ee232lightwavedevices lecture14:quantumwelland ...ee232/sp17/lectures/ee232-14... · 2 ee232...

8
1 EE232 Lecture 14-1 Prof. Ming Wu EE 232 Lightwave Devices Lecture 14: Quantum Well and Strained Quantum Well Laser Reading: Chuang, Sec. 10.310.4 (There is also a good discussion in Coldren, Appendix 11) Instructor: Ming C. Wu University of California, Berkeley Electrical Engineering and Computer Sciences Dept. EE232 Lecture 14-2 Prof. Ming Wu Quantum Well Gain 1.4 1.6 1.8 2 2.2 2.4 2.6 1 10 6 0 1 10 6 xi eV QW Material Gain: g (!ω ) = C 0 e ! P !" cv 2 ρ r 2d (!ω ) f g (!ω ) C 0 = π e 2 n r c ε 0 m 0 2 ω e ! P !" cv 2 m 0 6 E p ρ r 2d ( E ) = m r * π ! 2 L z H ( E E en ) n=1

Upload: duongtuyen

Post on 31-Aug-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

1

EE232 Lecture 14-1 Prof. Ming Wu

EE 232 Lightwave DevicesLecture 14: Quantum Well andStrained Quantum Well Laser

Reading: Chuang, Sec. 10.3-­10.4(There is also a good discussion in Coldren, Appendix 11)

Instructor: Ming C. Wu

University of California, BerkeleyElectrical Engineering and Computer Sciences Dept.

EE232 Lecture 14-2 Prof. Ming Wu

Quantum Well Gain1.4 1.6 1.8 2 2.2 2.4 2.61-

0.5-

0

0.5

1

f_g xi 0.05eV, ( )f_g xi 0.1eV, ( )f_g xi 0.15eV, ( )f_g xi 0.2eV, ( )f_g xi 0.25eV, ( )f_g xi 0.3eV, ( )f_g xi 0.35eV, ( )f_g xi 0.4eV, ( )f_g xi 0.45eV, ( )

xieV

1.4 1.6 1.8 2 2.2 2.4 2.6

1- 106´

0

1 106´g xi 0.05eV, ( )g xi 0.1eV, ( )g xi 0.15eV, ( )g xi 0.2eV, ( )g xi 0.25eV, ( )g xi 0.3eV, ( )g xi 0.35eV, ( )g xi 0.4eV, ( )g xi 0.45eV, ( )

xieV

QW Material Gain:

g(!ω) =C0 e! ⋅P!"cv

2

ρr2d (!ω) fg (!ω)

C0 =πe2

nrcε0m02ω

e! ⋅P!"cv

2

≈m0

6Ep

ρr2d (E) =

mr*

π!2LzH (E − Een )

n=1

2

EE232 Lecture 14-3 Prof. Ming Wu

Advantages of Quantum Well Lasers(1) Low threshold current density:Compare fundamental material property

Transparency current density

10 nmSince ~100 nm

10%(

bulkbulk trtr active

QWQW trtr z

QWbulk QW tr ztr tr bulk

tr active

qNJ d

qNJ L

J LN NJ d

t

t

®

=

=

» Þ =

2) Higher differential gain Larger bandwidth:

Resonance frequency:

(3) Lower chirp:Smaller wavelength shift when the laser is directly modulated

gR

p

v aS gaN

wt

®

¶= µ =

EE232 Lecture 14-4 Prof. Ming Wu

Transparency Carrier Concentration in Bulk

3/23/2*3/2

2 2

At transparency: or

Let

Electron concentration:

4 422 3 3

Hole concentration:

C V C V

C C V V

C C V V

B B

C C

e B n CC

B

V

F F E EF E F E

F E F Ek T k T

F E

m k T F EN Nk T

F E

pp p p

- = -- = -

- -D = =

>

æ öæ ö -= = × Dç ÷ç ÷

è ø è ø>

Q

hQ 1

3/2*

2 2

3/2*3/2

*

* *0 0

17 3

22

4 Solve 3

For GaAs ( 0.067 , 0.5 )

2.15, 9 10 cm

V V

B

h

F Ek Th B

V

h

e

e h

m k TP e N e

mN P em

m m m mN

pp

p

--

-D

-D

-

æ ö= =ç ÷

è ø

æ ö= Þ D = Þ Dç ÷

è ø= =

D = = ´

h

EC

EV

CB

VB

FC

FV

Transparency Condition(Bernard-Duraffourg Inversion Condition)

C V gF F F ED = - =

3

EE232 Lecture 14-5 Prof. Ming Wu

Transparency Carrier Concentration in QWAt transparency: FC − FV = Ee1 − Eh1 or FC − Ee1 = FV − Eh1

Let Δ =FC − Ee1kBT

=FV − Eh1kBT

Electron concentration: ∵FC > Ee1

N =me*kBT

π!2Lz

FC − Ee1kBT

!

"##

$

%&&= NC

2d ⋅ Δ

Hole concentration: ∵FV > Eh1

P = mh*kBT

π!2Lze−FV −Eh1kBT = NV

2de−Δ

N = P ⇒ Δ =mh*

me*e−Δ ⇒ Solve Δ

For GaAs (me* = 0.067m0 ,mh

* = 0.5m0 )

Δ =1.56, N = NC2d ⋅ Δ =1018 cm−3

Note: N is independent of Lz

EC

EV

CB

VB

FC

FV

Transparency Condition(Bernard-Duraffourg Inversion Condition)

C V gF F F ED = - =

EE232 Lecture 14-6 Prof. Ming Wu

Reduction of Lasing Threshold Current Density by Lowering Valence Band Effective Mass

• Yablonovitch, E.;; Kane, E., "Reduction of lasing threshold current density by the lowering of valence band effective mass," Lightwave Technology, Journal of , vol.4, no.5, pp. 504-­506, May 1986

• Yablonovitch, E.;; Kane, E.O., "Band structure engineering of semiconductor lasers for optical communications," Lightwave Technology, Journal of , vol.6, no.8, pp.1292-­1299, Aug 1988

1 1

Bernard-Duraffourg Condition:

C V e hF F E Ew- ³ ³ -h

* *

Ordinary Semiconductor6

High transparency carrier concentration

h em m» * *

Ideal Semiconductor

Low transparency carrier concentration

h em m»

4

EE232 Lecture 14-7 Prof. Ming Wu

Bernard-­Duraffourg Condition in Quantum Well

Bernard-Duraffourg Condition:FC − FV = E − Eh1(a) mh

* >me* (as in most semiconductors)

FV > Eh1FC ≫ Ee1

Ntr = ρe2d (FC − Ee1) =

me*

π!2Lz(FC − Ee1)

Large Ntr → High threshold current

(b) mh* =me

* (Ideal semiconductor)

FV = Eh1FC = Ee1

Ntr =me

*

π!2LzfC (E)dE

Ee1

∫ is low

EE232 Lecture 14-8 Prof. Ming Wu

Transparency Carrier Concentration for Ordinary Semiconductor

( )

1

1

* *1 1

*

2

*

20

*

2 0

*

2

*0

17 3

(b) Ideal Semiconductor

=

1

11

1

ln(1 )

ln 2

For =0.067

4.6 10

e

e B

h e V h C e

etr E E

z E k T

B ex

z

xB e

z

B e

z

e

tr

m m F E F E

mN dEL

ek Tm dx

L e

k Tm eL

k TmL

m m

N cm

p

p

p

p

¥

-

¥

¥-

-

= Þ =

=

+

=+

= - +

=

» ´

ò

ò

h

h

h

h1 1

Transparency Condition:

C V e hF F E E- = -

5

EE232 Lecture 14-9 Prof. Ming Wu

Transparency Carrier Concentration for Ordinary Semiconductor

1 1

Transparency Condition:

C V e hF F E E- = -

*2

1 2

*2

2

*

*

* *

*

(a) Ordinary Semiconductor

( )

To estimate , note that

For 6 (in 1.55 m laser), 1.43

1.43

B B

B

d etr e C e

z

k T k Td B hV

z

k T e

B h

h e

B

B etr

mN F ELN P

k TmP N e eL

mN P ek T m

m mk Tk TmN

rp

p

µ

p

-D -D

-D

= - = D

D =

= =

D= Þ =

»D =

=

h

h

h2zL

EE232 Lecture 14-10 Prof. Ming Wu

Effective Mass Asymmetry Penalty

2 3 2 3

1.43 2ln 2

Threshold current density reduction is more than a factor of 2:

: Shockley-Read-Hall nonradiative recombination lifetime

OrdinarytrIdealtr

th nonrad rad Auger

th

NN

J J J JJ NAN BN CN BN CNqd

J

tt

= =

= + +

= + + = + +

3

is greatly reduced when is lowered

(1) is reduced by 8x(2) C is also reduced due to band structure change by strain

Auger N

N

6

EE232 Lecture 14-11 Prof. Ming Wu

Bandgap-­vs-­Lattice Constant of Common III-­V Semiconductors

Compressive Strain

Tensile Strain Lattice Matched

In0.53Ga0.47As

EE232 Lecture 14-12 Prof. Ming Wu

Qualitative Band Energy Shifts Under Strain

C

HH, LH

C

SO

SO SO

HH, LHHH

LH

CCC

HH, LHLHHH

SO SO

Compressive Strain

Tensile Strain

CEd

Pe-

Qe+

Qe-

Hydrostatic Strain

BiaxialStrain

BiaxialStrain

Hydrostatic Strain

7

EE232 Lecture 14-13 Prof. Ming Wu

Strain and Stress

0

0

0

12

11

12 11

( )

: lattice constant of InP0 : compressive strain0 : tensile strain

2

: Compliance Tensor

0.5

xx yy

zz

ij

a a xa

a

CC

CC C

e e e

ee

e e e^

-= = =

<ìí >î

= = -

»

11 12 12

12 11 12

12 12 11

12 12 11

12

11

Biaxial stress:

0 0

2

xx xx

yy yy

zz zz

xx yy

zz

xx yy zz

zz

C C CC C CC C C

C C CCC

s es es e

s s s

se e e

e e

é ù é ù é ùê ú ê ú ê ú=ê ú ê ú ê úê ú ê ú ê úë û ë û ë û

= =

=Þ + + =

= -

EE232 Lecture 14-14 Prof. Ming Wu

Band Edge Shift

12

11

12

11

12

11

( )

( ) 2 1

( ) 2 1

( ) 1 22

: hydrostatic potential :

C g C

HH

LH

C C xx yy zz C

V xx yy zz V

xx yyzz

C V

E E x EE P QE P Q

CE a aC

CP a aC

CQ b bC

a a ab

e e

e e

e

e

d

d e e e e

e e e e

e ee e

= +

= - -

= - +

æ ö= + + = -ç ÷

è øæ ö

= - + + = - -ç ÷è ø

+ æ ö= - - = - +ç ÷

è ø= -

shear potential

8

EE232 Lecture 14-15 Prof. Ming Wu

Strain Parameters in III-­V(Coldren, p.535)

EE232 Lecture 14-16 Prof. Ming Wu

Band-­Edge Profile and SubbandDispersion