ee143%– fall%2016 microfabrication%technologies lecture7 ...ee143/fa16/lectures/lecture07-ion...

15
1 1 EE143 – Fall 2016 Microfabrication Technologies Lecture 7: Ion Implantation Reading: Jaeger Chapter 5 Prof. Ming C. Wu [email protected] 511 Sutardja Dai Hall (SDH) 2 Ion Implantation Overview Wafer is target in high energy accelerator Impurities “shot” into wafer Preferred method of adding impurities to wafers Wide range of impurity species (almost anything) Tight dose control (A few % vs. 2030% for high temperature predeposition processes) Low temperature process Expensive systems Vacuum system

Upload: others

Post on 10-May-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE143%– Fall%2016 Microfabrication%Technologies Lecture7 ...ee143/fa16/lectures/Lecture07-Ion Implantation.pdf2 3 Equipment ( ) I(t)dt nqA Q qr mV T =! = = 0 2 1 Implanted Dose 2

1

1

EE143  – Fall  2016Microfabrication  Technologies

Lecture  7:  Ion  ImplantationReading:  Jaeger  Chapter  5

Prof.  Ming  C.  Wu  

[email protected]

511  Sutardja Dai  Hall  (SDH)

2

Ion  Implantation  -­ Overview

• Wafer  is  target  in  high  energy  accelerator

• Impurities  “shot”  into  wafer

• Preferred  method  of  adding  impurities  to  wafers– Wide  range  of  impurity  species  (almost  anything)– Tight  dose  control  (A  few  %  vs.  20-­30%  for  high  temperature  pre-­deposition  processes)

– Low  temperature  process

• Expensive  systems

• Vacuum  system

Page 2: EE143%– Fall%2016 Microfabrication%Technologies Lecture7 ...ee143/fa16/lectures/Lecture07-Ion Implantation.pdf2 3 Equipment ( ) I(t)dt nqA Q qr mV T =! = = 0 2 1 Implanted Dose 2

2

3

Equipment( )

( )dttInqA

Q

qrmV

T

ò=

=

=

0

2

1 Dose Implanted

2 Field Magnetic

x q particle chargedon Force

B

BvF

4

Ion  Implantation

x

Blocking  maskSi

+ C(x) as-­implantdepth  profile

Depth  xEqual-­Concentrationcontours

During  implantation,  temperature  is  ambient.  Post-­implant  annealing  step  (>  900oC)  is  required  to  anneal  out  defects.

y

Page 3: EE143%– Fall%2016 Microfabrication%Technologies Lecture7 ...ee143/fa16/lectures/Lecture07-Ion Implantation.pdf2 3 Equipment ( ) I(t)dt nqA Q qr mV T =! = = 0 2 1 Implanted Dose 2

3

5

Advantages  of  Ion  Implantation

• Precise  control  of  dose  and  depth  profile

• Low-­temperature  process  (can  use  photoresist  as  mask)

• Wide  selection  of  masking  materials

• e.g.  photoresist,  oxide,  poly-­Si,  metal

• Less  sensitive  to  surface  cleaning  procedures

• Excellent  lateral  uniformity    (<  1%  variation  across  12”  wafer)

n+n+

Application  example:  self-­aligned  MOSFET  source/drain  regions

SiO2p-­Si

As+As+ As+

Poly  Si  Gate

6

Ion  Implantation  Energy  Loss  Mechanisms

Si++

Si

Si

e e

+ +Electronicstopping

Nuclearstopping

Crystalline  Si  substrate  damaged  by  collision

Electronic  excitation  creates  heat

Page 4: EE143%– Fall%2016 Microfabrication%Technologies Lecture7 ...ee143/fa16/lectures/Lecture07-Ion Implantation.pdf2 3 Equipment ( ) I(t)dt nqA Q qr mV T =! = = 0 2 1 Implanted Dose 2

4

7

Light  ions/at  higher  energy  à more  electronic  stopping

Heavier  ions/at  lower  energy  à more  nuclear  stopping

EXAMPLES  Implanting  into  Si:

Ion  Energy  Loss  Characteristics

H+

B+

As+

Electronic  stoppingdominates

Electronic  stoppingdominates

Nuclear  stoppingdominates

8

Simulation  of  50  keV Boron  implanted  into  Si

Page 5: EE143%– Fall%2016 Microfabrication%Technologies Lecture7 ...ee143/fa16/lectures/Lecture07-Ion Implantation.pdf2 3 Equipment ( ) I(t)dt nqA Q qr mV T =! = = 0 2 1 Implanted Dose 2

5

9

Model  for  blanket  implantation

( ) ( )

( ) pp

p

p

pp

RNdxxNQ

R

RRx

NxN

D=

=D

=úúû

ù

êêë

é

D

--=

ò¥

0

p

2

2

2= Dose

StraggleR

Range Projected

2exp

ProfileGaussian

p

10

Rp and  DRp values  are  given  in  tables  or  charts  e.g.  see  pp.  113  of  Jaeger

Projected  Range  and  Straggle  

20  nm

Page 6: EE143%– Fall%2016 Microfabrication%Technologies Lecture7 ...ee143/fa16/lectures/Lecture07-Ion Implantation.pdf2 3 Equipment ( ) I(t)dt nqA Q qr mV T =! = = 0 2 1 Implanted Dose 2

6

11

Selective  Implantation( ) ( ) ( )

( )

( ) solution ldimensiona-one is xNstraggle transverse

2221

,

=Dúúû

ù

êêë

é÷÷ø

öççè

æ

D+

-÷÷ø

öççè

æ

D-

=

=

^

^^

R

Rayerfc

RayerfcyF

yFxNyxN

Complementary  error  function:

𝒆𝒓𝒇𝒄 𝒙 = 𝟏 − 𝒆𝒓𝒇 𝒙 =𝟐𝝅�= 𝒆>𝒕𝟐𝒅𝒕A

𝒙

12

Transverse  (or  Lateral)  Straggle    (DRt or  DR^)  

DRt

DRt

DRp

𝚫𝑹𝒕𝚫𝑹D

> 𝟏

Page 7: EE143%– Fall%2016 Microfabrication%Technologies Lecture7 ...ee143/fa16/lectures/Lecture07-Ion Implantation.pdf2 3 Equipment ( ) I(t)dt nqA Q qr mV T =! = = 0 2 1 Implanted Dose 2

7

13

y

Mask

C(y)  at  x  =  Rp

x  =  Rp

Implanted  specieshas  lateral  distribution,larger  than  mask  opening  

x

y

Higher  concentrationLowerconcentration

Feature  Enlargement  due  to  Lateral  Straggle

14

Selective  Implantation  – Mask  Thickness

• Desire  implanted  impurity  level  under  the  mask  should  be  much  less  than  background  doping

𝑵 𝒙𝟎 ≪  𝑵𝑩or

𝑵 𝒙𝟎 <𝑵𝑩𝟏𝟎

Page 8: EE143%– Fall%2016 Microfabrication%Technologies Lecture7 ...ee143/fa16/lectures/Lecture07-Ion Implantation.pdf2 3 Equipment ( ) I(t)dt nqA Q qr mV T =! = = 0 2 1 Implanted Dose 2

8

15

What  fraction  of  dose  gets  into  Si  substrate?

x=0 x=d

C(x)Mask  material  (e.g.  photoresist)

Si  substrate

C(x) Mask  material  with  d= ¥

x=0 x=d

Transmission  Factor  of  Implantation  Mask

16

( ) ( )

( )

( )( )

T C x dx C x dx

erfcd R

R

erfc x e dy

C x dC x R

d

p

p

yx

p

= -

=-ì

íî

üýþ

= -

==

òò

ò

¥

-

-

00

0

4

12 2

1 2

10

2

D

pRule of thumb Good masking thickness:

d R Rp p= + 4 3D. ~

are  values  of  for  ions  intothe  masking  material

DRpRp ,

Transmitted  Fraction

Page 9: EE143%– Fall%2016 Microfabrication%Technologies Lecture7 ...ee143/fa16/lectures/Lecture07-Ion Implantation.pdf2 3 Equipment ( ) I(t)dt nqA Q qr mV T =! = = 0 2 1 Implanted Dose 2

9

17

Junction  Depth

• The  junction  depth  is  calculated  from  the  point  at  which  the  implant  profile  concentration  =  bulk  concentration:

( )( )

÷÷ø

öççè

æD±=

=úúû

ù

êêë

é

D

--

=

B

pppj

Bp

pjp

Bj

NN

RRx

NRRx

N

NxN

ln2

2exp 2

2

18

Channeling

Page 10: EE143%– Fall%2016 Microfabrication%Technologies Lecture7 ...ee143/fa16/lectures/Lecture07-Ion Implantation.pdf2 3 Equipment ( ) I(t)dt nqA Q qr mV T =! = = 0 2 1 Implanted Dose 2

10

19

Use  of  tilt  to  reduce  channeling

Random  component

channeledcomponent

C(x)

x

Axial  ChannelingPlanar  ChannelingRandom

Lucky  ions  fall  into  channel  despite  tilt

To  minimize  channeling,  we  tilt  wafer  by  7o with  respect  to  ion  beam.

20

Si+

1E15  /cm2

Si  crystal

Disadvantage:  Needs  an  additional  high-­dose  implantation  step

B+Si  crystal

Amorphous  Si

Step  1High  dose  Si+implantation  to  covertsurface  layer  intoamorphous  Si

Step  2Implantation  ofdesired  dopantinto  amorphous  surface  layer

Prevention  of  Channeling  by  Pre-­amorphization

Page 11: EE143%– Fall%2016 Microfabrication%Technologies Lecture7 ...ee143/fa16/lectures/Lecture07-Ion Implantation.pdf2 3 Equipment ( ) I(t)dt nqA Q qr mV T =! = = 0 2 1 Implanted Dose 2

11

21

With  Accelerating  Voltage    =    x    kV

B+P+As+

Kinetic  Energy  =  x  ·  keV

B+++

B++ Kinetic  Energy  =  2x  ·  keV

Kinetic  Energy  =  3x  ·  keV

Singlycharged

Doublycharged

Triplycharged

Note:Kinetic  energy  is  expressed  in  eV.  An  electronic  charge  q  experiencing  a  voltage  drop  of  1  Volt  will  gain  a  kinetic  energy  of  1  eV

Kinetic  Energy  of    Multiply  Charged  Ions

22

BF2+

Kinetic  Energy  =  x  keV

BFF

B  has  11  amuF  has  19  amu

accelerating  voltage=  x  kV+ -­

%20191911

11BFof.E.KBof.E.K

vm21Fof.E.K

vm21Bof.E.K

vvvVelocity

2

2BF

2BB

FFB

=++

»

×=

×=

==

+

Molecular  ion  will  dissociate  immediatelyinto  atomic  components  after  entering  a  solid.All  atomic  componentswill  have  same  velocityafter  dissociation.

SolidSurface

Molecular  Ion  Implantation

Page 12: EE143%– Fall%2016 Microfabrication%Technologies Lecture7 ...ee143/fa16/lectures/Lecture07-Ion Implantation.pdf2 3 Equipment ( ) I(t)dt nqA Q qr mV T =! = = 0 2 1 Implanted Dose 2

12

23

Implantation  Damage

24

Amount  and  Type  of  Crystalline  Damage

Page 13: EE143%– Fall%2016 Microfabrication%Technologies Lecture7 ...ee143/fa16/lectures/Lecture07-Ion Implantation.pdf2 3 Equipment ( ) I(t)dt nqA Q qr mV T =! = = 0 2 1 Implanted Dose 2

13

25

Post-­Implantation  Annealing  Summary

• After  implantation,  we  need  an  annealing  step

• A  typical  anneal  will:1. Restore  Si  crystallinity.2. Place  dopants  into  Si  substitutional  sites  for  electrical  activation

26

Deviation  from  Gaussian  Theory

• Curves  deviate  from  Gaussian  for  deeper  implants  (>  200  keV)

Page 14: EE143%– Fall%2016 Microfabrication%Technologies Lecture7 ...ee143/fa16/lectures/Lecture07-Ion Implantation.pdf2 3 Equipment ( ) I(t)dt nqA Q qr mV T =! = = 0 2 1 Implanted Dose 2

14

27

Shallow  Implantation

28

Rapid  Thermal  Annealing

• Rapid  Heating• 950-­1050o  C• >50o  C/sec• Very  low  dopant  diffusion  

(b)

Page 15: EE143%– Fall%2016 Microfabrication%Technologies Lecture7 ...ee143/fa16/lectures/Lecture07-Ion Implantation.pdf2 3 Equipment ( ) I(t)dt nqA Q qr mV T =! = = 0 2 1 Implanted Dose 2

15

29

Dose-­Energy  Application  Space