ee221 circuits iieebag/chapter 14- frequency response.pdf · chapter 14 frequency response. 2...

36
1 EE221 Circuits II Chapter 14 Frequency Response

Upload: others

Post on 02-Apr-2020

46 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

1

EE221 Circuits II

Chapter 14Frequency Response

Page 2: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

2

Frequency ResponseChapter 14

14.1 Introduction14.2 Transfer Function14.3 Bode Plots14.4 Series Resonance14.5 Parallel Resonance14.6 Passive Filters14.7 Active filters

Page 3: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

3

What is Frequency Response of a Circuit?

It is the variation in a circuit’s behavior with change in signal

frequency and may also be considered as the variation of the gain

and phase with frequency.

14.1 Introduction

Page 4: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

4

14.2 Transfer FunctionThe transfer function H(ω) of a circuit is the frequency-dependent ratio of a phasor output Y(ω) (voltage or current ) to a phasor input X(ω) (voltage or current).

φωωωω ∠== |)(H|

)(X)(Y )(H

Page 5: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

5

14.2 Transfer Function Four possible transfer functions:

)(V)(V gain Voltage )(H

i

o

ωωω ==

)(I)(I gain Current )(H

i

o

ωωω ==

)(I)(V ImpedanceTransfer )(H

i

o

ωωω ==

)(V)(I AdmittanceTransfer )(H

i

o

ωωω ==

φωωωω ∠== |)(H|

)(X)(Y )(H

Page 6: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

6

14.2 Transfer Function

Example 1

For the RC circuit shown below, obtain the transfer function Vo/Vs and its frequency response.Let vs = Vmcosωt.

Page 7: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

7

14.2 Transfer Function

Solution:

The transfer function is

,

The magnitude is 2)/(11)(H

oωωω

+=

The phase isoωωφ 1tan−−=

1/RC=oω

RC j11

C j1/ RCj

1

VV)(H

s

o

ωωωω

+=

+==

Low Pass FilterLow Pass Filter

Page 8: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

8

14.2 Transfer Function

Example 2

Obtain the transfer function Vo/Vs of the RL circuit shown below, assuming vs = Vmcosωt. Sketch its frequency response.

Page 9: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

9

Solution

14.2 Transfer Function

:

The transfer function is

,

The magnitude is 2)(1

1)(H

ωω

ωo+

=

The phase isoω

ωφ 1tan90 −−°∠=

R/L=oω

L jR1

1L jR

LjVV)(H

s

o

ωω

ωω+

=+

==

High Pass FilterHigh Pass Filter

Page 10: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

10

14.4 Bode Plots

Bode Plots are semilog plots of the magnitude (in dB) and phase (in deg.) of the transfer function versus frequency.

HHHeH

dB

j

10log20== φ

Page 11: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

11

Bode Plot of Gain K

Page 12: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

12

Bode Plot of a zero (jω)

Page 13: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

13

Bode plot of a zero

Page 14: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

14

Bode Plot of a quadratic pole

Page 15: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

15

Summary

Page 16: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

Summary

Page 17: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

17

Example 1

Page 18: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

18

Example 2

Page 19: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

Example 3

Page 20: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

20

14.4 Series Resonance

Resonance is a condition in an RLC circuit in which the capacitive and inductive reactance are equal in magnitude, thereby resulting in purely resistiveimpedance.

)C

1L ( jRZω

ω −+=

Resonance frequency:

HzLC2

1f

rad/sLC1

o π

ω

=

= oro

Page 21: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

21

14.4 Series Resonance

The features of series resonance:

The impedance is purely resistive, Z = R;• The supply voltage Vs and the current I are in phase, so

cos θ = 1;• The magnitude of the transfer function H(ω) = Z(ω) is

minimum;• The inductor voltage and capacitor voltage can be much

more than the source voltage.

)C

1L ( jRZω

ω −+=

Page 22: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

22

14.4 Series Resonance

The frequency response of the resonance circuit current is )

C 1L ( jRZ

ωω −+=

22m

)C /1L (RV|I|I

ωω −+==

The average power absorbed by the RLC circuit is

RI21)(P 2=ω

The highest power dissipated The highest power dissipated occurs at resonance:occurs at resonance: R

V21)(P

2m=oω

Page 23: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

23

14 4 Series Resonance

Half-power frequencies ω1 and ω2 are frequencies at which the dissipated power is half the maximum value:

The half-power frequencies are obtained by setting Z equal

to √2 R.

4RV

R)2/(V

21)(P)(P

2m

2m

21 === ωω

LC1)

2LR(

2LR 2

1 ++−=ωLC1)

2LR(

2LR 2

2 ++=ω 21ωωω =o

Bandwidth BBandwidth B 12 B ωω −=

Page 24: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

24

Quality factor,

14.4 Series Resonance

CR1

RLQ

o

o

ωω

==

• The quality factor is the ratio of the resonant frequency to its bandwidth.

• If the bandwidth is narrow, the quality factor of the resonant circuit is high.

• If the band of frequencies is wide, the quality factor is low.

QLRB2ooωω===

The relationship between the B, Q and ωo:

Page 25: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

25

Example:

Page 26: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

26

14.5 Parallel Resonance

Resonance frequency:

Hzo LC21for rad/s

LC1

o πω ==

)L

1C ( jR1Y

ωω −+=

It occurs when imaginary part of Y is zeroIt occurs when imaginary part of Y is zero

Page 27: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

27

Summary of series and parallel resonance circuits:Summary of series and parallel resonance circuits:

14.5 Series Parallel Resonance

LC1

LC1

RC1or

RL

o

o

ωω RCor

LR

oo

ωω

Qoω

Qoω

2Q )

2Q1( 1 2 o

oωω ±+

2Q )

2Q1( 1 2 o

oωω ±+

2B

±oω 2B

±oω

characteristic Series circuit Parallel circuit

ωo

Q

B

ω1, ω2

Q ≥ 10, ω1, ω2

Page 28: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

28

14.5 Resonance Example 4

Calculate the resonant frequency of the circuit in the figure shown below.

rad/s2.179219

==ωAnswerAnswer::

Page 29: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

29

14.6 Passive Filters

• A filter is a circuit that is designed to pass signals with desired frequencies and reject or attenuate others.

• Passive filter consists of only passive element R, L and C.

• There are four types of filters.

Low Pass

High Pass

Band Pass

Band Stop

Page 30: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

Low-pass and high-pass filters

Page 31: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

Band-pass and band-reject filters

Page 32: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

32

Magnitude and Frequency Scaling

Example: 4th order low-pass filter

Corner Frequency: 1 rad/secResistance: 1Ω

Corner Frequency: 100π krad/secResistance: 10 kΩ

Page 33: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

33

Low Pass Filter (Active)

Page 34: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

34

High Pass Filter (Active)

Page 35: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

35

Band Pass Filter (Active)

Page 36: EE221 Circuits IIeebag/Chapter 14- Frequency Response.pdf · Chapter 14 Frequency Response. 2 Frequency Response Chapter 14 14.1 Introduction 14.2 Transfer Function ... 14.7 Active

36

Band Reject Filter (Active)