ee 5340 semiconductor device theory lecture 01 – spring 2011 professor ronald l. carter...

18
EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc

Upload: sabrina-taylor

Post on 21-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

EE 5340Semiconductor Device TheoryLecture 01 – Spring 2011

Professor Ronald L. [email protected]

http://www.uta.edu/ronc

Page 2: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

2

Web Pages

* Review the following• R. L. Carter’s web page

– www.uta.edu/ronc/• EE 5340 web page and syllabus

– www.uta.edu/ronc/5340/syllabus.htm• University and College Ethics Policies

– www.uta.edu/studentaffairs/conduct/– www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.p

df

Page 3: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

3

First Assignment

• Send e-mail to [email protected]– On the subject line, put “5340 e-mail”– In the body of message include

• email address: ______________________• Your Name*: _______________________• Last four digits of your Student ID: _____

* Your name as it appears in the UTA Record - no more, no less

Page 4: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

4

Quantum Concepts

• Bohr Atom

• Light Quanta (particle-like waves)

• Wave-like properties of particles

• Wave-Particle Duality

Page 5: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

5

Bohr model forHydrogen atom• Electron (-q) rev.

around proton (+q)

• Coulomb force, F = q2/4peor2, q = 1.6E-19 Coul, eo=8.854E-14Fd/cm

• Quantization L = mvr = nh/2p, h =6.625E-34J-sec

Page 6: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

6

Bohr model for the H atom (cont.)• En= -(mq4)/[8eo

2h2n2] ~ -13.6 eV/n2

• rn= [n2eoh2]/[pmq2] ~ 0.05 nm = 1/2 Ao

for n=1, ground state

Page 7: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

7

Bohr model for the H atom (cont.)En= -

(mq4)/[8eo2h2n2] ~

-13.6 eV/n2 *

rn= [n2eoh2]/[pmq2] ~ 0.05 nm = 1/2 Ao *

*for n=1, ground state

Page 8: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

8

Energy Quanta for Light

• Photoelectric Effect:• Tmax is the energy of the electron

emitted from a material surface when light of frequency f is incident.

• fo, frequency for zero KE, mat’l spec.

• h is Planck’s (a universal) constanth = 6.625E-34 J-sec

stopomax qVffhmvT 2

21

Page 9: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

9

Photon: A particle-like wave• E = hf, the quantum of energy for

light. (PE effect & black body rad.)• f = c/l, c = 3E8m/sec, l =

wavelength• From Poynting’s theorem (em

waves), momentum density = energy density/c

• Postulate a Photon “momentum” p = h/ l = hk, h =

h/2p wavenumber, k = 2 p / l

Page 10: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

10

Wave-particle duality

• Compton showed Dp = hkinitial - hkfinal, so an photon (wave) is particle-like

Page 11: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

11

Wave-particle duality

• DeBroglie hypothesized a particle could be wave-like, l = h/p

Page 12: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

12

Wave-particle duality

• Davisson and Germer demonstrated wave-like interference phenomena for electrons to complete the duality model

Page 13: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

13

Newtonian Mechanics

• Kinetic energy, KE = mv2/2 = p2/2m Conservation of Energy Theorem

• Momentum, p = mvConservation of

Momentum Thm• Newton’s second Law

F = ma = m dv/dt = m d2x/dt2

Page 14: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

14

Quantum Mechanics

• Schrodinger’s wave equation developed to maintain consistence with wave-particle duality and other “quantum” effects

• Position, mass, etc. of a particle replaced by a “wave function”, Y(x,t)

• Prob. density = |Y(x,t)• Y*(x,t)|

Page 15: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

15

Schrodinger Equation

• Separation of variables givesY(x,t) = y(x)• f(t)

• The time-independent part of the Schrodinger equation for a single particle with Total E = E and PE = V. The Kinetic Energy, KE = E - V

2

2

280

x

x

mE V x x

h2 ( )

Page 16: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

16

Solutions for the Schrodinger Equation• Solutions of the form of

y(x) = A exp(jKx) + B exp (-jKx) K = [8p2m(E-V)/h2]1/2

• Subj. to boundary conds. and norm. y(x) is finite, single-valued, conts. dy(x)/dx is finite, s-v, and conts.

1dxxx

Page 17: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

17

Infinite Potential Well• V = 0, 0 < x < a• V --> inf. for x < 0 and x > a• Assume E is finite, so

y(x) = 0 outside of well

2,

88E

1,2,3,...=n ,sin2

2

22

2

22

nhkh

pmkh

manh

axn

ax

Page 18: EE 5340 Semiconductor Device Theory Lecture 01 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L01 18Jan2011

18

References

*Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989.

**Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago.