eddy ardonne · 2017. 6. 6. · the golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1...

47
Topological stability of q-deformed quantum spin chains Collaborators: S. Trebst, A. Feiguin, C. Gils, D. Huse, A. Ludwig, M. Troyer, Z. Wang Eddy Ardonne Nordita ERLDQS, Firenze, 090908

Upload: others

Post on 19-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Topological stability of q-deformedquantum spin chains

Collaborators:S. Trebst, A. Feiguin, C. Gils, D. Huse, A. Ludwig, M. Troyer, Z. Wang

Eddy Ardonne

Nordita

ERLDQS, Firenze, 090908

Page 2: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Motivation• What’s a spin chain?• Use a modular tensor category/quantum group!

Page 3: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Motivation• What’s a spin chain?• Use a modular tensor category/quantum group!

Outline• The golden (fibonacci) chain• Topological stability of criticality• Perturbing the chain• Generalizations

Page 4: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

The Heisenberg model

1! 1 = 11! ! = !

! ! ! = 1 + !

Fusion rules for SU(2)3 SU(2) spins

12! 1

2= 0 + 1singlet

triplet

Page 5: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

The Heisenberg model

1! 1 = 11! ! = !

! ! ! = 1 + !

Fusion rules for SU(2)3 SU(2) spins

12! 1

2= 0 + 1singlet

triplet

= J!

!ij"

!Jij2! !Si

2! !Sj

2

H = J!

!ij"

!Si · !Sj

H = J!

!ij"

"

ij

0

!Jij = !Si + !Sj

Heisenberg Hamiltonian

Page 6: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

The Heisenberg model

1! 1 = 11! ! = !

! ! ! = 1 + !

Fusion rules for SU(2)3 SU(2) spins

12! 1

2= 0 + 1singlet

triplet

= J!

!ij"

!Jij2! !Si

2! !Sj

2

H = J!

!ij"

!Si · !Sj

H = J!

!ij"

"

ij

0

!Jij = !Si + !Sj

Heisenberg Hamiltonian

H = J!

!ij"

"

ij

1

Heisenberg Hamiltonianfor (Fibonacci) anyons

“antiferromagnet” favors“ferromagnet” favors

1! (J < 0)

(J > 0)

Page 7: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

The golden chain

! ! ! !! !

Page 8: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

The golden chain

! ! ! !! !

! ! ! ! ! !

!

!

1

. . .

1! ! = !

Page 9: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

The golden chain

! ! ! !! !

! ! ! ! ! !

!

!

1

. . .

1! ! = !

Hilbert space: |x1, x2, x3, . . .!

! ! ! ! !

! . . .x1 x2 x3

Page 10: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

The golden chain

! ! ! !! !

! ! ! ! ! !

!

!

1

. . .

1! ! = !

Hilbert space: |x1, x2, x3, . . .!

! ! ! ! !

! . . .x1 x2 x3

dimL = FL+1 ! !L

! =1 +

!5

2= 1.618 . . .

Hilbert space has no natural decomposition as tensor product of single-site states.

Page 11: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

The golden chainWe want to construct a local Hamiltonian .H =

!

i

Hi

Page 12: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

The golden chainWe want to construct a local Hamiltonian .H =

!

i

Hi

! !

x1 x2 x3

Page 13: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

The golden chainWe want to construct a local Hamiltonian .H =

!

i

Hi

! !

x1 x2 x3

! !

x1 x3

x̃2

Page 14: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

The golden chainWe want to construct a local Hamiltonian .H =

!

i

Hi

! !

x1 x2 x3

! !

x1 x3

x̃2=

!

x̃2

F x2x̃2

F-matrix

F =!

!!1 !!1/2

!!1/2 !!!1

"

Page 15: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

The golden chainWe want to construct a local Hamiltonian .H =

!

i

Hi

SU(2) spins

12! 1

2! 1

2

12! 1

2! 1

2

Clebsch-Gordan coefficient

6-J symbolE. Wigner 1940

! !

x1 x2 x3

! !

x1 x3

x̃2=

!

x̃2

F x2x̃2

F-matrix

F =!

!!1 !!1/2

!!1/2 !!!1

"

Page 16: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

The golden chainWe want to construct a local Hamiltonian .H =

!

i

Hi

SU(2) spins

12! 1

2! 1

2

12! 1

2! 1

2

Clebsch-Gordan coefficient

6-J symbolE. Wigner 1940

! !

x1 x2 x3

! !

x1 x3

x̃2=

!

x̃2

F x2x̃2

F-matrix

F =!

!!1 !!1/2

!!1/2 !!!1

"

Hi = Fi !1i FiLocal Hamiltonian:

Page 17: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

The golden chainHi = Fi !1

i FiLocal Hamiltonian:

Hi = !!

!!2 !!3/2

!!3/2 !!1

"

Page 18: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

The golden chainHi = Fi !1

i FiLocal Hamiltonian:

Hi = !!

!!2 !!3/2

!!3/2 !!1

"

Explicit form:

off-diagonal matrix element

Hi = !P1!1 ! !!2P!1! ! !!1P!!!

!!!3/2 (|"1"" #""" | + h.c.)

A. Feiguin et. al, PRL (2007)

Page 19: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

conformal field theory description

CriticalityFinite-size gap

!(L) ! (1/L) z=1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1inverse system size 1/L

0

0.1

0.2

0.3

0.4

0.5

0.6

ener

gy g

ap Δ

even length chainodd length chain

Lanczos

DMRG

Page 20: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

conformal field theory description

CriticalityFinite-size gap

!(L) ! (1/L) z=1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1inverse system size 1/L

0

0.1

0.2

0.3

0.4

0.5

0.6

ener

gy g

ap Δ

even length chainodd length chain

Lanczos

DMRG

Entanglement entropy

SPBC(L) ! c

3log L

central chargec = 7/10

20 40 50 60 80 100 120 160 200 24030system size L

0 0

0.5 0.5

1 1

1.5 1.5

entro

py S(L)

periodic boundary conditionsopen boundary conditions

Page 21: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Energy spectra

0 2 4 6 8 10 12 14 16 18momentum K [2π/L]

0 0

1 1

2 2

3 3

4 4

5 5

6 6

resc

aled

ene

rgy

E(K)

L = 36

3/40

7/8

1/5

6/5

3

0

Neveu-Schwarz sector

Ramond sector

1/5 + 1

1/5 + 21/5 + 2

0 + 26/5 + 1

3/40 + 1

3/40 + 2

7/8 + 13/40 + 2

3/40 + 33/40 + 3

7/8 + 2

1/5 + 3

6/5 + 20 + 3

primary fieldsdescendants

Page 22: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Energy spectra

0 2 4 6 8 10 12 14 16 18momentum K [2π/L]

0 0

1 1

2 2

3 3

4 4

5 5

6 6

resc

aled

ene

rgy

E(K)

L = 36

3/40

7/8

1/5

6/5

3

0

Neveu-Schwarz sector

Ramond sector

1/5 + 1

1/5 + 21/5 + 2

0 + 26/5 + 1

3/40 + 1

3/40 + 2

7/8 + 13/40 + 2

3/40 + 33/40 + 3

7/8 + 2

1/5 + 3

6/5 + 20 + 3

primary fieldsdescendants

primary fields

scaling dimensions

I ! !! !!! ! !!

1/100 3/5 3/2 3/80 7/16! "# $ ! "# $

K = 0 K = !

Page 23: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Mapping to Temperly-LiebThe operators form a representation of the Temperly-Lieb algebra:

X2i = dXi XiXi±1Xi = Xi Xi, Xj= 0 when |i! j| " 2

is the isotopy parameterd = !

Xi = !!Hi

Page 24: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Mapping to Temperly-Lieb

Get: Restricted solid on solid model (RSOS)

AFM interactions: minimal model

FM interactions: parafermions

Mk

Zk c =2(k ! 1)k + 2

c = 1! 6(k + 1)(k + 2)

The operators form a representation of the Temperly-Lieb algebra:

X2i = dXi XiXi±1Xi = Xi Xi, Xj= 0 when |i! j| " 2

is the isotopy parameterd = !

Xi = !!Hi

Page 25: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Topological symmetryen

ergy

E

(K)

momentum K0 !I

!

!!

!!!

!

!!

Page 26: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Topological symmetryen

ergy

E

(K)

momentum K0 !I

!

!!

!!!

2irrelevant operatorsrelevant operators

!

!!

Page 27: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Relevant perturbations

! !!

! !!

Topological symmetryen

ergy

E

(K)

momentum K0 !I

!

!!

!!!

2irrelevant operatorsrelevant operators

!

!!

Page 28: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Relevant perturbations

! !!

! !!

Topological symmetryen

ergy

E

(K)

momentum K0 !I

!

!!

!!!

2irrelevant operatorsrelevant operators

!

!!

staggered

Page 29: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Relevant perturbations

! !!

! !!

Topological symmetryen

ergy

E

(K)

momentum K0 !I

!

!!

!!!

2irrelevant operatorsrelevant operators

!

!!

staggered

prohibited bytranslational symmetry

Page 30: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Relevant perturbations

! !!

! !!

Topological symmetryen

ergy

E

(K)

momentum K0 !I

!

!!

!!!

2irrelevant operatorsrelevant operators

!

!!

staggered

prohibited bytranslational symmetry

!

no flux -flux!

Page 31: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Relevant perturbations

! !!

! !!

Topological symmetryen

ergy

E

(K)

momentum K0 !I

!

!!

!!!

2irrelevant operatorsrelevant operators

!

!!

staggered Symmetry operator!x!

1, . . . , x!L|Y |x1, . . . , xL"

=L!

i=1

"F

x!i+1

!xi!

#x!i

xi+1

[H,Y ] = 0

with eigenvaluesS!!flux = ! Sno flux = !!!1

prohibited bytranslational symmetry

!

no flux -flux!

Page 32: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Relevant perturbations

! !!

! !!

Topological symmetryen

ergy

E

(K)

momentum K0 !I

!

!!

!!!

2irrelevant operatorsrelevant operators

!

!!

staggered Symmetry operator!x!

1, . . . , x!L|Y |x1, . . . , xL"

=L!

i=1

"F

x!i+1

!xi!

#x!i

xi+1

[H,Y ] = 0

with eigenvaluesS!!flux = ! Sno flux = !!!1

prohibited bytranslational symmetry

!

no flux -flux!

Page 33: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Relevant perturbations

! !!

! !!

Topological symmetryen

ergy

E

(K)

momentum K0 !I

!

!!

!!!

2irrelevant operatorsrelevant operators

!

!!

staggered Symmetry operator!x!

1, . . . , x!L|Y |x1, . . . , xL"

=L!

i=1

"F

x!i+1

!xi!

#x!i

xi+1

[H,Y ] = 0

with eigenvaluesS!!flux = ! Sno flux = !!!1

prohibited bytranslational symmetry

prohibited bytopological symmetry

!

no flux -flux!

Page 34: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

!!!

!!!

Topological stabilityen

ergy

E

(K)

momentum K0 !I

!

!!

!!!

2irrelevant operatorsrelevant operators

!

!!

prohibited bytranslational symmetry

prohibited bytopological symmetry

The criticality of the chain is protected by additional topological symmetry.

Is this special to ?SU(2)3

Local perturbations do not gap the system.

Page 35: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Topological stability for all kMinimal models have a coset description:

Mk = su(2)1!su(2)k!1su(2)k

Page 36: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Topological stability for all kMinimal models have a coset description:

Mk = su(2)1!su(2)k!1su(2)k

The coset field inherit the topological sector via the character decomposition:

!(1)! !(k!1)

j2=

!j1

Bj1j2

!(k)j1

" = j1 ! j2 mod 1

Page 37: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Topological stability for all kMinimal models have a coset description:

Mk = su(2)1!su(2)k!1su(2)k

The coset field inherit the topological sector via the character decomposition:

!(1)! !(k!1)

j2=

!j1

Bj1j2

!(k)j1

" = j1 ! j2 mod 1

The predictions have been checked numerically, and both the AFM and FM spin-1/2 chains are stable!

Page 38: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Majumdar-Ghosh chain

! ! !!!

! ! !!!

!

! !

!

!

!

!!

!!

a) ! ! !!!! ! ! !!b)

!

! !

! !!!

!

!

!

! ! !

! !

!

!c)

Consider a (competing) three anyon-fusion term➠ neither translational nor topological symmetry are broken

SU(2)3 anyons

Page 39: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Majumdar-Ghosh chain

! ! !!!

! ! !!!

!

! !

!

!

!

!!

!!

a) ! ! !!!! ! ! !!b)

!

! !

! !!!

!

!

!

! ! !

! !

!

!c)

Consider a (competing) three anyon-fusion term➠ neither translational nor topological symmetry are broken

SU(2) spins

HMG = J!

i

!T 2i!1,i,i+1

= J!

i

!Si!Si+1 +

J

2

!

i

!Si!Si+2

SU(2)3 anyons

Page 40: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Majumdar-Ghosh chain

! ! !!!

! ! !!!

!

! !

!

!

!

!!

!!

a) ! ! !!!! ! ! !!b)

!

! !

! !!!

!

!

!

! ! !

! !

!

!c)

Consider a (competing) three anyon-fusion term➠ neither translational nor topological symmetry are broken

SU(2) spins

HMG = J!

i

!T 2i!1,i,i+1

= J!

i

!Si!Si+1 +

J

2

!

i

!Si!Si+2

SU(2)3 anyons

Hi = P!1!1 + P1!1! + P!!!1 + P1!!! + 2!!2P!!!! +!!1 (P!1!! + P!!1! ) ! !!2

!|""1"" #"1"" | + h.c.

"+

!!5/2 (|"1""" #"""" | + |""1"" #"""" |+h.c.)

Page 41: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Phase diagram

tricritical Ising

3-state Potts

c = 7/10

c = 4/5

Majumdar-Ghosh

Z4-phase

tan ! = "/23-state Potts, S3-symmetry

tetracritical Isingc = 4/5

c = 4/5

exactsolution

exactsolution

incommensurate phase

! ! !!!

! ! !!!

!

! !

!

!

!

!!

!!

a) ! ! !!!! ! ! !!b)

!

! !

! !!!

!

!

!

! ! !

! !

!

!c)

J3 = sin !

J1 = cos !

S. Trebst et. al., PRL (2008)

Page 42: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

S3-symmetric point

0 0.1 0.2 0.3 0.4 0.5momentum K [2π/L]

0 0

1 1

2 2

3 3

4 4

5 5

6 6

resc

aled

ene

rgy

E(K)

2/15

4/5

4/3 4/3

2+2/15

2+4/5

2+4/3

2+2/15

2+4/5

2+4/3

4+2/15 4+2/15

4+4/5

1+2/15

1+4/5

1+4/3

0

1+2/15

1+4/5

1+4/3

3+2/15

3+4/5

3+4/3

3+2/15

3+4/5

3+4/3

2+2/15

2+4/5

2+4/3

4+2/15

4+4/5

2+0

4+0

2+2/15

2+4/5

2+4/3

4+2/15

4+4/54+4/5

4+4/3 4+4/3

3+03+2/15 3+2/15

3+0

3+4/5

3+4/3

3+4/5

4+4/3

5+05+2/15 5+2/15

5+0

L = 36primary fields descendants

2/15

I

IIIII

Conformal field theory: parafermions with central charge .c = 4/5

! = 0.176"

! ! !!!

! ! !!!

!

! !

!

!

!

!!

!!

a) ! ! !!!! ! ! !!b)

!

! !

! !!!

!

!

!

! ! !

! !

!

!c)

Page 43: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

spin-1 chainsu(2)5Take the even sector of : su(2)5 1 ! "

!! ! = 1 + " !! " = ! + " " ! " = 1 + ! + "

Use the particles as the building block of the chain, and define the hamiltonian:

!

H = sin !P! ! cos !P"

P! , P" project on the channel. ! , "

Page 44: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

su(2)5spin-1 chain phase diagram

C. Gils et. al., in preparation

Page 45: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

c=80/71 super cft spectrum

0 1 2 3Momentum kx

0

0.5

1

1.5

2

2.5

Resc

aled

ene

rgy

E(k x)

c=81/70 CFTL=18

θ=1.1872π

3/350

8/35

3/7

29/2809/56

27/40

73/56

269/2801+3/351+8/35

1+3/7

16/7

9/5

Page 46: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Conclusions• Topological quantum spin chains have been

studied analytically and numerically

• They support different phases: (topologically) protected criticality, gapped phases etc.

• Many aspects remain open:• 2-d systems• different types of disorder (some progress)• higher genus surfaces

Page 47: Eddy Ardonne · 2017. 6. 6. · The golden chain τ τ τ τ τ τ τ τ τ τ τ τ τ τ 1. . . 1 × τ = τ Hilbert space: |x 1, x 2, x 3, . . .! τ τ τ τ τ τ x 1 x 2 x 3

Nordita program

August 17 - September 11, 2009:

Quantum Hall Physics - Novel systems and applications