ee 438 essential definitions and relationsece438/supplements/... · web viewece 438 essential...

Download EE 438 Essential Definitions and Relationsece438/supplements/... · Web viewECE 438 Essential Definitions and Relations CT Metrics 1. Energy 2. Power 3. root mean squared value 4

If you can't read please download the document

Upload: others

Post on 16-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

EE 438 Essential Definitions and Relations

22 April 2020

ECE 438 Essential Definitions and Relations

CT Metrics

1. Energy

Ex = x(t)2

−∞

∫ dt

E

x

=x(t)

2

¥

ò

dt

2. Power

Px = limT→∞1T

x(t) 2−T /2

T /2

∫ dt

P

x

=lim

T®¥

1

T

x(t)

2

-T/2

T/2

ò

dt

3. root mean squared value

xrms = Px

x

rms

=P

x

4. Area

Ax = x(t)−∞

∫ dt

A

x

=x(t)

¥

ò

dt

5. Average value

xavg = limT→∞1T

x(t)−T /2

T /2

∫ dt

x

avg

=lim

T®¥

1

T

x(t)

-T/2

T/2

ò

dt

6. Magnitude

Mx = max−∞ < t < ∞

x(t)

M

x

=max

x(t)

DT Metrics

1. Energy

Ex = x[n]2

n =−∞

E

x

=x[n]

2

n=-¥

¥

å

2. Power

Px = limN→ ∞1

2N +1x[n]2

n =− N

N

P

x

=lim

N®¥

1

2N+1

x[n]

2

n=-N

N

å

3. root mean squared value

xrms = Px

x

rms

=P

x

4. Area

Ax = x[n]n = −∞

A

x

=x[n]

n=-¥

¥

å

5. Average

xavg = limN→ ∞1

2N + 1x[n]

n = − N

N

x

avg

=lim

N®¥

1

2N+1

x[n]

n=-N

N

å

6. Magnitude

Mx = max−∞

x[n]

M

x

=max

x[n]

CT Signals and Operators

1.

rect (t) =1, | t|< 1 / 20, | t|> 1 / 2⎧ ⎨ ⎩

rect(t)=

1,|t|<1/2

0,|t|>1/2

ì

í

î

2.

sinc(t) = sin(πt)πt

sinc(t)=

sin(pt)

pt

3.

δ(t ) = limΔ→0

1Δrect t

Δ⎛ ⎝

⎞ ⎠

d(t)=lim

D®0

1

D

rect

t

D

æ

è

ö

ø

4.

x(t)∗y(t) = x(t − τ)y(−∞

∫ τ)dτ

x(t)*y(t)=x(t-t)y(

¥

ò

t)dt

5.

repT[x(t)] = x(t − kT )k =−∞

rep

T

[x(t)]=x(t-kT)

k=-¥

¥

å

6.

combT[x(t)] = x(kT)k =−∞

∑ δ(t − kT)

comb

T

[x(t)]=x(kT)

k=-¥

¥

å

d(t-kT)

Properties of the CT Impulse

1.

δ(t)− ∞

∫ dt = 1 and δ(t) = 0, t ≠ 0

d(t)

¥

ò

dt=1 and d(t)=0, t¹0

2.

δ(t − t0)− ∞

∫ x(t)dt = x(t0), provided x(t) is continuous at t = t0

d(t-t

0

)

¥

ò

x(t)dt=x(t

0

),

provided x(t) is continuous at t=t

0

3.

x(t)δ( t − t0 ) ≡ x(t 0)δ(t − t0 )

x(t)d(t-t

0

)ºx(t

0

)d(t-t

0

)

4.

δ(t − t0 )∗ x(t) = x(t − t0 )

d(t-t

0

)*x(t)=x(t-t

0

)

5.

δ(at − t0) ≡1aδ(t − t0 / a)

d(at-t

0

1

a

d(t-t

0

/a)

CTFT

Sufficient conditions for existence

|x(t )− ∞

∫ |dt < ∞ or | x(t)−∞

∫ |2 dt

|x(t)

¥

ò

|dt<¥ or |x(t)

¥

ò

|

2

dt

Forward transform

X( f ) = x(t)e− j 2πft−∞

∫ dt

X(f)=x(t)e

-j2pft

¥

ò

dt

Inverse transform

x(t) = X( f )ej 2π ft−∞

∫ df

x(t)=X(f)e

j2pft

¥

ò

df

Transform Relations

1. Linearity

a1x1( t) + a2x2(t) ↔CTFT

a1X1( f ) + a2X2( f )

a

1

x

1

(t)+a

2

x

2

(t)«

CTFT

a

1

X

1

(f)+a

2

X

2

(f)

2. Scaling and shifting

x t − t0a

⎛ ⎝

⎞ ⎠ ↔CTFT

|a|X(af )e− j2π ft 0

x

t-t

0

a

æ

è

ö

ø

«

CTFT

|a|X(af)e

-j2pft

0

3. Modulation

x(t)e j2πf 0t ↔CTFT

X( f − f 0)

x(t)e

j2pf

0

t

«

CTFT

X(f-f

0

)

4. Reciprocity

X(t) ↔CTFT

x(− f )

X(t)«

CTFT

x(-f)

5. Parseval

|x(t )− ∞

∫ |2 dt = |X( f )−∞

∫ |2 df

|x(t)

¥

ò

|

2

dt=|X(f)

¥

ò

|

2

df

6. Initial Value

X(0) = x(t)−∞

∫ dt

x(0) = X( f )−∞

∫ df

X(0)=x(t)

¥

ò

dt

x(0)=X(f)

¥

ò

df

7. Convolution

x(t)∗y(t) ↔CTFT

X( f )Y( f )

x(t)*y(t)«

CTFT

X(f)Y(f)

8. Product

x(t)y(t) ↔CTFT

X ( f )∗Y( f )

x(t)y(t)«

CTFT

X(f)*Y(f)

9. Transform of periodic signal

repT[x(t)] ↔CTFT 1

Tcomb 1

T

[X( f )]

rep

T

[x(t)]«

CTFT

1

T

comb

1

T

[X(f)]

10. Transform of sampled signal

combT[x(t)] ↔CTFT 1

Trep 1

T

[X( f )]

comb

T

[x(t)]«

CTFT

1

T

rep

1

T

[X(f)]

Transform Pairs

1.

rect (t) ↔CTFT

sinc(f)

rect(t)«

CTFT

sinc(f)

2.

δ(t ) ↔CTFT

1 and 1 ↔CTFT

δ( f )

d(t)«

CTFT

1 and 1«

CTFT

d(f)

3.

e j2πf 0t ↔CTFT

δ( f − f 0)

e

j2pf

0

t

«

CTFT

d(f-f

0

)

4.

cos(2πf0t) ↔CTFT 1

2{δ( f − f 0 )

+ δ( f + f 0)}

cos(2pf

0

t)«

CTFT

1

2

{d(f-f

0

)

+d(f+f

0

)}

DT Signals and Operators

1.

u[n] =1, n ≥ 00, n < 0⎧ ⎨ ⎩

u[n]=

1,n³0

0,n<0

ì

í

î

2.

δ[n] =1, n = 00, n ≠ 0⎧ ⎨ ⎩

d[n]=

1,n=0

0,n¹0

ì

í

î

3.

x[n]∗y[n] = x[n − k]y[k]k =−∞

x[n]*y[n]=x[n-k]y[k]

k=-¥

¥

å

4. Downsampling

Dx[n] y[n]

D

x[n] y[n]

y[n] = x[Dn]

y[n]=x[Dn]

5. Upsampling

Dx[n] y[n]

D

x[n] y[n]

y[n] =x[n / D], n / D integer - valued

0, else⎧ ⎨ ⎩

y[n]=

x[n/D],n/D integer-valued

0, else

ì

í

î

Properties of the DT Impulse

1.

δ[n]n=−∞

∑ = 1 and δ[n] = 0, n ≠ 0

d[n]

n=-¥

¥

å

=1 and d[n]=0,n¹0

2.

δ[n − n0]n=−∞

∑ x[n] = x[n0 ]

d[n-n

0

]

n=-¥

¥

å

x[n]=x[n

0

]

3.

δ[n − n0 ]∗x[n] = x[n − n0]

d[n-n

0

]*x[n]=x[n-n

0

]

DTFT

Sufficient conditions for existence

x[n]n=−∞

∑ <∞ or x[n]2n=−∞

∑ < ∞

x[n]

n=-¥

¥

å

<¥ or x[n]

2

n=-¥

¥

å

Forward transform

X(ω) = x[n]e− jωnn= −∞

X(w)=x[n]e

-jwn

n=-¥

¥

å

Inverse transform

x[n] = 12π

X(ω)e jωnd−π

π

∫ ω

x[n]=

1

2p

X(w)e

jwn

d

-p

p

ò

w

Transform Relations

1. Linearity

a1x1[n] + a2x2[n] ↔DTFT

a1X1(ω) + a2X2(ω)

a

1

x

1

[n]+a

2

x

2

[n]«

DTFT

a

1

X

1

(w)+a

2

X

2

(w)

2. Shifting

x[n − n0 ]↔DTFT

X(ω )e− jωn0

x[n-n

0

DTFT

X(w)e

-jwn

0

3. Modulation

x[n]e jω0 n ↔DTFT

X(ω −ω 0)

x[n]e

jw

0

n

«

DTFT

X(w-w

0

)

4. Parseval

x[n]2n=−∞

∑ = 12π X(ω)2d

−π

π

∫ ω

x[n]

2

n=-¥

¥

å

=

1

2p

X(w)

2

d

-p

p

ò

w

5. Initial Value

X(0) = x[n] n=−∞

x[0] = 12π

X(ω)d−π

π

∫ ω

X(0)=x[n]

n=-¥

¥

å

x[0]=

1

2p

X(w)d

-p

p

ò

w

6. Convolution

x[n]∗y[n] ↔DTFT

X(ω)Y (ω)

x[n]*y[n]«

DTFT

X(w)Y(w)

7. Product

x[n]y[n] ↔DTFT 1

2πX (ω − µ)Y(µ)d

−π

π

∫ µ

x[n]y[n]«

DTFT

1

2p

X(w-m)Y(m)d

-p

p

ò

m

8. Downsampling

Dx[n] y[n]

D

x[n] y[n]

Y (ω) = 1D

X ω − 2πkD

⎛ ⎝

⎞ ⎠

k= 0

D−1

Y(w)=

1

D

X

w-2pk

D

æ

è

ö

ø

k=0

D-1

å

9. Upsampling

Dx[n] y[n]

D

x[n] y[n]

Y (ω) = X(Dω)

Y(w)=X(Dw)

Transform Pairs

1.

δ[n] ↔DTFT

1

d[n]«

DTFT

1

2.

1 ↔DTFT

2π rep2π[δ(ω)]

DTFT

2prep

2p

[d(w)]

3.

e jω 0n ↔DTFT

2π rep2π[δ(ω − ω0 )]

e

jw

0

n

«

DTFT

2prep

2p

[d(w-w

0

)]

4.

cos(ω0n) ↔DTFT

π rep2π[δ(ω − ω0 ) + δ(ω +ω0 )]

cos(w

0

n)«

DTFT

prep

2p

[d(w-w

0

)+d(w+w

0

)]

5.

x[n]= 1, n = 0,1,...,N −10, else

⎧⎨⎪

⎩⎪↔DTFT

X(ω ) = psincN ω( )e− jω (N−1)/2

where psincN ω( ) !sin(ωN / 2)sin(ω / 2)

Relation between CT and DT

1. Time Domain

xd[n] = xa (nT)

x

d

[n]=x

a

(nT)

2. Frequency Domain

Xd (ωd) = fsrep f s Xa ( f a )[ ] f a =ωd f s2π,

where fs =1T

X

d

(w

d

)=f

s

rep

f

s

X

a

(f

a

)

[]

f

a

=

w

d

f

s

2p

,

where f

s

=

1

T

ZT

Forward transform

Transform Relations

1. Linearity

2. Shifting

x[n− n0]↔ZT

X (z)z−n0

x[n-n

0

ZT

X(z)z

-n

0

3. Modulation

4. Multiplication by time index

5. Convolution

6. Relation to DTFT

If

converges for

, then the DTFT of

exists and

Transform Pairs

1.

2.

3.

4.

5.

DFT

Forward transform

Inverse transform

Transform Relations

1. Linearity

2. Shifting

3. Modulation

4. Reciprocity

5. Parseval

6. Initial Value

7. Periodicity

8. Relation to DTFT of a finite length sequence

Let

only for

.

Define

,

,

then

.

9. Periodic convolution

x[n]⊗ y[n]↔DFT

X[k]Y [k]

x[n]Äy[n]«

DFT

X[k]Y[k]

10. Product

x[n]y[n]↔DFT 1

NX[k]⊗Y [k]

x[n]y[n]«

DFT

1

N

X[k]ÄY[k]

Transform Pairs

1.

2.

3.

4.

5.

e jω0n ,n = 0,1,...,N −1 ↔DFT

psincN 2πk / N −ω 0( )e− j (2πk /N−ω0 )(N−1)/2

e

jw

0

n

,n=0,1,...,N-1«

DFT

psinc

N

2pk/N-w

0

()

e

-j(2pk/N-w

0

)(N-1)/2

Random Signals

1. Probability density function

2. Probability distribution function

is a non-decreasing function of

Expectation Operator

1. Mean

2. 2nd moment

3. Variance

4. Relation between mean, 2nd moment, and variance

Two Random Variables

1. Bivariate probability density function

2. Marginal probability density functions

and

3. Linearity of expectation

4. Correlation of

and

E{XY} = xyfXY (x, y−∞

∫−∞

∫ )dxdy

E{XY}=xyf

XY

(x,y

¥

ò

¥

ò

)dxdy

5. Covariance of

and

6. Correlation coefficient of

and

7.

and

are independent if and only if

8.

and

are uncorrelated if and only if

Independence implies uncorrelatedness. The converse is not true.

Discrete-time random signals

1. Autocorrelation function

is wide-sense stationary if and only if mean is constant, and autocorrelation depends only on difference between arguments, i.e.

2. Cross-correlation function

and

are jointly wide-sense stationary if and only if they are individually wide-sense stationary and their cross-correlation depends only on difference between arguments, i.e.

3. Wide-sense stationary processes and linear systems.

Let

be wide-sense stationary, and suppose that

,

then

and

are jointly wide-sense stationary, and

µY = µX h[m]m∑

rXY [n] = h[n]∗ rXX[n]rYY [n] = h[n]∗ rXY [−n]

m

Y

=m

X

h[m]

m

å

r

XY

[n]=h[n]*r

XX

[n]

r

YY

[n]=h[n]*r

XY

[-n]

Model for Speech

Our model for the speech waveform is given by

s[n] = v[n]∗e[n]

s[n]=v[n]*e[n]

,

where

s[n]

s[n]

is the speech waveform,

v[n]

v[n]

is the vocal tract response that typically contains one or more peaks corresponding to resonant frequencies, and

e[n]

e[n]

is the excitation provided by the glottis.

e[n]=δ [n − kP],

k∑ for a voiced phoneme,white noise, for an unvoiced phoneme.

⎧⎨⎪

⎩⎪

e[n]=

d[n-kP],

k

å

for a voiced phoneme,

white noise,for an unvoiced phoneme.

ì

í

ï

î

ï

Here

P

P

is the pitch period in samples.

Short-Time Discrete Time Fourier Transform (STDTFT)

Two interpretations:

1. DTFT of windowed waveform centered at (fixed)

n

n

where

w[n]

w[n]

is the window function

!S(ω ,n)= s[k]w[n−k]e− jωk

k∑

2. Response of narrowband filter centered at (fixed) frequency

ω

w

, after shifting to base-band. The impulse response of the narrowband filter is

hω [n] = h0[n]e− jωn

h

w

[n]=h

0

[n]e

-jwn

. Here

h0[n]

h

0

[n]

is the impulse response of the base-band filter, which is equivalent to the window function

w[n]

w[n]

in the first interpretation. We thus have

!S(ω ,n)= hω[n]∗s[n]( )e+ jωn

The display of the 2-D image

!S(ω ,n)

as a function of

ω

w

and

n

n

is called a spectrogram. Let

N

N

be the length of the window function

w[n]

w[n]

; and let

P

P

be the pitch period. If

N ≫ P

N≫P

, the spectrogram is narrowband. If

N ≈ P

N»P

, the spectrogram is wideband.

Modulated Filter Bank

Consider an L-channel modulated filter bank with input

x[n]

x[n]

and output from the

-th channel given by

yℓ[n] = hℓ[n]∗ x[n]

y

[n]=h

[n]*x[n]

,

where

hℓ[n] = h0[n]e− j2πn /L , ℓ = 0, ..., L −1

h

[n]=h

0

[n]e

-j2pn/L

,ℓ=0,...,L-1

.

The output of the filter bank is formed by summing the outputs of all L channels

y[n] = yℓ[n]

ℓ=0

L−1

y[n]=y

[n]

ℓ=0

L-1

å

A necessary and sufficient condition for perfect reconstruction, i.e.

y[n] ≡ x[n]

y[n]ºx[n]

is that the baseband filter impulse response

h0[n]

h

0

[n]

satisfy

h0[n] =1L , n = 00, n = kL

⎧⎨⎩

h

0

[n]=

1

L

,n=0

0,n=kL

ì

í

î

.

There are no constraints on

h0[n]

h

0

[n]

for other values of

n

n

.

Miscellaneous

1. Geometric Series

znn= 0

N−1

∑ = 1− zN

1− z

z

n

n=0

N-1

å

=

1-z

N

1-z

2.

N

N

roots

zk , k = 0,…,N −1

z

k

,k=0,…,N-1

, of a complex constant

u0

u

0

, i.e.

N

N

solutions to

zN −u0 = 0

z

N

-u

0

=0

zk = u01 / N e j 2 πk+ ∠u 0( ) / N , k = 0,…,N −1

z

k

=u

0

1/N

e

j2pk+Ðu

0

()

/N

,k=0,…,N-1

3. Trigonometric Identities

sin(α ± β) = sinα cosβ ± cosα sinβcos(α ± β) = cosα cosβ ∓ sinα sinβsin(2α ) = 2sinα cosαcos(2α ) = cos2α − sin2α

sin2α = 12−12cos(2α )

cos2α = 12+12cos(2α )

sinα sinβ = 12cos(α − β) − cos(α + β)[ ]

cosα cosβ = 12cos(α − β) + cos(α + β)[ ]

sinα cosβ = 12sin(α + β) + sin(α − β)[ ]

cosα sinβ = 12sin(α + β) − sin(α − β)[ ]

sin(a±b)=sinacosb±cosasinb

cos(a±b)=cosacosb∓sinasinb

sin(2a)=2sinacosa

cos(2a)=cos

2

a-sin

2

a

sin

2

a=

1

2

-

1

2

cos(2a)

cos

2

a=

1

2

+

1

2

cos(2a)

sinasinb=

1

2

cos(a-b)-cos(a+b)

[ ]

cosacosb=

1

2

cos(a-b)+cos(a+b)

[ ]

sinacosb=

1

2

sin(a+b)+sin(a-b)

[ ]

cosasinb=

1

2

sin(a+b)-sin(a-b)

[ ]

_1111951447.unknown
_1111953098.unknown
_1111954059.unknown
_1393587715.unknown
_1396078061.unknown
_1522916839.unknown
_1522916903.unknown
_1522916942.unknown
_1522916678.unknown
_1396077948.unknown
_1111954541.unknown
_1111954733.unknown
_1111954876.unknown
_1239914375.unknown
_1111954829.unknown
_1111954593.unknown
_1111954216.unknown
_1111954448.unknown
_1111954159.unknown
_1111953421.unknown
_1111953478.unknown
_1111953543.unknown
_1111953441.unknown
_1111953333.unknown
_1111953395.unknown
_1111953322.unknown
_1111952701.unknown
_1111952776.unknown
_1111952877.unknown
_1111952749.unknown
_1111952023.unknown
_1111952068.unknown
_1111952137.unknown
_1111951789.unknown
_980547122.unknown
_1109018906.unknown
_1111951025.unknown
_1111951050.unknown
_1109018950.unknown
_981400423.unknown
_955294615.unknown
_955295334.unknown
_955300040.unknown
_955294677.unknown
_955294498.unknown
_948491544.unknown
_948491638.unknown
_948492456.unknown
_948491591.unknown
_948491267.unknown
_948491471.unknown
_948491051.unknown
_948491179.unknown
_948490822.unknown