edge plasma physics – a bridge between several disciplines ralf schneider ipp-teilinstitut...

40
Edge plasma physics – a bridge between several disciplines Ralf Schneider IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D-17491 Greifswald, Germany Max-Planck-Institut für Plasmaphysik, EURATOM Association Ralf Schneider and K. Matyash, N. McTaggart, M. Warrier, X. Bonnin, A. Runov, M. Borchardt, J. Riemann, A. Mutzke, H. Leyh, D. Coster, W. Eckstein, R. Dohmen and many other colleagues from USA, Europe and Japan

Post on 20-Dec-2015

219 views

Category:

Documents


3 download

TRANSCRIPT

Edge plasma physics – a bridge between several disciplines

Ralf Schneider

IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D-17491 Greifswald, Germany

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Ralf Schneider

and K. Matyash, N. McTaggart, M. Warrier, X. Bonnin, A. Runov, M. Borchardt, J. Riemann, A. Mutzke, H. Leyh,

D. Coster, W. Eckstein, R. Dohmen

and many other colleagues from USA, Europe and Japan

Strongly non-linear parallel heat conduction by Coulomb collisions:

Extreme anisotropy:

25

|| T

74|| 1010

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Magnetic confinement

Can we manage the power load at the plates?

Development of computational tools to model this power loading.

Estimate of power load:

EX

heat

Rn

PQ

22

2

7 35 MWmQ XW !

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Basic question

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Plasma-edge physics

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Length scales

Carbon deposition in divertor regions of JET and ASDEX UPGRADE

Carbon deposition in divertor regions of JET and ASDEX UPGRADE

JET JET

ASDEX UPGRADE

ASDEX UPGRADE

Achim von Keudell (IPP, Garching) V. Rohde (IPP,

Garching)

Paul Coad (JET)

Major topics: tritium codeposition

chemical erosion

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Diffusion in graphite

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Diffusion in graphite

Internal Structure of Graphite

Granule sizes ~ microns

Void sizes ~ 0.1 microns

Crystallite sizes ~ 50-100 Ångstroms

Micro-void sizes ~ 5-10 Ångstroms

Multi-scale problem in space (1cm to Ångstroms) and time (pico-seconds to seconds)

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Molecular dynamics – HCParcas code

Developed by Kai Nordlund, Accelarator laboratory, University of Helsinki

- Hydrogen in perfect crystal graphite – 960 atoms

- Brenner potential, Nordlund range interaction

- Berendsen thermostat, 150K to 900K for 100ps

- Periodic boundary conditions

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Molecular dynamics – Simulation at 150K, 900K

150K 900K

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Molecular dynamics results

Two diffusion channels

No diffusion across graphene layers (150K – 900K)

Lévy flights?

Non-Arrhenius temperature dependence

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Molecular dynamic results

Assume:- Poisson process (assigns real time to the jumps)- The jumps are not correlated

0 = Jump attempt frequency (s-1)Em = Migration Energy (eV)T = Trapped species temperature (K)

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Kinetic Monte Carlo - description

BKL algorithm (residence time algorithm A.B. Bortz, M.H. Kalos, J.L. Lebowitz, J. Comp. Phys. 17 (1975) 10Theoretical foundations of dynamical Monte Carlo simulations, K.A. Fichthorn and W.H. Weinberg, J. Chem. Phys. 95 (2) (1991) 1090-1096

Max-Planck-Institut für Plasmaphysik, EURATOM Association

KMC (DiG) results

K.L. Wilson et al., Trapping, detrapping and release of implanted hydrogen isotopes, Nucl. Fusion 1: 31-50 Suppl. S 1991

- Strong dependenceon void sizes and not on void fraction

- Saturated H (Tanabe) 0~105s-1 and step sizes ~1Å

TRIM, TRIDYN: much faster than MD (simplified physics)

- very good match of physical sputtering- dynamical changes of surface

composition

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Binary collision approximation

ne ~ 109-1010 cm-3

nn ~ 1015 -1016 cm-3

fRF = 13.56 MHz potential

ne = 1010 cm-3, nH2 = 9.2·1014 cm-3,

nCH4 = 7·1014 cm-3, p = 0.085 Torr (11 Pa)

Model system for chemical sputtering: methane plasma(2DX3DV PICMCC multispecies)

Collaboration with IEP5, Bochum University (Ivonne Möller)

Max-Planck-Institut für Plasmaphysik, EURATOM Association

PIC simulation: RF capacitive discharge

CH4+ ion energy distributionelectron and CH4

+ ion density

Electrons reach electrode only during sheaths collapse

Energetic ions at the wall dueto acceleration in the sheath

Max-Planck-Institut für Plasmaphysik, EURATOM Association

PIC simulation: RF capacitive discharge

Lower electrode

Negative charge due to higherelectron mobility

Levitation in strong sheathelectric field

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Dusty (complex) plasmas

Max-Planck-Institut für Plasmaphysik, EURATOM Association

PIC simulation: Plasma crystal - full 3D!

Quasi - ordered 3D structure

Top view

electric thrusters: exhaust velocity larger than in conventional chemical systems --> much lower mass of propellant

exhaust

cathode

anode(neutral

propellant)

stationary plasma thruster(electron closed drift or Morozov type)

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Plasma thruster SPT-100

jexB forces toward the exhaust producing the thrust

radial B-field: e-confined; e-impact ionization increasedpositive ions not confined; accelerated by E field

SPT-100 parameters

dimensions: Rin=30 mm, Rout=50 mm, L=25 m

mass flow rate and power: dm/dt=5 mg/s, P=300W

discharge parameters: Bmax=200 G, V=300 V, Id=3.2

propulsion performances: Isp=1600 s, T=40 mN, T=0.33

Computational model parameters- Geometrical reducing factor: f=0.2- Grid points: 50x40- Cell size: x=3D

- Time step: t=p-1/3

- Weight of macroparticle: wp=105, wN=107

- Number of macroparticles: N=105

- Number of time step to reach staedy state: Nt=105

- Computational time: 30 hh on 2.5 Ghz

- secondary electrons emitted from the wall (BN, Al2O3, SiO2): probabilistic model - all collisions included- ion-wall sputtering: TRIDYN- geometrical scaling: constant Knudsen (/L) and Larmor (rL/L) parameters

electron density

Francesco Taccogna, University of Bari

Max-Planck-Institut für Plasmaphysik, EURATOM Association

2D-3D axisymmetric fully kinetic PIC model

electron density

Francesco Taccogna, University of Bari

Max-Planck-Institut für Plasmaphysik, EURATOM Association

2D-3D axisymmetric fully kinetic PIC model

potential

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Divertors

Tokamak Stellarator (W 7-X)

pump

pump

Plasma core

pump

B2-Eirene, UEDGE, …

Finite volume codes for mixed conduction convection problems

- Neutral physics (momentum losses, volume recombination, operational scenarios, geometry optimization)- Impurities (radiation, flows)

Max-Planck-Institut für Plasmaphysik, EURATOM Association

2D fluid codes

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Molecular physics

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Molecular physics: quite high recombination rates

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Molecular physics

Inclusion of drifts and currents: flows, radial electric field

Radial electric field:Closed field lines – neoclassicalOpen field lines – SOL physics

Radial electric field shear layer close to separatrix (flow pattern)

Potential

Max-Planck-Institut für Plasmaphysik, EURATOM Association

2D fluid codes

Plasma

Divertor

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Divertor Structures

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Plasma Wendelstein 7-X

0

3D effects in stellarators (W7-X)

plasma core (non-ergodic)

ergodic region

island (non-ergodic)

Divertors

Max-Planck-Institut für Plasmaphysik, EURATOM Association

3D transport in the plasma edge

Scrape Off Layer

Plasma core

Wall

Parallel direction

Rad

ial d

irec

tio

n

Ergodic region

|| flr D

Enhancement of radial transport

due to contribution from parallel transport

Rechester Rosenbluth, Physical Review Letters, 1978

Electron temperature

r

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Transport in an ergodic region

Kolmogorov length LK is a measure of field line ergodicity

0

1log

SLK

10

S

exponential divergence

Typical value in W7-X : LK = 10 – 30 m

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Kolmogorov length

central cut

backward cut

forward cut

x1

x2

x3

333231

232221

131211

ggg

ggg

ggg

g ij

One coordinate aligned with the magnetic field to minimize numerical diffusion

Area is conserved

Use a full metric tensor

Local system shorter than Kolmogorov length to handle ergodicity

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Local magnetic coordinate system

1) Optimized mesh (finite-difference scheme)

/10 1

,100 ,2 ,

24||

||||

||

smmm

NRNLL

numerics

2) Monte-Carlo combined with InterpolatedCell Mapping

High accuracy transformation of theperpendicular coordinates of a particle

(mapping between cuts) needed!(bicubic spline interpolation)

Solutions:

Problem: numerical diffusion induced by interpolation on the interface

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Local magnetic coordinate system

Field line tracing code

Triangulation code Metric coefficients code

Transport code

333231

232221

131211

ggg

ggg

ggg

g ij

Mesh data file

Neighborhood array data fileMetric coefficients data file

Temperature solution

Magnetic field configuration data file

Mesh optimization

1

2

3

5 4

6

7

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Computational process

Max-Planck-Institut für Plasmaphysik, EURATOM Association

3D solution for W7-X

vacuum finite-

Island structures smeared out

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Vacuum and finite solutions on a cut

Normalized field line length

T (

eV)

Ergodic effects lead to 3D modulation of long open field lines

Cascading of energy from ergodic to open field lines

Max-Planck-Institut für Plasmaphysik, EURATOM Association

W7-X finite case

Feeding fluxes determined by field line length

No power load problem for W7-X

Parallel flux density

Length of open field line (m)

Flu

x d

ensi

ty (

MW

/m2 )

Power load )sin(12||

dx

TTQ

Length of open field line (m)

Vacuum case

Finite β case

Engineering limit

Vacuum case

Finite β case

Flu

x d

ensi

ty (

MW

/m2 )

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Power loading on the divertor plates

Complex multi-scale physics requires complex computational tools

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Summary