economics and retrofit

97
ECONOMICS AND RETROFIT Maria BOSTENARU DAN, Diana MENDES

Upload: maria-bostenaru

Post on 15-May-2015

215 views

Category:

Education


3 download

DESCRIPTION

Seminario ICEST IST Lisbon

TRANSCRIPT

Page 1: Economics and retrofit

ECONOMICS AND

RETROFIT

Maria BOSTENARU DAN, Diana MENDES

Page 2: Economics and retrofit

Overview

Introduction

The building typology

Performance levels and seismic retrofit costs

Building modelling

Computation methodology

Structural damage

Comparison of costs

Output for the decision system

Outlook to further studies

Page 3: Economics and retrofit

Existing methods

Urban scale At urban planning level there were Fingerhuth and Koch who clarified the

moderating role of the architect, among experts, passive public and active affected people.

At regional planning level it was Strassert (1995) developing a method of balancing we will later employ.

Building scale Inclusion of the factor cost into multicriteria decision analysis has been done more

recently by the team of Caterino et al (2007 and 2009), with a view to bracing of a reinforced concrete building, but employing passive damping.

For technical decision we built upon the book of Malczewski (1999) regarding spatial problems.

For the role of the architect Richter (course work) made a role model in the decision space between goals, resources, benefits and costs.

In renovation the model used in Weissenhof was described by Nägele (1992). Also Nägele (1992) employed balancing.

The ATC-40 considers a series of actors specifically for seismic retrofit. Both the latter employ matrixes (decision tables).

The role of the users were considered also by Ottokar Uhl in the model developed for the Hollabrunn in the 1970s, the glory time of participatism.

Page 4: Economics and retrofit

The building typology

Page 5: Economics and retrofit

The RC skeleton building

typology in Europe

Studies of seismic countries: Romania, Italy, Greece, Slovenia, Portugal (for the first two including archives)

Studies of other countries presenting the typology: Poland, Bulgaria, France, Czech Republic, Estonia, Austria, Netherlands, Spain, Germany (the last two moderate seismicity; Germany is steel frame)and of Art Nouveau forerunners (Belgium, Romania, Hungary, Estonia, Finnland, Germany) seehttp://bostenaru.natkat.org/project_results/study_trips.html

Page 6: Economics and retrofit

The RC skeleton among typologies

in Bucharest, Romania

Romanian housing typologies analysed (WHE&beyond)

Historic building with timbered balcony

„wagon“ house (single story brick row)

Two story brick masonry timber floor

Multistory brick masonry steel composite floor

RC skeleton (residential and mixed use)

RC skeleton with RC braces

Cast in situ RC structural walls (vulnerable and not)

Precast RC structural walls

Moment resisting RC frame multistorey (socialist)

Moment resisting RC frame low rise (post 1989)

RC skeleton most vulnerable

Page 7: Economics and retrofit

Bucharest, Romania

Early RC skeleton

Page 8: Economics and retrofit

Building typology: Romania

Impact of apartment buildings bigger than any

other housing

Strong economy, private enterprise

Deviations from mainstream movement dicated

by the market

Condominium, like in Greece, until today

Double entrance

Ottulescu building: free plan in an apartment

block

Page 9: Economics and retrofit

Romania

Page 10: Economics and retrofit

Building typology: Romania

Page 11: Economics and retrofit

Building typology: Romania

Elena Ottulescu

building,

architect Horia

Creangă, 1934-

35

Bedroom / night zone

Living room, including dinning

Corridors / circulation zone

Bathrooms, toillets

Kitchen

Hall / vertical circulation

Deposit / external circulation

Legend:

Page 12: Economics and retrofit

Building typology: Italy

Two directions

Rationalism (contextual Modernism)

Giuseppe Terragni

Novecento

Decorative

Geometrical

Novecento: function bound housing typologies,

condominium

Zoning: function groups, double entrance

Page 13: Economics and retrofit

Building typology: Italy

Giuseppe Terragni - Como

Photos 2005

Page 14: Economics and retrofit

Italy

Como

Page 15: Economics and retrofit

Building typology: Italy

Giuseppe Terragni - Milano

Photos 2005

Page 16: Economics and retrofit

Italy

Milano

Rationalist architecture: blue

Novecento architecture: red

Page 17: Economics and retrofit

Building typology: Italy

Novecento

Photos 2007

Page 18: Economics and retrofit

Building typology: Italy

Novecento

Photos 2007

Page 19: Economics and retrofit
Page 20: Economics and retrofit

Building typology: Italy

Novecento

Building in Via

Domenichino, architects

Lancia şi Ponti

1928-30

Living room, dinning

B athroom, toilets

Kitchen

Hall

Corridors / circulation zone

Deposit

B edroom / Night zone

Page 21: Economics and retrofit

Building typology: Greece

1929 – ownership system for multistorey apartments

Housing in private hand, seen to be unique, but similar to Romania and Portugal

Training in Germany, little in France

zonation

Zaimi and Stournary street example: „ressemble Italian rationalism“ – to be investigated

Double entrance

Page 22: Economics and retrofit

Building typology: Greece

Photos 2005

Page 23: Economics and retrofit

Greece

Athens

Page 24: Economics and retrofit

Greece

Bedroom / night zone

Living room, including dinning

Corridors / circulation zone

Bathrooms, toillets

Kitchen

Hall / vertical circulation

Deposit / external circulation

Legend:

building on

Zaimi and

Stournari

streets,

architects

Valentis and

Michailidis,

1933 – 1934

Page 25: Economics and retrofit

Slovenia

Few reinforced concrete skeleton multi-family

housing

Joze Plecnik built housing programmes

The multi-family housing by Plecnik can be

found in Vienna (ex. Zacherl house)

Multi-family housing is mainly in brick

Ljubljana was reconstructed after the 1895

earthquake mainly with buildings of Art

Nouveau; Modernism and RC came later

Page 26: Economics and retrofit

Slovenia

Plecnik

Page 27: Economics and retrofit

Plecnik

In Austria

skeleton

photos 2005-2006

Page 28: Economics and retrofit

Slovenia

Page 29: Economics and retrofit

Portugal

RC buildings in the north of the city, where

avenues were built in the interwar time

Master Plan according to the 1933 Charter of

Athens was done post-war

Traditional floor plans

Page 30: Economics and retrofit

Portugal

Cassiano Branco (photos 2005)

Page 31: Economics and retrofit

Portugal

Middle-agequarterAlfama

Baixa quarter built after the1755 earthquake

Haussmannian Boulevardbuilt before those in Paris

Page 32: Economics and retrofit

Performance levels and seismic

retrofit costs

Page 33: Economics and retrofit

Performance levels and seismic

retrofit costs

Inspiration from studies in the theory of

daylight in atria

Depending on the expected earthquake, the

measure can be more extensive or not

Adding a second window should be similar to

adding a retrofit element and the distance to

the amount

Page 34: Economics and retrofit

Formulas – principle of addition

Reparation of a column damaged till yield/crush =

48,16 x + 1 x + 270 x + 10 x + 25 x + 1 x

(1)

Reparation of a column damaged till reinforcement

yield/concrete crush =

41,68 x + 1 x + 2 x + 270 x + 0,9 x + 2,4 x + 1 x + 0,75 x

(2)

Reparation of a column damaged till spall =

22,67 x + 0,33 x + 270 x + 10 x + 25 x + 0,33 x

(3)

Reparation of a beam damaged till spall =

23,91 x + 0,0572 x + 0,8 x + 0,009 x + 0,18 x

(4)

Reparation of a column with rifts = 36,48 x + 4,8 x + 0,015 x + 4,8

x

(5)

Reparation of a beam with rifts = 38 x + 6,75 x + 0,015 x + 6,75 x (6)

The formulas are based on the devices. The unknown depend on country and time as

follows:

- is he hour salary,

- is the price for bringing away concrete,

- is the price for 1kg steel,

- is the price for scaffolding 1m²,

- is the price for supporting the scaffolding 1m,

- is the preice for 1m³ concrete,

- is the price for a hole in the slab,

- is he price for 1m² plastering,

- is the approximative price for injection materials,

- is the price for brining away the old plastering (1m³).

Total reparation cost =

reparation cost for yield/crush colum x nr. of yield crush/columns +

Reparation cost for spall column x nr. of spall columns +

Reparation cost for rifts colum x nr. of rifted colums +

Reparation cost for yield/crush beam x nr. of yield/crush beams +

Reparation cost for spall beam x nr. of spall beams +

Reparation cost for rifts beam x nr. of rift beams

While the numbers can be counted with the procedure shown before

Total preventive retrofit costs =

Costs for a measures device x nr. of elements

Alternatively a project management software can be employed.

Moment of the measure

Extent of the measure

Extent of the measureCosts

Reparation

Rebuilding

Retrofit

Page 35: Economics and retrofit

The concept of cost curves

the derivation from the daylight shall be understood as follows: lets imagine a building consisting of

parallel bars. In this case the light comes through courtyards, and is decreased in the lower

levels by shadows. To overcome this, a building with stepwise recesses in the height has been

designed. Thus the courtyard in the ground floor is the tightest, while increasing in wideness with

the height. Therefore the shadow decreases in the height and more natural light is received by

the higher floors. However, for deep rooms even this natural light is not enough. To deal with the

huge depth a second window was added, following the line of the next floor, which is set back. To

optimize the light design the amount of setting back is different depending on floor, the second

window is closer to the main one in the lower floor and further in the upper floors, where the

natural light amount decreases deeper on. Transferred into our concept the window symbolizes

the amount of the measure, by amount we understand the costs beared by a certain retrofit or

repair intervention. The main window stays for repair and the additional one for retrofit. The

deeper the floor is, the less effect the investment in repair has, because the damages are more

extensive – the deeper floors correspond to stronger earthquakes, the less favourable situation.

The “moment of the measure” stays for the earthquake we consider to set our measure targeted

with, in German called “Bemessungsbeben” and which we can consider that the building shall be

designed for in order to reach a certain performance level. The moment of the measure, although

staying on the X axis is actually determined by the Y axis, namely if the curve shall be drawn for

a lower or an upper story, which are the ones determined parametrically by the earthquake

magnitude.

Page 36: Economics and retrofit
Page 37: Economics and retrofit

Building modelling

Page 38: Economics and retrofit

Building modelling

Study of the structural typology of early RC

Report for the WHE (extended characteristics)

Study of planimetry to identify typology of

distribution of spans and bays in a skeleton

Modelling in the software

Building

Retrofit measures

Page 39: Economics and retrofit
Page 40: Economics and retrofit
Page 41: Economics and retrofit
Page 42: Economics and retrofit
Page 43: Economics and retrofit

350mm

30mm

350mm

30mm

350mm

Steel bars anchored

into the concrete

to which the braces are fixed

Page 44: Economics and retrofit

Computation methodology

Page 45: Economics and retrofit

Computation methodology

Calculation using construction devices for „retrofit elements“ for Retrofit measures

Repair measures after earthquake damage, depending on damage degree (the software allowed to apply the retrofit method on a predamaged element) Computed following performance criteria available in fibre

based software

Option for use of Project Management software (considering all costs transformed in time)

Calculation using surfaces for rebuilding the building in case of total damage Use of MS Excell forms

Option for use of new BIM software (2011)

Page 46: Economics and retrofit

Retrofit measure

Page 47: Economics and retrofit

Repair measure

Page 48: Economics and retrofit

Otpt No: 73 Time= 9,3360, spallig reached. Elm: Cb51ba. Unc Conc Strain = -0.002173 - G.p.(b)

Otpt No: 73 Time= 9,3360, spallig reached. Elm: Cb2051a. Unc Conc Strain = -0.002116 - G.p.(b)

Otpt No: 73 Time= 9,3360, spallig reached. Elm: C2031a. Unc Conc Strain = -0.002198 - G.p.(b)

Otpt No: 73 Time= 9,3360, yield reached. Elm: C11bb. Steel Strain = 0.002502 - G.p.(a)

Otpt No: 73 Time= 9,3360, yield reached. Elm: C2011a. Steel Strain = 0.002633 - G.p.(b)

Otpt No: 73 Time= 9,3360, fracture reached. Elm: C2011b. Steel Strain = 0.069858 - G.p.(a)

Otpt No: 73 Time= 9,3360, fracture reached. Elm: C2011b. Steel Strain = 0.109096 - G.p.(b)

Otpt No: 73 Time= 9,3360, crush reached. Elm: C2011b. Conf Conc Strain = -0.007241 - G.p.(a)

Otpt No: 73 Time= 9,3360, crush reached. Elm: C2011b. Conf Conc Strain = -0.04781 - G.p.(b)

Otpt No: 73 Time= 9,3360, yield reached. Elm: C5011b. Steel Strain = 0.005749 - G.p.(a)

Typical log-file output

Otpt No: Time= reached Elm: Mat 1 Mat 2 Strain = Gauss point

1 0.1500, crack_cover bmz3412. Unc Conc 0.000107 G.p.(b)

1 0.1500, crack_core bmz2511. Conf Conc 0.000101 G.p.(a)

1 0.1500, crack_cover bmz2511. Unc Conc 0.000113 G.p.(a)

1 0.1500, crack_core bmz2512. Conf Conc 0.000108 G.p.(b)

1 0.1500, crack_cover bmz2512. Unc Conc 0.000122 G.p.(b)

1 0.1500, crack_cover bmz4411. Unc Conc 0.000101 G.p.(a)

1 0.1500, crack_cover bmz4412. Unc Conc 0.000109 G.p.(b)

1 0.1500, crack_core bmz3511. Conf Conc 0.000104 G.p.(a)

1 0.1500, crack_cover bmz3511. Unc Conc 0.000116 G.p.(a)

1 0.1500, crack_core bmz3512. Conf Conc 0.000111 G.p.(b)

Log-file output imported in MS Excell

ID Otpt No: Time= reached Elm: Mat 1 Mat 2 Strain = Gauss point

1 1 0.1500, crack_cover bmz3412. Unc Conc 0.000107 G.p.(b)

2 1 0.1500, crack_core bmz2511. Conf Conc 0.000101 G.p.(a)

3 1 0.1500, crack_cover bmz2511. Unc Conc 0.000113 G.p.(a)

4 1 0.1500, crack_core bmz2512. Conf Conc 0.000108 G.p.(b)

5 1 0.1500, crack_cover bmz2512. Unc Conc 0.000122 G.p.(b)

6 1 0.1500, crack_cover bmz4411. Unc Conc 0.000101 G.p.(a)

7 1 0.1500, crack_cover bmz4412. Unc Conc 0.000109 G.p.(b)

8 1 0.1500, crack_core bmz3511. Conf Conc 0.000104 G.p.(a)

9 1 0.1500, crack_cover bmz3511. Unc Conc 0.000116 G.p.(a)

10 1 0.1500, crack_core bmz3512. Conf Conc 0.000111 G.p.(b)

Log-file imported in MS Access

Gesamtsumme von ID yield crush spall crack_core crack_cover element

15 4 1 2 4 4 bmx121

14 4 2 4 4 bmx122

14 4 2 4 4 bmx133

14 4 2 4 4 bmx141

14 4 2 4 4 bmx142

10 2 4 4 bmx152

10 2 4 4 bmx153

10 2 4 4 bmx154

8 4 4 bmx161

8 4 4 bmx162

MS Access query

Page 49: Economics and retrofit

Interdependence structural – socio-

economicOtpt No: 73 Time= 9,3360, spallig reached. Elm: Cb51ba. Unc Conc Strain = -0.002173 - G.p.(b)

Otpt No: 73 Time= 9,3360, spallig reached. Elm: Cb2051a. Unc Conc Strain = -0.002116 - G.p.(b)

Otpt No: 73 Time= 9,3360, spallig reached. Elm: C2031a. Unc Conc Strain = -0.002198 - G.p.(b)

Otpt No: 73 Time= 9,3360, yield reached. Elm: C11bb. Steel Strain = 0.002502 - G.p.(a)

Otpt No: 73 Time= 9,3360, yield reached. Elm: C2011a. Steel Strain = 0.002633 - G.p.(b)

Otpt No: 73 Time= 9,3360, fracture reached. Elm: C2011b. Steel Strain = 0.069858 - G.p.(a)

Otpt No: 73 Time= 9,3360, fracture reached. Elm: C2011b. Steel Strain = 0.109096 - G.p.(b)

Otpt No: 73 Time= 9,3360, crush reached. Elm: C2011b. Conf Conc Strain = -0.007241 - G.p.(a)

Otpt No: 73 Time= 9,3360, crush reached. Elm: C2011b. Conf Conc Strain = -0.04781 - G.p.(b)

Otpt No: 73 Time= 9,3360, yield reached. Elm: C5011b. Steel Strain = 0.005749 - G.p.(a)

Typical log-file output

Otpt No: Time= reached Elm: Mat 1 Mat 2 Strain = Gauss point

1 0.1500, crack_cover bmz3412. Unc Conc 0.000107 G.p.(b)

1 0.1500, crack_core bmz2511. Conf Conc 0.000101 G.p.(a)

1 0.1500, crack_cover bmz2511. Unc Conc 0.000113 G.p.(a)

1 0.1500, crack_core bmz2512. Conf Conc 0.000108 G.p.(b)

1 0.1500, crack_cover bmz2512. Unc Conc 0.000122 G.p.(b)

1 0.1500, crack_cover bmz4411. Unc Conc 0.000101 G.p.(a)

1 0.1500, crack_cover bmz4412. Unc Conc 0.000109 G.p.(b)

1 0.1500, crack_core bmz3511. Conf Conc 0.000104 G.p.(a)

1 0.1500, crack_cover bmz3511. Unc Conc 0.000116 G.p.(a)

1 0.1500, crack_core bmz3512. Conf Conc 0.000111 G.p.(b)

Log-file output imported in MS Excell

ID Otpt No: Time= reached Elm: Mat 1 Mat 2 Strain = Gauss point

1 1 0.1500, crack_cover bmz3412. Unc Conc 0.000107 G.p.(b)

2 1 0.1500, crack_core bmz2511. Conf Conc 0.000101 G.p.(a)

3 1 0.1500, crack_cover bmz2511. Unc Conc 0.000113 G.p.(a)

4 1 0.1500, crack_core bmz2512. Conf Conc 0.000108 G.p.(b)

5 1 0.1500, crack_cover bmz2512. Unc Conc 0.000122 G.p.(b)

6 1 0.1500, crack_cover bmz4411. Unc Conc 0.000101 G.p.(a)

7 1 0.1500, crack_cover bmz4412. Unc Conc 0.000109 G.p.(b)

8 1 0.1500, crack_core bmz3511. Conf Conc 0.000104 G.p.(a)

9 1 0.1500, crack_cover bmz3511. Unc Conc 0.000116 G.p.(a)

10 1 0.1500, crack_core bmz3512. Conf Conc 0.000111 G.p.(b)

Log-file imported in MS Access

Gesamtsumme von ID yield crush spall crack_core crack_cover element

15 4 1 2 4 4 bmx121

14 4 2 4 4 bmx122

14 4 2 4 4 bmx133

14 4 2 4 4 bmx141

14 4 2 4 4 bmx142

10 2 4 4 bmx152

10 2 4 4 bmx153

10 2 4 4 bmx154

8 4 4 bmx161

8 4 4 bmx162

MS Access query

Page 50: Economics and retrofit

After supervised work of Öztürk (2003)

Page 51: Economics and retrofit
Page 52: Economics and retrofit
Page 53: Economics and retrofit

Structural damage

Page 54: Economics and retrofit

Structural damage

The method allows to count the damaged

elements, and thus the costs for the entire

building

The method also allows to localise the

damaged elements

Page 55: Economics and retrofit

crushingin

groundfloor

columns

spallingin

first floor

columns

spallingin

ground floor

columnsNot retrofitted

Retrofitted with side walls

Page 56: Economics and retrofit

Retrofit method EQ

fracture+crush+s

pall+crack

yield+crush+

spall+crack

crush+spall

+crack

yield+spall

+crack

spall+

crack

yield+

crackcrack

only

None

1977 0,98 8,5 0 47,1 0 18,3 25,16

1986 0 0,7 0 19,9 1,0 1,0 77,45

1990, 1 0 0 0 0 0 0 65,7

1990, 2 0 0 0 0 2,0 7,2 88,6

1977+1977 3,27 14,05 0 45,75 0 16,01 20,92

1977+1986 0,98 9,15 0 44,12 0 19,93 25,82

1977+1990,2 0,98 9,15 0 44,44 0 19,28 26,14

1986+1990,1 0 3,92 0 17,32 1,63 9,74 47,39

Th.+Th. 0 0 0 0 0,98 0 97,71

Metal jacketing

1977 0 9,2 0 50,7 0,0 19,0 30,39

1986 0 2,6 0 20,9 2,0 28,8 45,75

1990, 1 0 0 0 0 0 0 66,3

Thessaloniki 0 0 0 0 0,98 0 97,71

Side walls

1986 0 0 1,2 0 0,6 0 62,3

1990, 1 0 0 0 0 0 0 64,0

1990, 2 0 0 0 0 0,6 0,3 88,3

Thessaloniki 0 0 0 0 1,75 0 96,78

1977+1977 0,58 10,53 0 63,16 0 10,53 15,2

1977+1986 0,88 8,19 0 50 0 19,93 21,64

1977+1990,1 0,88 8,19 0 39,47 0 13,45 31,87

1977+1990,2 0,88 9,06 0 38,89 0 16,67 28,65

1986+1977 0 4,09 0 16,08 0,29 23,1 48,83

1986+1977 0 7,02 0 53,8 0,29 18,13 20,76

Diagonal braces

1986 0 0 0 0 0 0 64,05

1990,1 0 0 0 0 0 0 54,25

1990,2 0 0 0 0 0 0 85,62

Structural wall

1990,1 0 0 0 0 0 0 56,36

1990,2 0 0 0 0 0,3 0 77,24

Page 57: Economics and retrofit

Comparison of costs

Page 58: Economics and retrofit

Comparison of costs

Done for

Retrofit techniques (braces, jacketing, structural wall, side walls) – seen earlier at %

Retrofit strategies (amount and position of braces)

Compared for different earthquakes

Compared with rebuild

Computed the savings done in repair costs by applying the retrofit before the earthquake, or before a second earthquake

Page 59: Economics and retrofit

Mo

del

Retr

ofi

t

Eart

hq

uake 1

Eart

hq

uake 2

Rep

ara

tion

(€)

Retr

ofi

t (€

)

To

tal(

€)

Reb

uil

d (

€)

Rep

ara

tion

/

Reb

uil

d

Retr

ofi

t/

Reb

uil

d

To

tal/

Reb

uil

d

To

tal/

Reb

uil

d-0

,30

Rep

ara

tion

/

Retr

ofi

t R

etr

ofi

t/

Rep

ara

tion

Dif

fere

nce

to

no

t re

tro

fitt

ed

(€)

Rep

ara

tion

sav

ing

/

retr

ofi

t re

tro

fit/

Rep

ara

tion

sav

ing

Gregor - 1977 - 406968 0 406968 3195391 0,13 0,00 0,13 -0,17 - 0 - - -

Gregor - 1986 - 432952 0 432952 3195391 0,14 0,00 0,14 -0,16 - 0 - - -

Gregor - 1990,1 - 271407 0 271407 3195391 0,08 0,00 0,08 -0,22 - 0 - - -

Gregor - 1990,2 376411 0 376411 3195391 0,12 0,00 0,12 -0,18 - 0 - - -

Gregor - 1977 1977 430400 0 430400 3195391 0,13 0,00 0,13 -0,17 - 0 - - -

Gregor - 1977 1986 398150 0 398150 3195391 0,12 0,00 0,12 -0,18 - 0 - - -

Gregor - 1977 1990,1 0 0 3195391 0,00 0,00 0,00 -0,30 - - - - -

Gregor - 1977 1990,2 401200 0 401200 3195391 0,13 0,00 0,13 -0,17 - 0 - - -

Gregor - 1986 1977 0 0 3195391 0,00 0,00 0,00 -0,30 - - - - -

Gregor Metal jacket 1977 - 445586 55152 500738 3195391 0,14 0,02 0,16 -0,14 8 0,12377395 38619 1 1

Gregor Metal jacket 1986 - 324031 55152 379183 3195391 0,10 0,02 0,12 -0,18 6 0,17020591 -108921 -2 -1

Gregor Metal jacket 1990,1 273885 55152 329037 3195391 0,09 0,02 0,10 -0,20 5 0,20136897 2479 0 22

Gregor Metal jacket Thessaloniki 408750 55152 463902 3195391 0,13 0,02 0,15 -0,15 7 0,13492844 0 -

Gregor Sidewalls 1986 299336 102960 402296 3195391 0,09 0,03 0,13 -0,17 3 0,34396188 -133616 -1 -1

Gregor Sidewalls 1990,1 295488 102960 398448 3195391 0,09 0,03 0,12 -0,18 3 0,34844055 24081 0 4

Gregor Sidewalls 1990,2 411170 102960 514130 3195391 0,13 0,03 0,16 -0,14 4 0,25040768 34759 0 3

Gregor Sidewalls Thessaloniki 457050 102960 560010 3195391 0,14 0,03 0,18 -0,12 4 0,22527076 0 -

Gregor Sidewalls 1977 1977 513400 102960 616360 3195391 0,16 0,03 0,19 -0,11 5 0,20054538 83000 1 1

Gregor Sidewalls 1977 1986 452600 102960 555560 3195391 0,14 0,03 0,17 -0,13 4 0,22748564 54450 1 2

Gregor Sidewalls 1977 1990,1 438650 102960 541610 3195391 0,14 0,03 0,17 -0,13 4 0,23472016 438650 4 0

Gregor Sidewalls 1977 1990,2 426400 102960 529360 3195391 0,13 0,03 0,17 -0,13 4 0,24146341 25200 0 4

Gregor Sidewalls 1986 1977 458350 102960 561310 3195391 0,14 0,03 0,18 -0,12 4 0,22463183 458350 4 0

Gregor Braces 1986 - 264600 87624 352224 3195391 0,08 0,03 0,11 -0,19 3 0,33115646 -168352 -2 -1

Gregor Braces 1990,1 - 224100 87624 311724 3195391 0,07 0,03 0,10 -0,20 3 0,39100402 -47307 -1 -2

Gregor Braces 1990,2 - 353700 87624 441324 3195391 0,11 0,03 0,14 -0,16 4 0,24773537 -22711 -0 -4

Gregor Structural wall 1990,1 - 251100 103622 354722 3195391 0,08 0,03 0,11 -0,19 2 0,41267224 -20307 -0 -5

Gregor Structural wall 1990,2 - 345950 103622 449572 3195391 0,11 0,03 0,14 -0,16 3 0,29952883 -30461 -0 -3

Page 60: Economics and retrofit

Mo

del

Retr

ofi

t

Eart

hq

uake 1

Eart

hq

uake 2

Rep

ara

tion

(€)

Retr

ofi

t (€

)

To

tal(

€)

Reb

uil

d (

€)

Rep

ara

tion

/

Reb

uil

d

Retr

ofi

t/

Reb

uil

d

To

tal/

Reb

uil

d

To

tal/

Reb

uil

d-0

,30

Rep

ara

tion

/

Retr

ofi

t

Retr

ofi

t/

Rep

ara

tion

Dif

fere

nce

to

no

t re

tro

fitt

ed

(€)

Rep

ara

tion

sav

ing

/

retr

ofi

t

retr

ofi

t/

Rep

ara

tion

sav

ing

Özzi

1977 - 506950 0 506950 3123067 0,16 0,00 0,16 -0,14 - 0 -

1977 1977 526850 0 526850 3123067 0,17 0,00 0,17 -0,13 - 0 -

Thessaloniki - 422000 0 422000 3123067 0,14 0,00 0,14 -0,16 - 0 -

Thessaloniki Thessaloniki 423050 0 423050 3123067 0,14 0,00 0,14 -0,16 - 0 -

Özzi Braces 1

1977 - 544400 74785 619185 3123067 0,17 0,02 0,20 -0,10 7 0,1373719 0 0 6236566

1977 1977 595400 74785 670185 3123067 0,19 0,02 0,21 -0,09 8 0,12560507 0 0 3407139

Thessaloniki - 422000 74785 496785 3123067 0,14 0,02 0,16 -0,14 6 0,17721626 0 0 -

Thessaloniki Thessaloniki 479850 74785 554635 3123067 0,15 0,02 0,18 -0,12 6 0,15585133 0 0 4111961

Özzi Braces 2

1977 - 553050 67987 621037 3123067 0,18 0,02 0,20 -0,10 8 0,1229303 46100 1 1

1977 1977 605250 67987 673237 3123067 0,19 0,02 0,22 -0,08 9 0,11232813 78400 1 1

Thessaloniki - 67987 67987 3123067 0,00 0,02 0,02 -0,28 0 - -422000 -6 -0

Thessaloniki Thessaloniki 478800 67987 546787 3123067 0,15 0,02 0,18 -0,12 7 0,14199373 55750 1 1

Özzi Braces 3

1977 - 580950 67987 648937 3123067 0,19 0,02 0,21 -0,09 9 0,11702659 74000 1 1

1977 1977 606650 67987 674637 3123067 0,19 0,02 0,22 -0,08 9 0,1120689 79800 1 1

Thessaloniki - 473900 67987 541887 3123067 0,15 0,02 0,17 -0,13 7 0,14346191 51900 1 1

Thessaloniki Thessaloniki 476700 67987 544687 3123067 0,15 0,02 0,17 -0,13 7 0,14261926 53650 1 1

Özzi Braces 4

1977 - 455100 135973 591073 3123067 0,15 0,04 0,19 -0,11 3 0,29877653 -51850 -0 -3

1977 1977 596400 135973 732373 3123067 0,19 0,04 0,23 -0,07 4 0,22798994 69550 1 2

Thessaloniki - 345850 135973 481823 3123067 0,11 0,04 0,15 -0,15 3 0,39315657 -76150 -1 -2

Thessaloniki Thessaloniki 408900 135973 544873 3123067 0,13 0,04 0,17 -0,13 3 0,33253412 -14150 -0 -10

Özzi Braces 5

1977 - 176765 176765 3123067 0,00 0,06 0,06 -0,24 0 - -506950 -3 -0

1977 1977 586250 176765 763015 3123067 0,19 0,06 0,24 -0,06 3 0,3015184 59400 0 3

Thessaloniki - 176765 176765 3123067 0,00 0,06 0,06 -0,24 0 - -422000 -2 -0

Thessaloniki Thessaloniki 476700 176765 653465 3123067 0,15 0,06 0,21 -0,09 3 0,37081007 53650 0 3

Özzi - 1990,1 - 333461 0 333461 2808021 0,12 0,00 0,12 -0,18 - 0

Özzi - 1990,2 - 389594 0 389594 2808021 0,14 0,00 0,14 -0,16 - 0

Page 61: Economics and retrofit
Page 62: Economics and retrofit

From deterministic to

probabilistic

Monte-Carlo simulation – further study

Page 63: Economics and retrofit

Output for the decision system

Page 64: Economics and retrofit

Output for the decision system

The costs have to be compared to the benefits;

benefits stay in first place

Benefits can be compared among different

retrofit techniques and strategies, or compared to

the status quo (no measure)

Comparison was done with two out of four

identified methods:

Pairwise comparison (costs are ranked numerically)

Utility value method (costs enter the measurement

spaces of some criterions)

Page 65: Economics and retrofit

Pairwise comparison method

Page 66: Economics and retrofit
Page 67: Economics and retrofit

Building ontology > IT

Page 68: Economics and retrofit

Urban ontology (COST TU0801

training school)

Sisi

Page 69: Economics and retrofit

Utility value method

Page 70: Economics and retrofit

Decision tree formulas

Total points = Summ (actor x weight of actor)

Actor = Summ (criteria x weight of criteria)

For criteria:

- Zero value

- Graphic of variation of criteria

Page 71: Economics and retrofit
Page 72: Economics and retrofit
Page 73: Economics and retrofit

Actors in

WHE

Architect

Civil engineer

Socio-economic

aspects

Proiect

management

Page 74: Economics and retrofit

Exemple of interwar building WHE

WHE

Page 75: Economics and retrofit

Fulfillment of criteria

Page 76: Economics and retrofit

Indicators in WHE

Taxonomy in progress

http://www.world-housing.net/gem-building-

taxonomy-testing-and-evaluation-create-a-

report-using-taxt

Page 77: Economics and retrofit
Page 78: Economics and retrofit
Page 79: Economics and retrofit

Morphology and economy

From the decision model to

3D model

Page 80: Economics and retrofit
Page 81: Economics and retrofit

3D model

http://arhitectura-1906.ro/2012/07/marcel-

iancu-si-alfabetul-sau-formal-un-exercitiu-

didactic-in-derulare-i/

Revista Arhitectura

Marcel Janco morphogenesis exercise

• E-card.ro – Marcel Janco urban traces with sketches of buildings

• http://www.e-cart.ro/asociatia/ro/noutati/Traseu_urban_M.Iancu.pdf

Page 82: Economics and retrofit

3D model

http://arhitectura-1906.ro/2012/07/marcel-

iancu-si-alfabetul-sau-formal-un-exercitiu-

didactic-in-derulare-i/

Revista Arhitectura

Marcel Janco morphogenesis exercise

• Outgoing Mondrian

painting here

• http://www.wikipainting

s.org/en/piet-

mondrian/lozenge-

composition-with-red-

gray-blue-yellow-and-

black-1925

Page 83: Economics and retrofit

Constructive logic and BIM

Page 84: Economics and retrofit
Page 85: Economics and retrofit

Outlook to further studies

Page 86: Economics and retrofit

Optimisation of the current study

Taking the prices for hour work for the country from where the typology and the measures are (not always available; despite of flexible computation mean)

Making the computed curves to meet the one from the concept

Optimisation of measures for a given earthquake in order to make right computations

Employment also of probabilistic means to extend from the study cases to larger urban base

Comparison to the retrofit costs for a real building (soon envisaged through contact to offices; already done for stone masonry)

Page 87: Economics and retrofit

Studies of implemented retrofit

measures

Italy

FRP (Torre delle Nazioni, Napolo)

Seismic dissipators (school Fabriano)

Romania

Cutting of the corner <> new planimetry

Jacketing

Greece

Combined methods of FRP for horizontal elements and jacketing for vertical elemens (Army Pension Fund building, hotel in northern Greece)

Page 88: Economics and retrofit

Relationship to earlier RC

structures

Pre-study of the distribution of predecessors in

Europe is already done

Before RC skeleton the Hennebique system

was spread (after it was RC frame)

Differences and common features have to be

put in connection

Page 89: Economics and retrofit

Relationship to timber

Preliminary research on a language for

reinforced concrete from timber

Lessons to be learned from half-timbered

housing for reinforced concrete

A similar study of geografic distribution of half-

timbered construction

Study of the bracing method for retrofit

Local seismic culture in reinforced concrete bracing

Computations for steel

Realised projects with dissipators

Page 90: Economics and retrofit

Computer games

A method of training in the pre-disaster phase

might be computer games

For the genre computer and management games

there is an economic component, which can be

derived from this research

At urban scale: SimCity, also involving in the early

phases disaster scenarios such as 1906 San

Francisco Earthquake

For building scale, see the games following the Ken

Follett novels

Abstractisation of needed materials and people

Page 91: Economics and retrofit

Playing „World without End“

Construction and management games

Page 92: Economics and retrofit

Other decision systems

Drama theory and conflict based software

The economic value of retrofit/restoration versus

demolition:

- Collaborative and competitive computer games

Page 93: Economics and retrofit

Restoration and demolition

game

Page 94: Economics and retrofit

Comparison to agent based

automated method

Computer tools can aid local decision makers in postearthquake disaster staff. Fiedrich (2004) proposed the integrative model EQ-RESQUE to support the prioritisation of intervention zones and the efficient allocation of help-and-rescue resources through action proposals. A distributed simulation system (high level architecture) connects its two interacting components:

simulation of the dynamic disaster environment and of the work of resources;

decision process modelling using software agents mathematically optimised with expert knowledge concerning the multiple tasks and the communication structures and decision competences within the disaster staff.

Page 95: Economics and retrofit

Conclusions

Page 96: Economics and retrofit

Conclusions

An original methodology for computation of costs was developed, based on available project management methods and software possibilities

The method is aplicable for the single building (type)

The building typology under study represents heritage across Europe in seismic and non-seismic countries

An orginal concept of costs levels depending on expected earthquake was developed

It shows the value of planned conservation

The costs have been put in the context of decision of experts and larger participation in conservation efforts, part of which retrofit is

Page 97: Economics and retrofit

Acknowledgements

COST action IS1104 for this Short Term Scientific Mission at ISCTE-IUL Lisbon (March-April 2013)

fellowship in frame of the DFG funded Research Training Network 450 “Natural Disasters” at the Universität Karlsruhe (TH), Germany (2000-2003)

Marie Curie Early Stage Research Host Fellowship, contract HPMT-CT-2001-00359, at the Istituto Universitario di Studi Superiori di Pavia, Italy (2002-2003)

Marie Curie Intra-European Fellowship, contract MEIF-CT-2005-009765, same host institution as above (2005-2007)

Marie Curie European Reintegration Grant, contract MERG-CT-2007-200636, at Foundation ERGOROM ´99, Bucharest, Romania (2007-2010)