econ 240c

65
Econ 240C Lecture 18

Upload: bridie

Post on 25-Jan-2016

49 views

Category:

Documents


0 download

DESCRIPTION

Econ 240C. Lecture 18. Review. 2002 Final Ideas that are transcending p. 15 Economic Models of Time Series Symbolic Summary. Review. 2. Ideas That Are Transcending. Use the Past to Predict the Future. A. Applications Trend Analysis linear trend quadratic trend exponential trend - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Econ 240C

Econ 240C

Lecture 18

Page 2: Econ 240C

2

Review

• 2002 Final

• Ideas that are transcending p. 15

• Economic Models of Time Series

• Symbolic Summary

Page 3: Econ 240C

1 . ( 4 0 p o i n t s ) T h e m o n t h l y s a l e s o f l i g h t w e i g h t v e h i c l e s : a u t o s a n d l i g h t t r u c k s , i n m i l l i o n s o f u n i t s a t a n

a n n u a l r a t e , a n d s e a s o n a l l y a d j u s t e d , i s a v a i l a b l e a t F R E D f r o m J a n u a r y 1 9 7 6 t h r o u g h A p r i l 2 0 0 2 . T h e

t r a c e , h i s t o g r a m , c o r r e l o g r a m , a n d D i c k e y - F u l l e r t e s t a r e s h o w n , r e s p e c t i v e l y , a s F i g u r e s 1 . 1 - 1 . 3 a n d

T a b l e 1 . 1 .

a . I n t h e p r e v i o u s t w o r e c e s s i o n s , w i t h t r o u g h s i n M a r c h o f 1 9 9 1 a n d N o v e m b e r o f 1 9 8 2 , w h a t

h a p p e n e d t o t h e s a l e s o f l i g h t v e h i c l e s ?

b . A n y s i g n o f a s i m i l a r p h e n o m e n o n i n t h i s r e c e s s i o n ? ( t h e m o s t r e c e n t b o o m p e a k e d i n M a r c h

2 0 0 1 )

c . I s t h i s t i m e s e r i e s s t a t i o n a r y ? D i s c u s s t h e e v i d e n c e .

d . I s t h i s s e r i e s n o r m a l l y d i s t r i b u t e d ? D i s c u s s t h e e v i d e n c e .

e . W h a t d o w e m e a n b y s t a t i o n a r y ? W o u l d a t r e n d e d t i m e s e r i e s b e s t a t i o n a r y ? W o u l d a s e a s o n a l

t i m e s e r i e s b e s t a t i o n a r y ?

8

10

12

14

16

18

20

22

76 78 80 82 84 86 88 90 92 94 96 98 00 02

VEHICLES

Figure 1.1 Trace of Sales of Light Vehicles, in millions of units

0

10

20

30

40

50

10 12 14 16 18 20

Series: VEHICLESSample 1976:01 2002:04Observations 316

Mean 14.26630Median 14.52000Maximum 21.22000Minimum 8.850000Std. Dev. 1.995998Skewness -0.259664Kurtosis 3.599665

Jarque-Bera 8.285785Probability 0.015877

Figure 1.2 Histogram and Moments of Light Vehicle Sales

Page 4: Econ 240C

T a b l e 3 . 1 D i c k e y - F u l l e r U n i t R o o t T e s t o f L i g h t V e h i c l e S a l e s

A D F T e s t S t a t i s t ic - 2 . 4 2 3 8 6 7 1 % C r i t i c a l V a l u e * - 3 . 4 5 3 1 5 % C r i t i c a l V a l u e - 2 . 8 7 0 9 1 0 % C r i t i c a l V a l u e - 2 . 5 7 1 7

* M a c K i n n o n c r i t i c a l v a l u e s f o r r e j e c t i o n o f h y p o t h e s i s o f a u n i t r o o t .

A u g m e n t e d D i c k e y - F u l l e r T e s t E q u a t i o nD e p e n d e n t V a r i a b l e : D ( V E H I C L E S )M e t h o d : L e a s t S q u a r e s

S a m p l e ( a d j u s t e d ) : 1 9 7 6 : 0 4 2 0 0 2 : 0 4I n c l u d e d o b s e r v a t i o n s : 3 1 3 a f t e r a d j u s t i n g e n d p o i n t s

V a r i a b l e C o e f f i c i e n t S t d . E r r o r t - S t a t i s t i c P r o b .

Page 5: Econ 240C

V E H I C L E S ( - 1 ) - 0 . 0 6 8 6 0 6 0 . 0 2 8 3 0 4 - 2 . 4 2 3 8 6 7 0 . 0 1 5 9D ( V E H I C L E S ( - 1 ) ) - 0 . 3 6 2 9 9 3 0 . 0 5 6 2 2 5 - 6 . 4 5 6 0 7 5 0 . 0 0 0 0D ( V E H I C L E S ( - 2 ) ) - 0 . 2 9 6 1 3 0 0 . 0 5 4 4 6 4 - 5 . 4 3 7 1 6 4 0 . 0 0 0 0

C 0 . 9 9 9 9 4 8 0 . 4 0 6 9 4 9 2 . 4 5 7 1 8 1 0 . 0 1 4 6

R - s q u a r e d 0 . 2 0 3 5 6 3 M e a n d e p e n d e n t v a r 0 . 0 1 3 1 6 3A d j u s t e d R - s q u a r e d 0 . 1 9 5 8 3 1 S . D . d e p e n d e n t v a r 1 . 0 4 9 9 4 9S . E . o f r e g r e s s i o n 0 . 9 4 1 5 4 6 A k a i k e i n f o c r i t e r i o n 2 . 7 3 0 1 1 1S u m s q u a r e d r e s i d 2 7 3 . 9 3 1 5 S c h w a r z c r i t e r i o n 2 . 7 7 7 9 8 6L o g l i k e l i h o o d - 4 2 3 . 2 6 2 4 F - s t a t i s t i c 2 6 . 3 2 6 0 6D u r b i n - W a t s o n s t a t 2 . 1 0 7 8 8 0 P r o b ( F - s t a t i s t i c ) 0 . 0 0 0 0 0 0

1 . ( 4 0 p o i n t s ) I n s t e a d o f l o o k i n g a t t h e s a l e s o f l i g h t v e h i c l e s , w e c o u l d l o o k a t f r a c t i o n a l c h a n g e s f r o m

m o n t h t o m o n t h , i . e . t h e f i r s t d i f f e r e n c e o f t h e n a t u r a l l o g a r i t h m o f l i g h t v e h i c l e s a l e s , d e n o t e d

d l n v e h ( t ) . T h e t r a c e , h i s t o g r a m , c o r r e l o g r a m , a n d D i c k e y - F u l l e r t e s t a r e s h o w n , r e s p e c t i v e l y , a s

F i g u r e s 2 . 1 - 2 . 3 a n d T a b l e 2 . 1 .

a . I s t h e f r a c t i o n a l c h a n g e i n v e h i c l e s a l e s , d l n v e h ( t ) , s t a t i o n a r y ?

b . I s t h e f r a c t i o n a l c h a n g e i n v e h i c l e s a l e s , d l n v e h ( t ) , n o r m a l l y d i s t r i b u t e d ?

c . W h a t w o u l d b e y o u r f i r s t g u e s s f o r s p e c i f y i n g a p u r e m o v i n g a v e r a g e m o d e l ?

d . W h a t w o u l d b e y o u r f i r s t g u e s s f o r s p e c i f y i n g a t w o - p a r a m e t e r A R M A m o d e l ?

-0.4

-0.2

0.0

0.2

0.4

76 78 80 82 84 86 88 90 92 94 96 98 00 02

DLNVEH

Figure 2.1 Trace of Fractional Changes in Light Vehicle Sales

Page 6: Econ 240C

0

2 0

4 0

6 0

8 0

- 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3

S e r i e s : D L N V E HS a m p l e 1 9 7 6 : 0 2 2 0 0 2 : 0 4

O b s e r v a t i o n s 3 1 5

M e a n 0 . 0 0 1 0 1 3M e d i a n 0 . 0 0 1 9 5 4

M a x i m u m 0 . 2 9 3 6 9 2

M i n i m u m - 0 . 3 8 0 7 4 5S t d . D e v . 0 . 0 7 0 2 8 4

S k e w n e s s - 0 . 8 3 8 8 2 0K u r t o s i s 1 0 . 0 7 5 3 5

J a r q u e - B e r a 6 9 3 . 9 8 4 8P r o b a b i l i t y 0 . 0 0 0 0 0 0

F i g u r e 2 . 2 H i s t o g r a m a n d M o m e n t s o f F r a c t i o n a l C a h n g e s i n L i g h t V e h i c l e S a l e s

Page 7: Econ 240C

Table 2.1 Dickey-Fuller Unit Root Test of Fractional Changes in Light Vehicle Sales

ADF Test Statistic -18.88973 1% Critical Value* -3.4531 5% Critical Value -2.8709 10% Critical Value -2.5717

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test EquationDependent Variable: D(DLNVEH)Method: Least SquaresADF Test StatisticSample(adjusted): 1976:04 2002:04Included observations: 313 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

DLNVEH(-1) -1.644999 0.087084 -18.88973 0.0000D(DLNVEH(-1)) 0.285479 0.054422 5.245682 0.0000

C 0.001411 0.003678 0.383739 0.7014

R-squared 0.669073 Mean dependent var 7.81E-05Adjusted R-squared 0.666938 S.D. dependent var 0.112722S.E. of regression 0.065054 Akaike info criterion -2.617672Sum squared resid 1.311911 Schwarz criterion -2.581766Log likelihood 412.6656 F-statistic 313.3815Durbin-Watson stat 2.112347 Prob(F-statistic) 0.000000

1. (40 points) A pure autoregressive model was estimated for the fractional changes in light vehicle sales,

dlnveh(t). The estimation results are reported in Table 3.1. A plot of the actual and fitted series, and

the residual, is shown in Figure 3.1. The correlogram of the residuals is shown in Figure 3.2

a. Is this a satisfactory model? Discuss the evidence.

b. The values for dlnveh(t) for the first four months of 2002 are:

2002:01 -0.04136

2002:02 0.05235

2002:03 0.01566

2002:04 0.02829

Ignoring the constant, which is insignificantly different from zero, what is your forecast for

the fractional change in light vehicle sales for May of this year?

c. What is the standard error of your forecast?

Page 8: Econ 240C

a . M i g h t t h e e v i d e n c e i n F i g u r e 3 . 3 a f f e c t y o u r a n s w e r t o p a r t c .

T a b l e 3 . 1 A u t o r e g r e s s i v e M o d e l o f F r a c t i o n a l C h a n g e s i n t h e S a l e s o f L i g h t V e h i c l e s

D e p e n d e n t V a r i a b l e : D L N V E HM e t h o d : L e a s t S q u a r e s

S a m p l e ( a d j u s t e d ) : 1 9 7 6 : 0 6 2 0 0 2 : 0 4I n c l u d e d o b s e r v a t i o n s : 3 1 1 a f t e r a d j u s t i n g e n d p o i n t sC o n v e r g e n c e a c h i e v e d a f t e r 3 i t e r a t i o n s

V a r i a b l e C o e f f i c i e n t S t d . E r r o r t - S t a t i s t i c P r o b .

C 0 . 0 0 0 8 5 7 0 . 0 0 1 5 7 7 0 . 5 4 3 2 4 1 0 . 5 8 7 4A R ( 1 ) - 0 . 4 4 7 7 6 9 0 . 0 5 6 5 2 2 - 7 . 9 2 2 0 7 8 0 . 0 0 0 0A R ( 2 ) - 0 . 4 1 2 7 4 6 0 . 0 6 0 2 1 6 - 6 . 8 5 4 4 5 0 0 . 0 0 0 0A R ( 3 ) - 0 . 2 6 4 1 4 9 0 . 0 6 0 2 5 9 - 4 . 3 8 3 5 8 3 0 . 0 0 0 0A R ( 4 ) - 0 . 1 5 3 9 8 9 0 . 0 5 6 5 6 1 - 2 . 7 2 2 5 3 2 0 . 0 0 6 8

R - s q u a r e d 0 . 2 0 6 3 1 7 M e a n d e p e n d e n t v a r 0 . 0 0 0 9 9 0A d j u s t e d R - s q u a r e d 0 . 1 9 5 9 4 2 S . D . d e p e n d e n t v a r 0 . 0 7 0 6 8 3S . E . o f r e g r e s s i o n 0 . 0 6 3 3 8 1 A k a i k e i n f o c r i t e r i o n - 2 . 6 6 3 3 5 3S u m s q u a r e d r e s i d 1 . 2 2 9 2 5 5 S c h w a r z c r i t e r i o n - 2 . 6 0 3 2 2 8L o g l i k e l i h o o d 4 1 9 . 1 5 1 4 F - s t a t i s t i c 1 9 . 8 8 6 0 5D u r b i n - W a t s o n s t a t 2 . 0 3 6 6 7 0 P r o b ( F - s t a t i s t i c ) 0 . 0 0 0 0 0 0

I n v e r t e d A R R o o t s . 2 2 - . 6 5 i . 2 2 + . 6 5 i - . 4 4 + . 3 7 i - . 4 4 - . 3 7 i

-0.4

-0.2

0.0

0.2

0.4

-0.4

-0.2

0.0

0.2

0.4

78 80 82 84 86 88 90 92 94 96 98 00 02

Residual Actual Fitted

Figure 3.1 Plot of Actual, Fitted and Residual from Autoregressive Model

Page 9: Econ 240C

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

76 78 80 82 84 86 88 90 92 94 96 98 00 02

RESIDSQ

Figure 3.3 Trace of Square of Residuals from AR(4) Model of dlnveh

Page 10: Econ 240C

1 . ( 4 0 p o i n t s ) A u t o s a n d l i g h t t r u c k s a r e a c o n s u m e r d u r a b l e a n d a r e l i k e l y t o b e a f f e c t e d b y t h e i n t e r e s t

r a t e i f c o n s u m e r s t a k e o u t a n a u t o l o a n . A s a n i n d i c a t o r o f t h e c o s t o f c r e d i t , t h e p r i m e l o a n r a t e f r o m

b a n k s i s a v a i l a b l e i n a m o n t h l y s e r i e s f r o m F R E D b e g i n n i n g i n J a n u a r y 1 9 4 9 . T h i s i n t e r e s t r a t e d a t a

f r o m J a n u a r y 1 9 7 6 i s c o m b i n e d w i t h t h e d a t a f o r l i g h t v e h i c l e s a l e s . T h e c h a n g e i n t h e p r i m e r a t e ,

d p r i m e , i s r e l a t e d t o t h e f r a c t i o n a l c h a n g e i n l i g h t v e h i c l e s a l e s . T h e t r a c e , h i s t o g r a m a n d c o r r e l o g r a m

o f d p r i m e a r e s h o w n i n F i g u r e s 4 . 1 - 4 . 3 , r e s p e c t i v e l y . T h i s d p r i m e s e r i e s i s s t a t i o n a r y . T h e c r o s s -

c o r r e l a t i o n b e t w e e n d l n v e h a n d d p r i m e i s s h o w n i n F i g u r e 4 . 4 . T h e G r a n g e r C a u s a l i t y T e s t , u s i n g 1 2

l a g s , i s d i s p l a y e d i n T a b l e 4 . 1 .

a . I s t h e r e a n y e v i d e n c e o f e i t h e r v a r i a b l e c a u s i n g t h e o t h e r ? D i s c u s s .

b . W h a t k i n d o f b i v a r i a t e r e l a t i o n s h i p d o y o u t h i n k s h o u l d b e i n v e s t i g a t e d ? W h y ?

i N o m o d e l

i i A d i s t r i b u t e d l a g m o d e l , w i t h w h i c h v a r i a b l e , d l n v e h o r d p r i m e , a s t h e d e p e n d e n t ?

i i i A V A R m o d e l

A d i s t r i b u t e d l a g m o d e l w a s e s t i m a t e d a n d t h e r e s u l t s a r e r e p o r t e d i n T a b l e 4 . 2 , w i t h t h e r e s i d u a l s f r o m

t h i s m o d e l s h o w n i n F i g u r e 4 . 5 , a n d t h e i r h i s t o g r a m i n F i g u r e 4 . 6 .

c . I s t h i s a s a t i s f a c t o r y m o d e l ? D i s c u s s .

d . T h e p r i m e r a t e i s c u r r e n t l y 4 . 7 5 % . I f t h e p r i m e r a t e w e n t u p t o 5 . 7 5 % i n M a y , w h a t w o u l d b e

t h e r e s u l t i n g f r a c t i o n a l i n c r e a s e i n l i g h t v e h i c l e s a l e s i n J u n e ?

e . T h e p r i m e r a t e h a s b e e n a t 4 . 7 5 % f o r t h e f i r s t f o u r m o n t h s o f 2 0 0 2 . I f i t s t a y s a t t h i s l e v e l f o r

t h e r e s t o f t h i s y e a r w h a t w o u l d y o u e x p e c t t o h a p p e n t o f r a c t i o n a l c h a n g e s i n l i g h t v e h i c l e

s a l e s o v e r t h e n e x t 1 8 m o n t h s ?

f . C a n y o u t h i n k o f a n y w a y t o i m p r o v e o n t h e m o d e l r e p o r t e d i n T a b l e 4 . 2 ?

-6

-4

-2

0

2

4

6

7 6 7 8 8 0 8 2 8 4 8 6 8 8 9 0 9 2 9 4 9 6 9 8 0 0 0 2

D P R I M E

F i g u re 4 . 1 T r a c e o f t h e M o n t h l y D i f f e re n c e i n t h e P r i m e R a t e

Page 11: Econ 240C

0

5 0

1 0 0

1 5 0

2 0 0

- 4 - 3 - 2 - 1 0 1 2 3 4

S e r ie s : D P R IM ES a m p le 1 9 7 6 :0 2 2 0 0 2 : 0 4O b s e r v a t io n s 3 1 5

M e a n - 0 .0 0 7 1 4 3M e d ia n 0 .0 0 0 0 0 0M a x im u m 4 .2 9 0 0 0 0M in im u m - 3 .9 4 0 0 0 0S t d . D e v . 0 .5 8 4 6 3 0S k e w n e s s 0 .3 8 0 9 9 1K u r to s is 2 3 .5 3 1 9 4

J a r q u e -B e ra 5 5 4 0 .6 0 5P r o b a b ili ty 0 .0 0 0 0 0 0

F ig u r e 4 . 2 H is t o g r a m a n d M o m e n t s o f D iff e r e n c e in th e P r im e R a te

Page 12: Econ 240C

T a b l e 4 . 1 G r a n g e r C a u s a l i t y T e s t B e t w e e n d ln v e h ( t ) a n d d p r i m e ( t )

P a i r w is e G r a n g e r C a u s a l i t y T e s t s

S a m p le : 1 9 7 6 :0 1 2 0 0 2 :0 4L a g s : 1 2

N u ll H y p o th e s is : O b s F - S ta t i s t i c P r o b a b i l i t y

D P R IM E d o e s n o t G r a n g e r C a u s e D L N V E H 3 0 3 2 .9 4 8 6 5 0 .0 0 0 7 0 D L N V E H d o e s n o t G r a n g e r C a u s e D P R IM E 1 .2 8 6 3 4 0 .2 2 5 9 2

Page 13: Econ 240C

Table 4.2 Distributed Lag Model of Fractional Changes in Light Vehicle Sales on the Change in the

Prime Rate

Dependent Variable: DLNVEHMethod: Least Squares

Sample(adjusted): 1977:12 2002:04Included observations: 293 after adjusting endpointsConvergence achieved after 7 iterations

Variable Coefficient Std. Error t-Statistic Prob.

C 0.000571 0.001454 0.392464 0.6950DPRIME(-1) -0.008167 0.003891 -2.099322 0.0367DPRIME(-5) -0.013596 0.003882 -3.502310 0.0005DPRIME(-12) -0.009564 0.003902 -2.451058 0.0148DPRIME(-18) -0.012526 0.003976 -3.150578 0.0018

AR(1) -0.526696 0.058626 -8.983979 0.0000AR(2) -0.479627 0.064322 -7.456622 0.0000AR(3) -0.312396 0.064378 -4.852499 0.0000AR(4) -0.171491 0.059058 -2.903778 0.0040

R-squared 0.288297 Mean dependent var 0.000608Adjusted R-squared 0.268249 S.D. dependent var 0.072374S.E. of regression 0.061910 Akaike info criterion -2.696030Sum squared resid 1.088534 Schwarz criterion -2.582987Log likelihood 403.9684 F-statistic 14.38039Durbin-Watson stat 2.051818 Prob(F-statistic) 0.000000

Inverted AR Roots .20 -.67i .20+.67i -.46+.37i -.46 -.37i

Page 14: Econ 240C

0

20

40

60

80

-0.3 -0.2 -0.1 0.0 0.1 0.2

Series: ResidualsSample 1977:12 2002:04Observations 293

Mean 7.43E-15Median 0.000756Maximum 0.250037Minimum -0.373685Std. Dev. 0.061056Skewness -0.547147Kurtosis 9.776412

Jarque-Bera 575.2230Probability 0.000000

Figure 4.6 Histogram of Residuals from Distributed Lag Model

Page 15: Econ 240C

15

Review

• 2. Ideas That Are Transcending

Page 16: Econ 240C

16Use the Past to Predict the Future

• A. Applications

• Trend Analysis– linear trend– quadratic trend– exponential trend

• ARIMA Models– autoregressive models– moving average models– autoregressive moving average models

Page 17: Econ 240C

17Use Assumptions To Cope With

Constraints• A. Applications

• 1. Limited number of observations: simple exponential smoothing– assume the model: (p, d, q) = (0, 1, 1)

• 2. No or insufficient identifying exogenous variables: interpreting VAR impulse response functions– assume the error structure is dominated by one

pure error or the other, e.g assume = 0, then e1 = edcapu

Page 18: Econ 240C

18Standard VAR (lecture 17)

• dcapu(t) = (/(1- ) +[ (+ )/(1- )] dcapu(t-1) + [ (+ )/(1- )] dffr(t-1) + [(+ (1- )] x(t) + (edcapu(t) + edffr(t))/(1- )

• But if we assume

• thendcapu(t) = + dcapu(t-1) + dffr(t-1) + x(t) + edcapu(t) +

Page 19: Econ 240C

19Use Assumptions To Cope With

Constraints• A. Applications

• 3. No or insufficient identifying exogenous variables: simultaneous equations– assume the error structure is dominated by one

error or the other, tracing out the other curve

Page 20: Econ 240C

20

Simultaneity

• There are two relations that show the dependence of price on quantity and vice versa– demand: p = a - b*q +c*y + ep

– supply: q= d + e*p + f*w + eq

Page 21: Econ 240C

21

demand

price

quantity

Shift in demand with increased income, may trace outi.e. identify or reveal the demand curve

supply

Page 22: Econ 240C

22

Review

• 2. Ideas That Are Transcending

Page 23: Econ 240C

23

Reduce the unexplained sum of squares to increase the significance of

results• A. Applications

• 1. 2-way ANOVA: using randomized block design– example: minutes of rock music listened to on

the radio by teenagers Lecture 1 Notes, 240 C• we are interested in the variation from day to day

• to get better results, we control for variation across teenager

Page 24: Econ 240C

Table I. Minutes of Rock Music Listened to On the Radio

Teenager Sunday Monday Tuesday Wednesday Thursday Friday Saturday1 65 40 32 48 60 75 1102 90 85 75 90 78 120 1003 30 30 20 25 30 60 704 72 52 66 100 77 66 945 70 88 47 73 78 67 786 90 51 103 41 57 69 877 43 72 66 39 57 90 738 88 89 82 95 68 105 1259 96 60 80 106 57 81 80

10 60 92 72 45 72 77 90

Page 25: Econ 240C

Figure 1: Minutes of Rock Music Listened to Per Day

0

10

20

30

40

50

60

70

80

90

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Day of the Week

Min

ute

s

Page 26: Econ 240C

Table IV. Two-Way ANOVA, Time Series and Cross-Section

Source of Variation Sum of Squares Degrees of Freedom Mean Square

Explained (Time) 28,673.73 6 4778.96

Explained (Cross-) 209,834.6 199 1054.45

Unexplained 479,125.1 1194 401.28

Total 717,633.5 1399

F6, 1194 = 4778.96/401.28 = 11.91, probability 5.1 x 10-13

Table II. One-Way ANOVA for Rock Minutes by Day of the Week

Source of Variation Sum of Squares Degrees of Freedom Mean Square

Explained (Time) 28,673.73 6 4778.96

Unexplained 688,959.8 1393 494.59

Total 717,633.5 1399

F6, 1393 = 4778.96/494.59 = 9.66, probability 1.93 x 10-10

Page 27: Econ 240C

27

Reduce the unexplained sum of squares to increase the significance of

results• A. Applications

• 2. Distributed lag models: model dependence of y(t) on a distributed lag of x(t) and– model the residual using ARMA

Page 28: Econ 240C

28Lab 7 240 C

Page 29: Econ 240C

29

Page 30: Econ 240C

30

Reduce the unexplained sum of squares to increase the significance of

results• A. Applications

• 3. Intervention Models: model known changes (policy, legal etc.) by using dummy variables, e.g. a step function or pulse function

Page 31: Econ 240C

31Lab 8 240 C

Page 32: Econ 240C

32

Page 33: Econ 240C

33Model with no Intervention Variable

Page 34: Econ 240C

34

Page 35: Econ 240C

35Add seasonal difference of differenced step function

Page 36: Econ 240C

36

Page 37: Econ 240C

37

Review

• 2002 Final

• Ideas that are transcending

• Economic Models of Time Series

• Symbolic Summary

Page 38: Econ 240C

38Time Series Models• Predicting the long run: trend models• Predicting short run: ARIMA models• Can combine trend and arima

– Differenced series

• Non-stationary time series models– Andrew Harvey “structural models using updating and

the Kalman filter– Artificial neural networks

Page 39: Econ 240C

39The Magic of Box and Jenkins• Past patterns of time series behavior can be

captured by weighted averages of current and lagged white noise: ARIMA models

• Modifications (add-ons) to this structure– Distributed lag models– Intervention models– Exponential smoothing– ARCH-GARCH

Page 40: Econ 240C

40

Economic Models of Time Series

• Total return to Standard and Poors 500

Page 41: Econ 240C

41

Model One: Random Walks

• Last time we characterized the logarithm of total returns to the Standard and Poors 500 as trend plus a random walk.

• Ln S&P 500(t) = trend + random walk = a + b*t + RW(t)

Page 42: Econ 240C

42Lecture 3, 240 C: Trace of ln S&P 500(t)

4

5

6

7

8

9

0 100 200 300 400 500

TIME

LN

SP50

0

Logarithm of Total Returns to Standard & Poors 500

Page 43: Econ 240C

43The First Difference of ln S&P 500(t)

ln S&P 500(t)=ln S&P 500(t) - ln S&P 500(t-1) ln S&P 500(t) = a + b*t + RW(t) -

{a + b*(t-1) + RW(t-1)} ln S&P 500(t) = b + RW(t) = b + WN(t)

• Note that differencing ln S&P 500(t) where both components, trend and the random walk were evolutionary, results in two components, a constant and white noise, that are stationary.

Page 44: Econ 240C

44Trace of ln S&P 500(t) – ln S&P(t-1)

-0.3

-0.2

-0.1

0.0

0.1

0.2

70 75 80 85 90 95 00

DLNSP500

Trace of lnsp500 - lnsp500(-1)

Page 45: Econ 240C

45Histogram of

ln S&P 500(t) – ln S&P(t-1)

0

20

40

60

80

100

-0.2 -0.1 0.0 0.1

Series: DLNSP500Sample 1970:02 2003:02Observations 397

Mean 0.008625Median 0.011000Maximum 0.155371Minimum -0.242533Std. Dev. 0.045661Skewness -0.614602Kurtosis 5.494033

Jarque-Bera 127.8860Probability 0.000000

Page 46: Econ 240C

46Cointegration Example• The Law of One Price• Dark Northern Spring wheat

– Rotterdam import price, CIF, has a unit root– Gulf export price, fob, has a unit root– Freight rate ambiguous, has a unit root at 1%

level, not at the 5%

• Ln PR(t)/ln[PG(t) + F(t)] = diff(t)– Know cointegrating equation: – 1* ln PR(t) – 1* ln[PG(t) + F(t)] = diff(t)– So do a unit root test on diff, which should be

stationary; check with Johansen test

Page 47: Econ 240C

47

# 2 Dark Northern Spring, July 1969- December 1990

0

50

100

150

200

250

300Ju

l-6

9

Jul-

70

Jul-

71

Jul-

72

Jul-

73

Jul-

74

Jul-

75

Jul-

76

Jul-

77

Jul-

78

Jul-

79

Jul-

80

Jul-

81

Jul-

82

Jul-

83

Jul-

84

Jul-

85

Jul-

86

Jul-

87

Jul-

88

Jul-

89

Jul-

90

Date

$/M

etr

ic T

on

fob Gulf Ports Export

CIF Rotterdam Import

Page 48: Econ 240C

48

#2 Dark Northern Spring, Import Rotterdam-Export Gulf & Freight Rate: July '69- Dec. '90

-15

-10

-5

0

5

10

15

20

25

30

35Ju

l-6

9

Jul-

70

Jul-

71

Jul-

72

Jul-

73

Jul-

74

Jul-

75

Jul-

76

Jul-

77

Jul-

78

Jul-

79

Jul-

80

Jul-

81

Jul-

82

Jul-

83

Jul-

84

Jul-

85

Jul-

86

Jul-

87

Jul-

88

Jul-

89

Jul-

90

Date

$/M

etr

ic T

on

Import-Export Rotterdam

Freight Rate Rotterdam/Gulf

Page 49: Econ 240C

49

Page 50: Econ 240C

50

Page 51: Econ 240C

51

Page 52: Econ 240C

52

Page 53: Econ 240C

53

Page 54: Econ 240C

54

Review

• 2002 Final

• Ideas that are transcending

• Economic Models of Time Series

• Symbolic Summary

Page 55: Econ 240C

55Autoregressive Models• AR(t) = b1 AR(t-1) + b2 AR(t-2) + …. + bp AR(t-p)

+ WN(t)

• AR(t) - b1 AR(t-1) - b2 AR(t-2) - …. + bp AR(t-p) = WN(t)

• [1 - b1 Z + b2 Z2 + …. bp Zp ] AR(t) = WN(t)

• B(Z) AR(t) = WN(t)

• AR(t) = [1/B(Z)]*WN(t)

WN(t)1/B(Z)AR(t)

Page 56: Econ 240C

56Moving Average Models

• MA(t) = WN(t) + a1 WN(t-1) + a2 WN(t-2) + …. aq WN(t-q)

• MA(t) = WN(t) + a1 Z WN(t) + a2 Z2 WN(t) + …. aq Zq WN(t)

• MA(t) = [1 + a1 Z + a2 Z2 + …. aq Zq ] WN(t)

• MA(t) = A(Z)*WN(t)

WN(t)A(Z)MA(t)

Page 57: Econ 240C

57

ARMA Models

• ARMA(p,q) = [Aq (Z)/Bp (Z)]*WN(t)

WN(t)A(Z)/B(Z)ARMA(t)

Page 58: Econ 240C

58Distributed Lag Models

• y(t) = h0 x(t) + h1 x(t-1) + …. hn x(t-n) + resid(t)• y(t) = h0 x(t) + h1 Zx(t) + …. hn Zn x(t) + resid(t)• y(t) = [h0 + h1 Z + …. hn Zn ] x(t) + resid(t)• y(t) = h(Z)*x(t) + resid(t)• note x(t) = Ax (Z)/Bx (Z) WNx (t), or• [Bx (Z) /Ax (Z)]* x(t) =WNx (t), so• [Bx (Z) /Ax (Z)]* y(t) = h(Z)* [Bx (Z) /Ax (Z)]* x(t) + [Bx (Z) /Ax

(Z)]* resid(t) or • W(t) = h(Z)*WNx (t) + Resid*(t)

Page 59: Econ 240C

59

Distributed Lag Models

• Where w(t) = [Bx (Z) /Ax (Z)]* y(t)

• and resid*(t) = [Bx (Z) /Ax (Z)]* resid(t)

• cross-correlation of the orthogonal WNx (t) with w(t) will reveal the number of lags n in h(Z), and the signs of the parameters h0 , h1 , etc. for modeling the regression of w(t) on a distributed lag of the residual, WNx (t), from the ARMA model for x(t)

Page 60: Econ 240C

60

Page 61: Econ 240C

61

Economic Models of Time Series

• Interest Rate Parity

Page 62: Econ 240C

62

How is exchange rate determined?

• The Asset Approach – based upon “interest rate parity”

• Monetary Approach – based upon “purchasing power parity”

The key element > Expected Rate of Return

Investors care about

• Real rate of return

• Risk

• Liquidity

Page 63: Econ 240C

63

The basic equilibrium condition in the foreign exchange market is interest parity.

Uncovered interest parity

R$=R¥+(Ee$/¥-E$/¥)/E$/¥-Risk Premium

Covered interest rate parity (risk-free)

R$=R¥+(F$/¥-E$/¥)/E$/¥

Page 64: Econ 240C

64

0

5

10

15

20

25

1980 1985 1990 1995 2000 2005

Year

Prim

e Int

eres

t Rate

s (%

)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1980 1985 1990 1995 2000 2005

Year

Dolla

r per

Yen

Historical Interest Rates & Historical Exchange Rates

Dollar

Yen

Interest spread

Page 65: Econ 240C

65

 

Explaining the Spread (Dollar vs. Yen)

-0.1

-0.05

0

0.05

0.1

0.15

1980 1985 1990 1995 2000 2005

Year

Inte

rest

& E

xch

ang

e S

pre

ad (

%)

Interest spread

Change in Exchange rate

Interest parity