edf jinyi zhang dynamic modeling and transient analysis of...

12
Dynamic modeling and transient analysis of a molten salt heated recompression supercritical CO 2 Brayton cycle For the 6 th International Supercritical CO 2 Power Cycles Symposium Jinyi ZHANG EDF R&D China 28/03/2018

Upload: others

Post on 02-Jun-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EDF Jinyi Zhang Dynamic modeling and transient analysis of ...sco2symposium.com/papers2018/modeling-control/065_Pres.pdf · Dynamic modeling and transient analysis of a molten salt

Dynamic modeling and transient analysis of a molten salt heated recompression supercritical CO2Brayton cycleFor the 6th International Supercritical CO2 Power Cycles Symposium

Jinyi ZHANGEDF R&D China28/03/2018

Page 2: EDF Jinyi Zhang Dynamic modeling and transient analysis of ...sco2symposium.com/papers2018/modeling-control/065_Pres.pdf · Dynamic modeling and transient analysis of a molten salt

OUTLINE

1. 2. 3.

2

4.Introduction Model Description Part-load control

strategy and result analysis

Conclusion

Page 3: EDF Jinyi Zhang Dynamic modeling and transient analysis of ...sco2symposium.com/papers2018/modeling-control/065_Pres.pdf · Dynamic modeling and transient analysis of a molten salt

3

Introduction

Supercritical CO2 Cycle + CSP• SCO2, together with high temperature (> 500 ) molten salt CSP

solutions, could achieve higher efficiency than steam solutions.

• The size of CSP plant is between 50MWe and 150MWe, which is

suitable for the first industrial demonstration of cycle.

• Recompression cycle is taken for a preliminary cycle dynamics study,

because this is the most studied layout with a good balance between

complexity and efficiency.

CAPEX

EFFICIENCY More attractive CSP solutionsClean, reliable, low carbon solution

* Policy‐positive* Alignment with EDF strategy Design

• 100MWe : average size of CSP plant• Molten salt heated recompression cycle: compatible with current CSP 

Page 4: EDF Jinyi Zhang Dynamic modeling and transient analysis of ...sco2symposium.com/papers2018/modeling-control/065_Pres.pdf · Dynamic modeling and transient analysis of a molten salt

4

Introduction

Dynamic Modeling for Control System Design

Molten salt/CO2 heat shell‐tube HX

Air cooler

PCHE PCHE

540 degC20 MPa

35 degC8 MPa

DYMOLA

Predesign toolbox

Recompression layout

100MWe

Bypass control

Cycle model

Molten Salt Outlet Temperature (MSOT) control

Inventory control with min P protection

Min. Temperature control

Page 5: EDF Jinyi Zhang Dynamic modeling and transient analysis of ...sco2symposium.com/papers2018/modeling-control/065_Pres.pdf · Dynamic modeling and transient analysis of a molten salt

5

Model Description

Turbo-machinery performance modelEnergy balance Boundary conditions

Can be get by steady‐state simulation.

Turbo‐machinery pre‐design tools Geometry

Based on the mean‐line design tool self‐developed.

Turbo‐machinery off‐design model  Performance map (Q dependant)

Using off‐design model to get the performance map.

DYMOLA  Simulation

Turbo‐machinery is modelled based on the non‐dimensionalized curve.

Energy balance

Non‐dimensionalization post‐processing

The final obtained curve will be imported in DYMOLA.

Losses: total pressure losses

Losses: • All the main losses are implemented with 

correlation found in the open literature.• Design process: Cross‐dependency 

between geometry and outlet conditions, so iterative procedure is applied

Compressor: Thermodynamic calculation in every blade row

A realistic model which predicts performance (isentropic efficiency and compression ratio)  

depending on: 

Inlet conditionsMass flow rate Rotation speed 

Pre‐design

Off‐design

Non‐dimensionalize

DYMOLA

Page 6: EDF Jinyi Zhang Dynamic modeling and transient analysis of ...sco2symposium.com/papers2018/modeling-control/065_Pres.pdf · Dynamic modeling and transient analysis of a molten salt

6

Model Description

Heat Exchanger ModelingEnergy balance Boundary conditions

Can be get by steady‐state simulation.

Pre‐design Geometry

Based on pre‐design tools.

Off‐design model  dymola Model

Off‐design modeling in Dymola

DYMOLA  Simulation

The implemented model will be simulated in Dymola.

DYMOLA

Energy balance

0

0.05

0.1

0.15

0.2

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

Darcy frictio

n factor

Re

Pressure drop: Darcy friction factor

laminar

Critical

Transition Turbulence

64ReDf

101 2.51 5.662 log exp

3.7Re RehD D D

rjDf f f

Interpolation

Heat transfer : Heat transfer coefficient

Laminar flow : Interpolation using following table [Hesselgreaves 2001]

Turbulent flow : Gnielinski Correlation

2/3

1/2 2/3

/ 8 Re 1000 Pr1

1 12.7 / 8 Pr 1D h

D

f DNuLf

1.1098 0.89812 /1 16.2426 7.1493.48 1.7372 ln 2 lnRe 6.0983 Refa

DDf

A realistic model which predicts on‐design and off‐design performance of heat exchanger

Pre‐design

Modeling

Page 7: EDF Jinyi Zhang Dynamic modeling and transient analysis of ...sco2symposium.com/papers2018/modeling-control/065_Pres.pdf · Dynamic modeling and transient analysis of a molten salt

7

Model Description

Basic control loops

Controlled variable: Main compressor inlet temperature

Manipulated variable: Air flow rate

Controlled variable: Molten salt outlet temperature

Manipulated variable: Molten salt flow rate

Page 8: EDF Jinyi Zhang Dynamic modeling and transient analysis of ...sco2symposium.com/papers2018/modeling-control/065_Pres.pdf · Dynamic modeling and transient analysis of a molten salt

8

Turb

ine

inle

t T (d

egC

)

Turb

ine

inle

t P (b

ar)

Part-load Control Strategies and Result Analysis

Inventory Control

Load

leve

l (%

)

Inventory control with Main compressor inlet pressure protection

Load reference 100%  50%;Load level follows slowly the reference level.

MSOT control: 42.41% 37.40%

TIT control improve the 50% load efficiency

Pressure protection is important to protect compressor operation.

Turbine inlet P: 200 bar 

157bar

1 2

3 4

540 degrees to 524 degrees

Page 9: EDF Jinyi Zhang Dynamic modeling and transient analysis of ...sco2symposium.com/papers2018/modeling-control/065_Pres.pdf · Dynamic modeling and transient analysis of a molten salt

9

50 60 70 80 90 100Load level (%)

0.2

0.25

0.3

0.35

0.4

0.45

Part-load Control Strategies and Result Analysis

Bypass Control

Bypass control: the HTR, heater and turbine are bypassed.

Load reference 100%  50%;Load level follows closely to the reference

MSOT control: 42.41% 27.51%

1 2

3

Very low efficiency

Temperature near PCHEs has a high gradient.

Page 10: EDF Jinyi Zhang Dynamic modeling and transient analysis of ...sco2symposium.com/papers2018/modeling-control/065_Pres.pdf · Dynamic modeling and transient analysis of a molten salt

10

0 1000 2000 3000 4000 5000Time (s)

0.3

0.35

0.4

0.45

0.5

0 1000 2000 3000 4000 5000Time (s)

0

20

40

60

80

100

120ReferenceMeasurement

Part-load Control Strategies and Result Analysis

Inventory + Bypass Control1 2Inventory control

High efficiencyLow response speed

Bypass controlLow efficiencyHigh response speed

With Load‐inventory table:e.g. ‐50%  37.2 tons inventory discharge

1. Bypass control and inventory control with load table work together at the beginning of response

2. When inventory control reaches the target amount of inventory discharging, the bypass control will stop. 

Bypass control dominates.

Inventory control dominates.

Reference: ‐10% load/minutesVery fast response speed.

Min. efficiency: 32.64%Final efficiency:36.58%

Higher efficiencycompared to bypass control

Higher response timeCompared to inventory control

Page 11: EDF Jinyi Zhang Dynamic modeling and transient analysis of ...sco2symposium.com/papers2018/modeling-control/065_Pres.pdf · Dynamic modeling and transient analysis of a molten salt

11

Conclusion

Perspectives• A realistic dynamic model of sCO2 recompression cycle is realized in Dymola.

• Inventory control and bypass control is a good solution for power down, but for power up, inventory control is the only choice in

the current stage, whose response is not fast;

Validation and More Control Aspects

• An 20kWth experimental loop is set at the end of 2017, in collaboration with Zhejiang University, which is used to • Study pressure drop and heat transfer coefficients• Test the cycle dynamics and validate the dynamic model developed for the loop

• Mass management system will be designed to see its impact on inventory control performance;

• Investigate other part-load control strategies, in order to propose an optimized global control strategy with a good balance

between efficiency and response speed for the whole range of load;

• MSOT and TIT control will be further replaced by a multi-variable control;

• Real-time optimization will be implemented to improve cycle efficiency during operation;

Page 12: EDF Jinyi Zhang Dynamic modeling and transient analysis of ...sco2symposium.com/papers2018/modeling-control/065_Pres.pdf · Dynamic modeling and transient analysis of a molten salt

Merci谢谢

Contact: [email protected]