasor diagram

7

Page 8: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Complex Impedance

โ€ข Previously we saw that resistance was a measure of the opposition to current flow

โ–ซ Larger resistance less current allowed to flow

โ€ข Impedance is the extension of resistance to AC circuits

โ–ซ Inductors oppose a change in current

โ–ซ Capacitors oppose a change in voltage

โ€ข Capacitors and inductors have imaginary impedance called reactance

8

Page 9: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Resistance

โ€ข From Ohmโ€™s Law

โ–ซ ๐‘ฃ ๐‘ก = ๐‘…๐‘– ๐‘ก

โ€ข Extend to an impedance form for AC signals

โ–ซ ๐‘ฝ = ๐‘๐‘ฐ

โ€ข Converting to phasor notation for resistance

โ–ซ ๐‘ฝ๐‘… = ๐‘…๐‘ฐ๐‘…

โ–ซ ๐‘… =๐‘ฝ๐‘…

๐‘ฐ๐‘…

โ€ข Comparison with the impedance form results in

โ–ซ ๐‘๐‘… = ๐‘… โ–ซ Since ๐‘… is real, the impedance for a resistor is purely

real

9

Page 10: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Inductance โ€ข I/V relationship

โ–ซ ๐‘ฃ๐ฟ ๐‘ก = ๐ฟ๐‘‘๐‘–๐ฟ(๐‘ก)

๐‘‘๐‘ก

โ€ข Assume current

โ–ซ ๐‘–๐ฟ ๐‘ก = ๐ผ๐‘š sin ๐œ”๐‘ก + ๐œƒ

โ–ซ ๐‘ฐ๐ฟ = ๐ผ๐‘šโˆ  ๐œƒ โˆ’๐œ‹

2

โ€ข Using the I/V relationship

โ–ซ ๐‘ฃ๐ฟ ๐‘ก = ๐ฟ๐œ”๐ผ๐‘š cos ๐œ”๐‘ก + ๐œƒ

โ–ซ ๐‘ฝ๐ฟ = ๐œ”๐ฟ๐ผ๐‘šโˆ  ๐œƒ

โ–ซ Notice current lags voltage by 90ยฐ

โ€ข Using the generalized Ohmโ€™s Law

โ–ซ ๐‘๐ฟ =๐‘ฝ๐ฟ

๐‘ฐ๐ฟ=

๐œ”๐ฟ๐ผ๐‘šโˆ  ๐œƒ

๐ผ๐‘šโˆ  ๐œƒโˆ’๐œ‹

2

= ๐œ”๐ฟโˆ ๐œ‹

2= ๐‘—๐œ”๐ฟ

โ–ซ Notice the impedance is completely imaginary

10

Page 11: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Capacitance โ€ข I/V relationship

โ–ซ ๐‘–๐ถ ๐‘ก = ๐ถ๐‘‘๐‘ฃ๐ถ(๐‘ก)

๐‘‘๐‘ก

โ€ข Assume voltage

โ–ซ ๐‘ฃ๐‘ ๐‘ก = ๐‘‰๐‘š sin ๐œ”๐‘ก + ๐œƒ

โ–ซ ๐‘ฝ๐ถ = ๐‘‰๐‘šโˆ  ๐œƒ โˆ’๐œ‹

2

โ€ข Using the I/V relationship

โ–ซ ๐‘–๐ถ ๐‘ก = ๐ถ๐œ”๐‘‰๐‘š cos ๐œ”๐‘ก + ๐œƒ

โ–ซ ๐‘ฐ๐ถ = ๐œ”๐ถ๐‘‰๐‘šโˆ  ๐œƒ

โ–ซ Notice current leads voltage by 90ยฐ

โ€ข Using the generalized Ohmโ€™s Law

โ–ซ ๐‘๐ถ =๐‘ฝ๐ถ

๐‘ฐ๐ถ=

๐‘‰๐‘šโˆ  ๐œƒโˆ’๐œ‹

2

๐œ”๐ถ๐‘‰๐‘šโˆ  ๐œƒ=

1

๐œ”๐ถโˆ  โˆ’

๐œ‹

2= โˆ’๐‘—

1

๐œ”๐ถ=

1

๐‘—๐œ”๐ถ

โ–ซ Notice the impedance is completely imaginary

11

Page 12: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Circuit Analysis with Impedance

โ€ข KVL and KCL remain the same

โ–ซ Use phasor notation to setup equations

โ€ข E.g.

โ€ข ๐‘ฃ1 ๐‘ก + ๐‘ฃ2 ๐‘ก โˆ’ ๐‘ฃ3 ๐‘ก = 0

โ€ข ๐‘ฝ1 + ๐‘ฝ2 โˆ’ ๐‘ฝ3 = 0

12

Page 13: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Steps for Sinusoidal Steady-State Analysis

1. Replace time descriptions of voltage and current sources with corresponding phasors. (All sources must have the same frequency)

2. Replace inductances by their complex

impedances ๐‘๐ฟ = ๐œ”๐ฟโˆ ๐œ‹

2= ๐‘—๐œ”๐ฟ. Replace

capacitances by their complex impedances

๐‘๐ถ =1

๐œ”๐ถโˆ  โˆ’

๐œ‹

2=

1

๐‘—๐œ”๐ถ. Resistances have

impedances equal to their resistances. 3. Analyze the circuit by using any of the

techniques studied in Chapter 2, and perform the calculations with complex arithmetic

13

Page 14: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Example 5.5

โ€ข Find voltage ๐‘ฃ๐‘(๐‘ก) in steady-state

โ€ข Find the phasor current through each element

โ€ข Construct the phasor diagram showing currents and ๐‘ฃ๐‘ 

14

Page 15: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Convert Sources and Impedances โ€ข Voltage source

โ–ซ ๐‘ฝ๐‘  = 10โˆ  โˆ’90ยฐ

โ–ซ ๐œ” = 1000

โ€ข Inductance

โ–ซ ๐‘๐ฟ = ๐‘—๐œ”๐ฟ = j 1000 0.1 =j100ฮฉ

โ€ข Capacitance

โ–ซ ๐‘๐ถ =1

๐‘—๐œ”๐ถ=

1

๐‘—1000(10๐œ‡)=

106

๐‘—104=

100

๐‘—ฮฉ

15

Page 16: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Find Voltage ๐‘ฃ๐‘(๐‘ก) โ€ข Find voltage by voltage divider

โ€ข ๐‘ฝ๐ถ = ๐‘ฝ๐‘ ๐‘๐‘’๐‘ž

๐‘๐‘’๐‘ž+๐‘๐ฟ

โ€ข Equivalent impedance

โ€ข ๐‘๐‘’๐‘ž = ๐‘๐‘…||๐‘๐ถ

16

Page 17: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Phasor Diagram โ€ข Source current

โ€ข Capacitor current

โ€ข Resistor current

โ€ข Phasor diagram

17

Page 18: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

More AC Circuit Analysis

โ€ข Use impedance relationships and convert sinusoidal sources to phasors

โ€ข Techniques such as node-voltage and mesh-current analysis remain the same โ–ซ (Hambley Section 5.4)

โ€ข Thevenin and Norton equivalents are extended the same way โ–ซ (Hambley Section 5.6) โ–ซ Instead of a resistor and source, use an impedance

โ–ซ ๐‘๐‘ก =๐‘ฝ๐‘œ๐‘

๐‘ฐ๐‘ ๐‘

18

Page 19: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Example 5.6

โ€ข Use node-voltage to find ๐‘ฃ1(๐‘ก)

19

Page 20: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Convert to Phasors

โ€ข Sources

โ–ซ 2 sin 100๐‘ก = 2โˆ  โˆ’90ยฐ

โ–ซ โˆ’90ยฐ because of conversion to cosine from sine

โ–ซ ๐œ” = 100

โ–ซ 1.5 cos 100๐‘ก = 1.5โˆ  0ยฐ

โ€ข Inductor

โ–ซ ๐‘๐ฟ = ๐œ”๐ฟโˆ ๐œ‹

2= ๐‘—๐œ”๐ฟ = ๐‘—100 0.1 = ๐‘—10

โ€ข Capacitor

โ–ซ ๐‘๐ถ =1

๐œ”๐ถโˆ  โˆ’

๐œ‹

2=

1

๐‘—๐œ”๐ถ= โˆ’๐‘—

1

100 2000๐œ‡= โˆ’๐‘—5

20

Page 21: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfย ยท 2012. 10. 30.ย ยท ๐‘ฝ2=๐‘‰2โˆ (๐œƒ2โˆ’90ยฐ) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Use Node-Voltage Analysis โ€ข KCL @ 1

โ–ซ๐‘ฝ1

10+

๐‘ฝ1โˆ’๐‘ฝ2

โˆ’๐‘—5= 2โˆ  โˆ’90ยฐ

โ€ข KCL @ 2

โ–ซ๐‘ฝ2

๐‘—10+

๐‘ฝ2โˆ’๐‘ฝ1

โˆ’๐‘—5= 1.5โˆ  0ยฐ

โ€ข In standard form

โ€ข 0.1 + ๐‘—0.2 ๐‘ฝ1 โˆ’ ๐‘—0.2๐‘ฝ2 = โˆ’๐‘—2

โ€ข โˆ’๐‘—0.2๐‘ฝ1 + ๐‘—0.1๐‘ฝ2 = 1.5

โ€ข Solving for ๐‘ฝ1

โ€ข 0.1 โˆ’ ๐‘—0.2 ๐‘ฝ1 = 3 โˆ’ ๐‘—2

โ€ข Converting to phasor โ€ข 0.2236โˆ  โˆ’63.4ยฐ ๐‘ฝ1 = 3.6โˆ  โˆ’33.7ยฐ

โ€ข ๐‘ฝ1 = 16.1โˆ  29.7ยฐ

โ€ข Convert back to sinusoid

โ€ข ๐‘ฃ1 ๐‘ก = 16.1cos(100๐‘ก + 29.7ยฐ)

21