ee c247b –me c218 introduction to mems design

3
EE C247B/ME C218: Introduction to MEMS Lecture 2m1: Benefits of Scaling I CTN 1/21/21 Copyright @ 2021 Regents of the University of California 1 EE C245: Introduction to MEMS Design LecM 2 C. Nguyen 8/20/09 1 EE C247B – ME C218 Introduction to MEMS Design Spring 2021 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture Module 2: Benefits of Scaling EE C245: Introduction to MEMS Design LecM 2 C. Nguyen 8/20/09 2 Lecture Outline Reading: Senturia, Chapter 1 Lecture Topics: Benefits of Miniaturization Examples GHz micromechanical resonators Chip-scale atomic clock Micro gas chromatograph EE C245: Introduction to MEMS Design LecM 2 C. Nguyen 8/20/09 3 Benefits of Size Reduction: MEMS MEMS extends the benefits of size reduction beyond the electrical domain Performance enhancements for application domains beyond those satisfied by electronics in the same general categories Speed Power Consumption Complexity Economy Frequency , Thermal Time Const. Actuation Energy , Heating Power Integration Density , Functionality Batch Fab. Pot. (esp. for packaging) Robustness g-Force Resilience Benefits of size reduction clear for IC’s in elect. domain size reduction speed, low power, complexity, economy MEMS: enables a similar concept, but … EE C245: Introduction to MEMS Design LecM 2 C. Nguyen 8/20/09 4 Vibrating RF MEMS 1 2 3 4

Upload: others

Post on 25-Oct-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE C247B –ME C218 Introduction to MEMS Design

EE C247B/ME C218: Introduction to MEMSLecture 2m1: Benefits of Scaling I

CTN 1/21/21

Copyright @ 2021 Regents of the University of California 1

EE C245: Introduction to MEMS Design LecM 2 C. Nguyen 8/20/09 1

EE C247B – ME C218Introduction to MEMS Design

Spring 2021

Prof. Clark T.-C. Nguyen

Dept. of Electrical Engineering & Computer SciencesUniversity of California at Berkeley

Berkeley, CA 94720

Lecture Module 2: Benefits of Scaling

EE C245: Introduction to MEMS Design LecM 2 C. Nguyen 8/20/09 2

Lecture Outline

• Reading: Senturia, Chapter 1

• Lecture Topics:Benefits of MiniaturizationExamples

GHz micromechanical resonatorsChip-scale atomic clockMicro gas chromatograph

EE C245: Introduction to MEMS Design LecM 2 C. Nguyen 8/20/09 3

Benefits of Size Reduction: MEMS

MEMS extends the benefits of size reductionbeyond the electrical domain

Performance enhancements for applicationdomains beyond those satisfied by electronics

in the same general categories

Speed

Power Consumption

Complexity

Economy

Frequency , Thermal Time Const.

Actuation Energy , Heating Power

Integration Density , Functionality

Batch Fab. Pot. (esp. for packaging)

Robustness g-Force Resilience

• Benefits of size reduction clear for IC’s in elect. domain size reduction speed, low power, complexity, economy

•MEMS: enables a similar concept, but …

EE C245: Introduction to MEMS Design LecM 2 C. Nguyen 8/20/09 4

Vibrating RF MEMS

1 2

3 4

Page 2: EE C247B –ME C218 Introduction to MEMS Design

EE C247B/ME C218: Introduction to MEMSLecture 2m1: Benefits of Scaling I

CTN 1/21/21

Copyright @ 2021 Regents of the University of California 2

EE C245: Introduction to MEMS Design LecM 2 C. Nguyen 8/20/09 9

Basic Concept: Scaling Guitar Strings

Guitar String

Guitar

Vibrating “A”String (110 Hz)

High Q

110 Hz Freq.

Vib

. A

mp

litu

de

Low Q

r

ro

m

kf

2

1

Freq. Equation:

Freq.

Stiffness

Mass

fo=8.5MHzQvac =8,000

Qair ~50

mMechanical Resonator

Performance:Lr=40.8mm

mr ~ 10-13 kgWr=8mm, hr=2mmd=1000Å, VP=5VPress.=70mTorr

[Bannon 1996]

EE C245: Introduction to MEMS Design LecM 2 C. Nguyen 8/20/09 10

-60

-50

-40

-30

-20

-10

0

8.7 8.9 9.1 9.3Frequency [MHz]

Tra

nsm

issio

n [

dB

]

Pin=-20dBm

In Out

VP

Sharper roll-off

Loss Pole

Performance:fo=9MHz, BW=20kHz, PBW=0.2%

I.L.=2.79dB, Stop. Rej.=51dB20dB S.F.=1.95, 40dB S.F.=6.45

Design:Lr=40mm

Wr=6.5mm hr=2mm

Lc=3.5mmLb=1.6mm VP=10.47VP=-5dBm

RQi=RQo=12k

[S.-S. Li, Nguyen, FCS’05]

3CC 3l/4 Bridged mMechanical Filter

[Li, et al., UFFCS’04]

EE C245: Introduction to MEMS Design LecM 2 C. Nguyen 8/20/09 11

w

vovi

Micromechanical Filter Circuit

1/krmr cr 1/krmr cr 1/krmr cr-1/ks -1/ks

1/ks

-1/ks -1/ks

1/ks

1/kb 1/kb

-1/kb

Co Co

1:he he:1

1:hc 1:hchc:1 hc:1

1:hb hb:1

l/4

l/4

3l/4Input

Outputvi

RQ

RQ

vo

VP

Bridging Beam

Coupling Beam

Resonator

EE C245: Introduction to MEMS Design LecM 2 C. Nguyen 8/20/09 12

-100

-98

-96

-94

-92

-90

-88

-86

-84

1507.4 1507.6 1507.8 1508 1508.2

1.51-GHz, Q=11,555 Nanocrystalline Diamond Disk mMechanical Resonator

• Impedance-mismatched stem for reduced anchor dissipation

•Operated in the 2nd radial-contour mode

•Q ~11,555 (vacuum); Q ~10,100 (air)

• Below: 20 mm diameter disk

PolysiliconElectrode R

Polysilicon Stem(Impedance Mismatched

to Diamond Disk)

GroundPlane

CVD DiamondmMechanical Disk

Resonator Frequency [MHz]

Mix

ed

Am

plitu

de [

dB

]

Design/Performance:R=10mm, t=2.2mm, d=800Å, VP=7V

fo=1.51 GHz (2nd mode), Q=11,555

fo = 1.51 GHzQ = 11,555 (vac)Q = 10,100 (air)

[Wang, Butler, Nguyen MEMS’04]

Q = 10,100 (air)

§

9 10

11 12

Page 3: EE C247B –ME C218 Introduction to MEMS Design

EE C247B/ME C218: Introduction to MEMSLecture 2m1: Benefits of Scaling I

CTN 1/21/21

Copyright @ 2021 Regents of the University of California 3

EE C245: Introduction to MEMS Design LecM 2 C. Nguyen 8/20/09 13

vi+

vi-

vo+

vo-

VP

VP

l

l/2

l/4

l/2

l/4

Port1

Port2

Port3

Port4

l

l/2

l/2

Filter CouplerCom. Array Couplers

Diff. Array Couplers

[Li, Nguyen Trans’07]

163-MHz Differential Disk-Array Filter

EE C245: Introduction to MEMS Design LecM 2 C. Nguyen 8/20/09 14

Wireless Phone

90o

0o

A/D

A/D

RF PLL

Diplexer

From TX

RF BPF

Mixer I

Mixer Q

LPF

LPF

RXRF LO

Xstal Osc

I

Q

AGC

AGC

LNA

Antenna

Frequency [MHz]

Tra

ns

mis

sio

n [

dB

]

Micromechanical Bandpass Filter

High Q and good linearity of micromechanical resonators

Filters for front-end frequency selection

Linear MEMS in Wireless Comms

13 14