采用芯片级封装的 3.5mhz 高效率升压转换器file.elecfans.com › web1 › m00 › 00...

35
0 10 20 30 40 50 60 70 80 90 100 Efficiency - % . I - Output Current - mA O V - Input Voltage - V I 2 . 7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 0.1 0.2 0.4 0.8 1.6 3.2 6.2 12.6 25.1 50.1 100.1 199.6 398.1 794.3 . V = 5.0 V O C 4.7 I μF C 10 uF O SW VIN EN VOUT BP GND L 1 μH V IN 2.65 V .. 4.85 V V OUT 5.0 V @ 700mA TPS61256 TPS61253, TPS61254, TPS61256 TPS61258, TPS61259 www.ti.com.cn ZHCS479C – SEPTEMBER 2011 – REVISED AUGUST 2012 采用芯片级封装的 3.5MHz 高效率升压转换器 查询样品: TPS61253, TPS61254, TPS61256, TPS61258, TPS61259 1特性 说明 运行频率为 3.5MHz 时,效率 93% TPS6125x 器件为电池供电类便携式应用提供了一个电 待机模式时,静态电流为 22μA 源解决方案。 用于低功耗应用,TPS6125x 支持来自 正常操作时,静态电流为 36μA 一个电池(充电电压低至 2.65V)的高达 800mA 的负 2.3V 5.5V 的宽 V IN 范围 载电流并且允许使用低成本芯片电感器和电容器。 V IN V OUT 运行 2.3V 5.5V的宽输入电压使得此器件能够支持由锂离 V OUT = 4.5V, V IN 2.65V时,I OUT 800mA 子电池(具有拓展电压范围)供电的应用。 不同固定 V OUT = 5.0V, V IN 3.3V 时,I OUT 1000mA 电压输出版本支持介于 3.15V 5.0V 之间的电压。 V OUT = 5.0V, V IN 3.3V 时,I OUT 1500mA(峰 值) TPS6125x 不但可在稳定的 3.5 MHz 开关频率下工 DC 电压输出总精度为 ±2% 作,而且还可在轻负载电流时进入节电模式,以维持整 轻负载频率脉冲调制 (PFM) 模式 个负载电流范围内的高效率。 PFM 模式可在轻负载工 停机期间,可选待机模式或真实负载断开 作时将静态电流降至 36μA(典型值),从而可延长电 热关断和过载保护 池使用寿命。 只需三个表面贴装外部组件 此外,TPS6125x 还可保持其在输入电压电平的偏置输 总解决方案尺寸 < 25mm 2 出。 在这个模式下,同步整流器的电流受到限制,从 9 引脚 NanoFree TM (CSP) 封装 而使得外部负载(例如,音频放大器)由一个受限电源 供电。 在此模式下,静态电流减少至 22μA。 关断模 应用范围 式下的输入电流少于 1μA(典型值),这样大大延长 手机、智能电话 了电池寿命。 单声道、立体声 APA 应用 USB 充电端口 (5V) 由于需要最小外部组件数量,TPS6125x 提供了一个非 常小的解决方案尺寸。 为了实现小解决方案尺寸,允 空白 许使用小型电感器和输入电容器。 在关断期间,负载 从电池上完全断开。 空白 Figure 2. Smallest Solution Size Application 1. 效率与 负载电流间的关系 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. UNLESS OTHERWISE NOTED this document contains Copyright © 2011–2012, Texas Instruments Incorporated PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas English Data Sheet: SLVSAG8 Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Upload: others

Post on 09-Feb-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • 0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Eff

    icie

    nc

    y -

    %

    .

    I- O

    utput

    Curre

    nt - m

    A

    O

    V - Input Voltage - V

    I

    2.73.03

    .33.63

    .94.24

    .54.85

    .15.4

    0.1 0

    .2 0.4 0

    .8 1.6 3

    .2 6.2

    12.6

    25.1

    50.1

    100

    .1

    19

    9.6

    39

    8.1

    794

    .3

    .

    V = 5.0 VO

    C

    4.7I

    μF

    C

    10 uFO

    SW

    VIN

    EN

    VOUT

    BP

    GND

    L

    1 μHVIN2.65 V .. 4.85 V

    VOUT5.0 V @ 700mA

    TPS61256

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259

    www.ti.com.cn ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012

    采采用用芯芯片片级级封封装装的的 3.5MHz 高高效效率率升升压压转转换换器器查查询询样样品品: TPS61253, TPS61254, TPS61256, TPS61258, TPS61259

    1特特性性说说明明

    • 运运行行频频率率为为 3.5MHz 时时,,效效率率 93%TPS6125x 器件为电池供电类便携式应用提供了一个电• 待待机机模模式式时时,,静静态态电电流流为为 22μA源解决方案。 用于低功耗应用,TPS6125x 支持来自• 正正常常操操作作时时,,静静态态电电流流为为 36μA一个电池(充电电压低至 2.65V)的高达 800mA 的负

    • 2.3V 至至 5.5V 的的宽宽 VIN范范围围载电流并且允许使用低成本芯片电感器和电容器。

    • VIN ≥ VOUT运运行行2.3V 至 5.5V的宽输入电压使得此器件能够支持由锂离• VOUT= 4.5V, VIN ≥2.65V时时,,IOUT ≥800mA子电池(具有拓展电压范围)供电的应用。 不同固定• VOUT = 5.0V, VIN ≥3.3V 时时,,IOUT ≥1000mA电压输出版本支持介于 3.15V 至 5.0V 之间的电压。• VOUT = 5.0V, VIN ≥3.3V 时时,,IOUT ≥1500mA((峰峰

    值值))TPS6125x 不但可在稳定的 3.5 MHz 开关频率下工

    • DC 电电压压输输出出总总精精度度为为 ±2%作,而且还可在轻负载电流时进入节电模式,以维持整

    • 轻轻负负载载频频率率脉脉冲冲调调制制 (PFM) 模模式式个负载电流范围内的高效率。 PFM 模式可在轻负载工

    • 停停机机期期间间,,可可选选待待机机模模式式或或真真实实负负载载断断开开作时将静态电流降至 36μA(典型值),从而可延长电

    • 热热关关断断和和过过载载保保护护 池使用寿命。• 只只需需三三个个表表面面贴贴装装外外部部组组件件

    此外,TPS6125x 还可保持其在输入电压电平的偏置输• 总总解解决决方方案案尺尺寸寸 < 25mm2出。 在这个模式下,同步整流器的电流受到限制,从• 9 引引脚脚 NanoFreeTM(CSP) 封封装装而使得外部负载(例如,音频放大器)由一个受限电源

    供电。 在此模式下,静态电流减少至 22μA。 关断模应应用用范范围围式下的输入电流少于 1µA(典型值),这样大大延长• 手手机机、、智智能能电电话话了电池寿命。• 单单声声道道、、立立体体声声 APA 应应用用

    • USB 充充电电端端口口 (5V) 由于需要最小外部组件数量,TPS6125x 提供了一个非常小的解决方案尺寸。 为了实现小解决方案尺寸,允

    空白 许使用小型电感器和输入电容器。 在关断期间,负载

    从电池上完全断开。空白

    Figure 2. Smallest Solution Size Application

    图图 1. 效效率率与与 负负载载电电流流间间的的关关系系1

    Please be aware that an important notice concerning availability, standard warranty, and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

    UNLESS OTHERWISE NOTED this document contains Copyright © 2011–2012, Texas Instruments IncorporatedPRODUCTION DATA information current as of publication date.Products conform to specifications per the terms of Texas English Data Sheet: SLVSAG8Instruments standard warranty. Production processing does notnecessarily include testing of all parameters.

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cnhttp://www.ti.com.cn/product/cn/tps61253#sampleshttp://www.ti.com.cn/product/cn/tps61254#sampleshttp://www.ti.com.cn/product/cn/tps61256#sampleshttp://www.ti.com.cn/product/cn/tps61258#sampleshttp://www.ti.com.cn/product/cn/tps61259#sampleshttp://www-s.ti.com/sc/techlit/SLVSAG8.pdf

  • TPS61253, TPS61254, TPS61256TPS61258, TPS61259ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012 www.ti.com.cn

    These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foamduring storage or handling to prevent electrostatic damage to the MOS gates.

    AVAILABLE DEVICE OPTIONPACKAGEOUTPUT DEVICETA PART NUMBER

    (1) ORDERING (2) MARKINGVOLTAGE SPECIFIC FEATURES CHIP CODE

    Supports 5V, up to 1500mA peak loadingTPS61253 5.0V TPS61253YFF SBFdown to 3.3V input voltage

    Supports 4.5V/800mA loadingTPS61254 4.5V TPS61254YFF QWRdown to 2.65V input voltage

    TPS61255 (3) 3.75V TPS61255YFF QWS

    Supports 5V/900mA loading–40°C to 85°C TPS61256 5.0V TPS61256YFF RAVdown to 3.3V input voltage

    TPS61257 (3) 4.3V TPS61257YFF RAO

    Supports 4.5V, up to 1500mA peak loadingTPS61258 4.5V TPS61258YFF SAZdown to 3.3V input voltage

    Supports 5.1V, up to 1500mA peak loadingTPS61259 5.1V TPS61259YFF SAYdown to 3.3V input voltage

    (1) For detailed ordering information please check the PACKAGE OPTION ADDENDUM section at the end of this datasheet.(2) The YFF package is available in tape and reel. Add a R suffix (e.g. TPS61254YFFR) to order quantities of 3000 parts. Add a T suffix

    (e.g. TPS61254YFFT) to order quantities of 250 parts.(3) Product preview.Contact TI factory for more information

    ABSOLUTE MAXIMUM RATINGSover operating free-air temperature range (unless otherwise noted) (1)

    UNIT

    Input voltage Voltage at VIN (2), VOUT(2), SW (2), EN (2), BP(2) –0.3 to 7 V

    Continuous average current into SW (3) 1.8 AInput current

    Peak current into SW (4) 3.5 A

    Power dissipation Internally limited

    Operating temperature range, TA(5) –40 to 85 °C

    Temperature range Operating virtual junction, TJ –40 to 150 °C

    Storage temperature range, Tstg –65 to 150 °C

    Human Body Model - (HBM) 2000 V

    ESD rating (6) Charge Device Model - (CDM) 1000 V

    Machine Model - (MM) 200 V

    (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratingsonly, and functional operation of the device at these or any other conditions beyond those indicated under recommended operatingconditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.

    (2) All voltages are with respect to network ground terminal.(3) Limit the junction temperature to 105°C for continuous operation at maximum output power.(4) Limit the junction temperature to 125°C for 5% duty cycle operation.(5) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may

    have to be derated. Maximum ambient temperature (TA(max)) is dependent on the maximum operating junction temperature (TJ(max)), themaximum power dissipation of the device in the application (PD(max)), and the junction-to-ambient thermal resistance of the part/packagein the application (θJA), as given by the following equation: TA(max)= TJ(max)–(θJA X PD(max)). To achieve optimum performance, it isrecommended to operate the device with a maximum junction temperature of 105°C.

    (6) The human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin. The machine model is a 200-pFcapacitor discharged directly into each pin.

    2 Copyright © 2011–2012, Texas Instruments Incorporated

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cnmailto:[email protected]

  • TPS61253, TPS61254, TPS61256TPS61258, TPS61259

    www.ti.com.cn ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012

    RECOMMENDED OPERATING CONDITIONSMIN NOM MAX UNIT

    TPS61253 2.65 (1) 4.85

    TPS61254 2.5 4.35

    TPS61256 2.5 4.85VI Input voltage range V

    TPS61257 2.5 4.15

    TPS61258 2.65 (1) 4.35

    TPS61259 2.65 (1) 4.85

    RL Minimum resistive load for start-up TPS6125X 55 ΩL Inductance 0.7 1.0 2.9 µH

    CO Output capacitance 3.5 5 50 µF

    TA Ambient temperature –40 85 °C

    TJ Operating junction temperature –40 125 °C

    (1) Up to 1000mA peak output current.

    THERMAL INFORMATIONTPS6125x

    THERMAL METRIC (1) YFF UNIT

    9 PINS

    θJA Junction-to-ambient thermal resistance 110θJCtop Junction-to-case (top) thermal resistanceθJB Junction-to-board thermal resistance 35

    °C/WψJT Junction-to-top characterization parameterψJB Junction-to-board characterization parameter 50θJCbot Junction-to-case (bottom) thermal resistance

    (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

    ELECTRICAL CHARACTERISTICSMinimum and maximum values are at VIN = 2.3V to 5.5V, VOUT = 4.5V (or VIN, whichever is higher), EN = 1.8V, TA = –40°C to85°C; Circuit of Parameter Measurement Information section (unless otherwise noted). Typical values are at VIN = 3.6V, VOUT= 4.5V, EN = 1.8V, TA = 25°C (unless otherwise noted).

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    SUPPLY CURRENT

    Operating quiescent current30 45 µAIOUT = 0mA, VIN = 3.6Vinto VIN

    EN = VIN, BP = GNDOperating quiescent current Device not switching 7 15 µAinto VOUTIQ TPS6125xStandby mode quiescent current 11 20 µAIOUT = 0mA, VIN = VOUT = 3.6Vinto VIN

    EN = GND, BP = VINStandby mode quiescent current Device not switching 9.5 15 µAinto VOUT

    ISD Shutdown current TPS6125x EN = GND, BP = GND 0.85 5.0 μAFalling 2.0 2.1 V

    VUVLO Under-voltage lockout threshold TPS6125xHysteresis 0.1 V

    Copyright © 2011–2012, Texas Instruments Incorporated 3

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cnhttp://www.ti.com/cn/lit/pdf/spra953

  • TPS61253, TPS61254, TPS61256TPS61258, TPS61259ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012 www.ti.com.cn

    ELECTRICAL CHARACTERISTICS (continued)Minimum and maximum values are at VIN = 2.3V to 5.5V, VOUT = 4.5V (or VIN, whichever is higher), EN = 1.8V, TA = –40°C to85°C; Circuit of Parameter Measurement Information section (unless otherwise noted). Typical values are at VIN = 3.6V, VOUT= 4.5V, EN = 1.8V, TA = 25°C (unless otherwise noted).

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    ENABLE, BYPASS

    VIL Low-level input voltage 0.4 V

    VIH High-level input voltage TPS6125x 1.0 V

    Ilkg Input leakage current Input connected to GND or VIN 0.5 µA

    OUTPUT

    2.3V ≤ VIN ≤ 4.85V, IOUT = 0mA 4.92 5 5.08PWM operation. Open Loop

    3.3V ≤ VIN ≤ 4.85V, 0mA ≤ IOUT ≤ 1000mA 4.85 5 5.2PFM/PWM operationRegulated DC output voltage TPS61253 V3.3V ≤ VIN ≤ 4.85V, 0mA ≤ IOUT ≤ 1500mAPFM/PWM operation 4.75 5 5.2Pulsed load test; Pulse width ≤ 20ms;Duty cycle ≤ 10%2.3V ≤ VIN ≤ 4.35V, IOUT = 0mA 4.43 4.5 4.57PWM operation. Open Loop

    Regulated DC output voltage TPS61254 V2.65V ≤ VIN ≤ 4.35V, 0mA ≤ IOUT ≤ 800mA 4.4 4.5 4.65PFM/PWM operation

    2.3V ≤ VIN ≤ 4.85V, IOUT = 0mA 4.92 5 5.08PWM operation. Open Loop

    Regulated DC output voltage TPS61256 V2.65V ≤ VIN ≤ 4.85V, 0mA ≤ IOUT ≤ 700mA 4.9 5 5.2PFM/PWM operationVOUT2.3V ≤ VIN ≤ 4.15V, IOUT = 0mA 4.23 4.3 4.37PWM operation. Open loop.

    Regulated DC output voltage TPS61257 V2.65V ≤ VIN ≤ 4.15V, 0mA ≤ IOUT ≤ 800mA 4.2 4.3 4.45PFM/PWM operation

    2.3V ≤ VIN ≤ 4.35V, IOUT = 0mA 4.43 4.5 4.57PWM operation. Open Loop

    3.3V ≤ VIN ≤ 4.35V, 0mA ≤ IOUT ≤ 1500mARegulated DC output voltage TPS61258 VPFM/PWM operation 4.3 4.5 4.65Pulsed load test; Pulse width ≤ 20ms;Duty cycle ≤ 10%2.3V ≤ VIN ≤ 4.85V, IOUT = 0mA 5.02 5.1 5.18PWM operation. Open Loop

    3.4V ≤ VIN ≤ 4.85V, 0mA ≤ IOUT ≤ 1500mARegulated DC output voltage TPS61259 VPFM/PWM operation 4.75 5.1 5.3Pulsed load test; Pulse width ≤ 20ms;Duty cycle ≤ 10%

    Power-save mode output ripple PFM operation, IOUT = 1mA 45voltageTPS61254

    Standby mode output ripple mVpkEN = GND, BP = VIN, IOUT = 0mA 80TPS61258voltage

    PWM mode output ripple voltage PWM operation, IOUT = 200mA 20ΔVOUTPower-save mode output ripple PFM operation, IOUT = 1mA 50voltage TPS61253Standby mode output ripple TPS61256 mVpkEN = GND, BP = VIN, IOUT = 0mA 80voltage TPS61259

    PWM mode output ripple voltage PWM operation, IOUT = 200mA 20

    4 Copyright © 2011–2012, Texas Instruments Incorporated

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • TPS61253, TPS61254, TPS61256TPS61258, TPS61259

    www.ti.com.cn ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012

    ELECTRICAL CHARACTERISTICS (continued)Minimum and maximum values are at VIN = 2.3V to 5.5V, VOUT = 4.5V (or VIN, whichever is higher), EN = 1.8V, TA = –40°C to85°C; Circuit of Parameter Measurement Information section (unless otherwise noted). Typical values are at VIN = 3.6V, VOUT= 4.5V, EN = 1.8V, TA = 25°C (unless otherwise noted).

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    POWER SWITCH

    High-side MOSFET on resistance 170rDS(on) TPS6125x mΩ

    Low-side MOSFET on resistance 100

    Reverse leakage current intoIlkg TPS6125x EN = GND, BP = GND 3.5 µAVOUT

    TPS61253EN = VIN, BP = GND. Open Loop 3300 3620 3900TPS61258

    TPS61259Switch valley current limit mA

    TPS61254ILIM TPS61256 EN = VIN, BP = GND. Open Loop 1900 2150 2400

    TPS61257

    Pre-charge mode current limitTPS6125x EN = GND, BP = VIN 165 215 265 mA(linear mode)

    Overtemperature protection 140 °CTPS6125x

    Overtemperature hysteresis 20 °C

    OSCILLATOR

    fOSC Oscillator frequency TPS6125x VIN = 3.6V VOUT = 4.5V 3.5 MHz

    TIMING

    BP = GND, IOUT = 0mA.TPS6125x 70 µsTime from active EN to start switching

    TPS61253Start-up time TPS61254 BP = GND, IOUT = 0mA.TPS61256 400 µs

    Time from active EN to VOUTTPS61258TPS61259

    Copyright © 2011–2012, Texas Instruments Incorporated 5

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • UndervoltageLockout

    ThermalShutdown

    Softstart

    ControlLogic

    Gate

    Driver PMOS

    ValleyCurrentSense

    Err

    or

    Am

    plif

    ier

    VREF

    VOUT

    GND

    SW

    VINNMOS

    Modulator

    BP

    EN

    A1 A2 A3

    B2

    C2

    B3

    C3

    B1

    C1

    A1A2A3

    B2

    C2

    B3

    C3

    B1

    C1

    BOTTOM VIEWTOP VIEW

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012 www.ti.com.cn

    PIN ASSIGNMENTS

    Table 1. TERMINAL FUNCTIONS

    TERMINALI/O DESCRIPTION

    NAME NO.

    This is the mode selection pin of the device and is only of relevance when the device is disabled(EN = Low). This pin must not be left floating and must be terminated. Refer to Table 3 for moredetails.

    BP C3 I BP = Low: The device is in true shutdown mode.

    BP = High: The output is biased at the input voltage level with a maximum load current capability ofca. 150mA. In standby mode, the device only consumes a standby current of 22µA (typ).

    This is the enable pin of the device. Connecting this pin to ground forces the device into shutdownEN B3 I mode. Pulling this pin high enables the device. This pin must not be left floating and must be

    terminated.

    GND C1, C2 Ground pin.

    SW B1, B2 I/O This is the switch pin of the converter and is connected to the drain of the internal Power MOSFETs.

    VIN A3 I Power supply input.

    VOUT A1, A2 O Boost converter output.

    FUNCTIONAL BLOCK DIAGRAM

    6 Copyright © 2011–2012, Texas Instruments Incorporated

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • C

    4.7I

    μF

    C

    10 uFO

    SW

    VIN

    EN

    VOUT

    BP

    GND

    L

    1 μH

    VIN

    VOUT

    TPS6125x

    EN BP

    0 0

    0 1

    1 X

    Shutdown, True Load Disconnect (SD)

    Standby Mode, Output Pre-Biased (SM)

    Boost Operating Mode (BST)

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259

    www.ti.com.cn ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012

    PARAMETER MEASUREMENT INFORMATION

    Table 2. List of Components

    REFERENCE DESCRIPTION PART NUMBER, MANUFACTURER

    L (1) 1.0μH, 1.8A, 48mΩ, 3.2 x 2.5 x 1.0mm max. height LQM32PN1R0MG0, muRataL (2) 1.0μH, 3.7A, 37mΩ, 3.2 x 2.5 x 1.2mm max. height DFE322512C, TOKOCI 4.7μF, 6.3V, 0402, X5R ceramic GRM155R60J475M, muRataCO 10μF, 6.3V, 0603, X5R ceramic GRM188R60J106ME84, muRata

    (1) Inductor used to characterize TPS61254YFF, TPS61255YFF, TPS61256YFF and TPS61257YFF devices.(2) Inductor used to characterize TPS61253YFF, TPS61258YFF and TPS61259YFF devices.

    Copyright © 2011–2012, Texas Instruments Incorporated 7

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • 50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Eff

    icie

    ncy -

    %

    0.1 1 10 100 1000

    I - Output Current - mAO

    V = 2.5 VI

    V = 2.7 VI

    V = 3 VIV = 3.3 VI

    V = 3.6 VI

    V = 4.5 VIV = 5 V (TPS61256)

    PFM/PWM OperationO

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Eff

    icie

    nc

    y -

    %

    0.1 1 10 100 1000

    I - Output Current - mAO

    V = 4.5 VI

    V = 3.6 VI

    V = 3.3 VI

    V = 3 VIV = 2.7 VI

    I = 2.5 VV

    PFM/PWM Operation

    V = 4.5 VO

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012 www.ti.com.cn

    TYPICAL CHARACTERISTICSTABLE OF GRAPHS

    FIGURE

    vs Output current 3, 4, 5, 7η Efficiency

    vs Input voltage 6

    vs Output current 8, 9, 10, 11, 12, 16VO DC output voltage

    vs Input voltage 13

    IO Maximum output current vs Input voltage 14, 15

    ΔVO Peak-to-peak output ripple voltage vs Output current 17, 18, 19ICC Supply current vs Input voltage 20, 21

    DC pre-charge current vs Differential input-output voltage 22, 23ILIM

    Valley current limit vs Temperature 24, 25

    rDS(on) MOSFET rDS(on) vs Temperature 26

    PFM operation 27

    PWM operation 28

    Combined line/load transient response 29

    Load transient response 30, 32

    AC load transient response 31, 33

    Start-up 34, 35

    EFFICIENCY EFFICIENCYvs vs

    OUTPUT CURRENT OUTPUT CURRENT

    Figure 3. Figure 4.

    8 Copyright © 2011–2012, Texas Instruments Incorporated

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • 0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Eff

    icie

    ncy -

    %

    0.01 0.1 1 10 100

    I - Output Current - mAO

    V ~

    Standby OperationO VI

    V = 4.5 VI

    V = 2.7 VI

    V = 3 VI

    V = 3.3 VI

    V = 3.6 VI

    4.41

    4.46

    4.50

    4.55

    4.59

    0.1 1 10 100 1000

    I - Output Current - mAO

    V-

    DC

    Ou

    tpu

    t V

    olt

    ag

    e -

    VO

    V = 2.5 VI

    V = 4.5 VI

    V = 3.6 VI

    V = 4.5 V

    PFM/PWM OperationO

    I = 300 mAO

    2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5

    V - Input Voltage - VI

    70

    72

    74

    76

    78

    80

    82

    84

    86

    88

    90

    92

    94

    96

    98

    100

    Eff

    icie

    ncy -

    %

    V = 5 V

    PFM/PWM OperationO

    I = 100 mAO

    I = 10 mAO

    I = 800 mAO

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Eff

    icie

    ncy -

    %

    0 1 10 100 1000 10000

    I - Output Current - mAO

    V = 4.2 VIV = 4.5 VI

    V = 3.3 VIV = 3.6 VI

    V = 5 V (TPS61253),

    I = Pulse Operation (t = 20 ms, = 10%),

    PFM/PWM Operation

    O

    O pulse d

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259

    www.ti.com.cn ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012

    EFFICIENCY EFFICIENCYvs vs

    OUTPUT CURRENT INPUT VOLTAGE

    Figure 5. Figure 6.

    EFFICIENCY DC OUTPUT VOLTAGEvs vs

    OUTPUT CURRENT OUTPUT CURRENT

    Figure 7. Figure 8.

    Copyright © 2011–2012, Texas Instruments Incorporated 9

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • 4.8

    4.85

    4.9

    4.95

    5

    5.05

    V-

    DC

    Ou

    tpu

    t V

    olt

    ag

    e -

    VO

    500 700 900 1100 1300 1500 1700 1900

    I - Output Current - mAO

    V = 4.5 VI

    V = 2.5 VI

    V = 2.7 VI

    V = 3 VI

    V = 3.3 VI

    V = 3.6 VI V = 4.2 VI

    V = 5 V (TPS61256)

    PWM OperationO

    4.75

    4.8

    4.85

    4.9

    4.95

    5

    5.05

    5.1

    1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

    V-

    DC

    Ou

    tpu

    t V

    olt

    ag

    e -

    VO

    I - Output Current - mAO

    V = 4.2 VIV = 4.5 VI

    V = 3.3 VI

    V = 3.6 VI

    V = 5 V (TPS61253),

    I = Pulse Operation (t = 20 ms, = 10%),

    PWM Operation

    O

    O pulse d

    V = 3 VI

    4.95

    5

    5.05

    5.1

    5.15

    V-

    DC

    Ou

    tpu

    t V

    olt

    ag

    e -

    VO

    0.1 1 10 100 1000

    I - Output Current - mAO

    V = 5 VI

    V = 2.5 VI

    V = 4.5 VI

    V = 5 V (TPS61256)

    PFM/PWM OperationO

    V = 3.6 VI

    4.365

    4.41

    4.455

    4.5

    4.545

    V = 4.5 V

    PWM OperationO

    V = 4.5 VI

    V = 2.5 VI

    V = 2.7 VI

    V = 3 VI

    V = 3.3 VI

    V = 3.6 VI

    500 700 900 1100 1300 1500 1700 1900

    I - Output Current - mAOV

    - D

    C O

    utp

    ut

    Vo

    ltag

    e -

    VO

    V = 4.2 VI

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012 www.ti.com.cn

    DC OUTPUT VOLTAGE DC OUTPUT VOLTAGEvs vs

    OUTPUT CURRENT OUTPUT CURRENT

    Figure 9. Figure 10.

    DC OUTPUT VOLTAGE DC OUTPUT VOLTAGEvs vs

    OUTPUT CURRENT OUTPUT CURRENT

    Figure 11. Figure 12.

    10 Copyright © 2011–2012, Texas Instruments Incorporated

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • 800

    1000

    1200

    1400

    1600

    1800

    2000

    2200

    2400

    2600

    2800

    3000

    2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5

    I-

    Ma

    xim

    um

    Ou

    tpu

    t C

    urr

    en

    t -

    mA

    O

    V - Input Voltage - VI

    T = -40 °CA

    T = 25 °CA

    T = 85 °CA

    T = 65 °CA

    V = 5 V (TPS61253),

    I = Pulse Operation (t = 20 ms, = 10%)

    PWM Operation

    O

    O pulse d

    0 20 40 60 80 100 120 140 160 180 200 220 240

    I - Output Current - mAO

    2

    2.2

    2.4

    2.6

    2.8

    3

    3.2

    3.4

    3.6

    3.8

    4

    4.2

    4.4

    4.6

    4.8

    5

    V-

    DC

    Ou

    tpu

    t V

    olt

    ag

    e -

    VO

    V ~ V

    Standby OperationO I

    V = 4.5 VI

    V = 2.5 VI

    V = 2.7 VI

    V = 3 VI

    V = 3.3 VI

    V = 3.6 VI

    V = 4.2 VI

    2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5

    V - Input Voltage - VI

    500

    700

    900

    1100

    1300

    1500

    1700

    1900

    2100

    2300

    I-

    Maxim

    um

    Ou

    tpu

    t C

    urr

    en

    t -

    mA

    O

    V = 5 V (TPS61256)

    PWM OperationO

    T = -40°CA

    T = 25°CA

    T = 85°CA

    2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5

    V - Input Voltage - VI

    4.95

    5

    5.05

    5.1

    5.15

    5.2

    5.25

    5.3

    5.35

    5.4

    5.45

    5.5

    5.55

    V-

    DC

    Ou

    tpu

    t V

    olt

    ag

    e -

    VO

    I = 100 mAO

    I = 10 mAO

    I = 800 mAO

    V = 5 V

    PFM/PWM OperationO

    I = 500 mAO

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259

    www.ti.com.cn ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012

    DC OUTPUT VOLTAGE MAXIMUM OUTPUT CURRENTvs vs

    INPUT VOLTAGE INPUT VOLTAGE

    Figure 13. Figure 14.

    MAXIMUM OUTPUT CURRENT DC OUTPUT VOLTAGEvs vs

    INPUT VOLTAGE OUTPUT CURRENT

    Figure 15. Figure 16.

    Copyright © 2011–2012, Texas Instruments Incorporated 11

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9

    V - Input Voltage - VI

    Su

    pp

    ly C

    urr

    en

    t -

    Am

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    T = 85°CA

    T = 25°CA

    T = -40°CA

    V = 5 V

    I = 0 mAO

    O

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    0 200 400 600 800 1000 1200 1400

    V = 4.5 VI

    V = 3.6 VI

    V = 3.3 VI

    V = 5 V (TPS61253)

    PFM/PWM OperationO

    I - Output Current - mAO

    V-

    Pe

    ak

    -to

    -Pe

    ak

    Ou

    tpu

    t R

    ipp

    le V

    olt

    ag

    e -

    mV

    O

    CO = x2 10 F 6.3 V (0603) X5R,muRata GRM188R60J106ME84D

    m

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    V-

    Peak-t

    o-P

    eak O

    utp

    ut

    Rip

    ple

    Vo

    ltag

    e -

    mV

    O

    0 100 200 300 400 500 600 700 800 900 1000

    I - Output Current - mAO

    V = 4.5 VI

    V = 2.7 VI

    V = 3.3 VI

    V = 3.6 VI

    V = 5 V (TPS61256)

    PFM/PWM OperationO

    C = 10 F 6.3V (0603) X5R, muRataO μ GRM188R60J106ME84D

    V = 4.5 VI

    V = 2.7 VI

    V = 3.3 VI

    V = 3.6 VI

    0 100 200 300 400 500 600 700 800 900 1000

    I - Output Current - mAO

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    V-

    Pe

    ak

    -to

    -Pe

    ak

    Ou

    tpu

    t R

    ipp

    le V

    olt

    ag

    e -

    mV

    O

    V = 5 V (TPS61256)

    PFM/PWM OperationO

    C = 22 F 10V (1210) X5R, muRata GRM32ER71A226KO μ

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012 www.ti.com.cn

    PEAK-TO-PEAK OUTPUT RIPPLE VOLTAGE PEAK-TO-PEAK OUTPUT RIPPLE VOLTAGEvs vs

    OUTPUT CURRENT OUTPUT CURRENT

    Figure 17. Figure 18.

    PEAK-TO-PEAK OUTPUT RIPPLE VOLTAGE SUPPLY CURRENTvs vs

    OUTPUT CURRENT INPUT VOLTAGE

    Figure 19. Figure 20.

    12 Copyright © 2011–2012, Texas Instruments Incorporated

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • 1900

    1925

    1950

    1975

    2000

    2025

    2050

    2075

    2100

    2125

    2150

    2175

    2200

    2225

    2250

    2275

    2300

    2325

    2350

    2375

    2400

    I - Valley Current Limit - mALIM

    0

    5

    10

    15

    20

    25

    Sa

    mp

    le P

    erc

    en

    tag

    e -

    %

    T = 25°CJ

    T = 130°CJ

    T = -20°CJ

    Sample Size = 200V = 3.6 VIN

    0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6Differential Input - Output Voltage - V

    150155

    160

    165

    170

    175

    180

    185

    190

    195

    200

    205

    210

    215

    220

    225

    230

    235

    240

    245

    250

    DC

    Pre

    -Ch

    arg

    e C

    urr

    en

    t -

    mA

    V = 3.6 V,

    T = 85°CI

    A

    V = 3.6 V,

    T = 25°CI

    A

    V = 3.6 V,

    T = -40°CI

    A

    150155

    160

    165

    170

    175

    180

    185

    190

    195

    200

    205

    210

    215

    220

    225

    230

    235

    240

    245

    250

    0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5

    Differential Input - Output Voltage - VD

    C P

    re-C

    harg

    e C

    urr

    en

    t -

    mA

    V = 4.5 V,

    T = 25°CI

    A

    V = 2.7 V,

    T = 25°CI

    A

    V = 3.6 V,

    T = 25°CI

    A

    2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5

    V - Input Voltage - VI

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    Su

    pp

    ly C

    urr

    en

    t -

    Am

    V ~ V

    I = 0 mA

    Standby Operation

    I O

    O T = -40°CA

    T = 25°CAT = 85°CA

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259

    www.ti.com.cn ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012

    SUPPLY CURRENT DC PRE-CHARGE CURRENTvs vs

    INPUT VOLTAGE DIFFERENTIAL INPUT-OUTPUT VOLTAGE

    Figure 21. Figure 22.

    DC PRE-CHARGE CURRENTvs

    DIFFERENTIAL INPUT-OUTPUT VOLTAGE VALLEY CURRENT LIMIT

    Figure 23. Figure 24.

    Copyright © 2011–2012, Texas Instruments Incorporated 13

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • V = 3.6 V,

    V = 5.0 V,

    I

    I

    O

    O = 40 mA

    V = 3.6 V,

    V = 5.0 V,

    I

    I

    O

    O = 200 mA

    0

    5

    10

    15

    20

    253300

    3325

    3350

    3375

    3400

    3425

    3450

    3475

    3500

    3525

    3550

    3575

    3600

    3625

    3650

    3675

    3700

    3725

    3750

    3775

    3800

    3825

    3850

    3875

    3900

    Sam

    ple

    Perc

    en

    tag

    e -

    %

    I - Valley Current Limit - mALIM

    TPS61253V = 3.6 V,

    Sample Size = 200IN

    T = 125°CJ

    T = 25°CJ

    T = -20°CJ

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    -30 -10 10 30 50 70 90 110 130

    T - Junction Temperature - °CJR

    - O

    n-R

    esis

    tan

    ce -

    mD

    S(o

    n)

    W

    Rectifier MOSFET

    Switch MOSFET

    V = 5 VO

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012 www.ti.com.cn

    MOSFET rDS(on)vs

    VALLEY CURRENT LIMIT TEMPERATURE

    Figure 25. Figure 26.

    POWER-SAVE MODE OPERATION PWM OPERATION

    Figure 27. Figure 28.

    14 Copyright © 2011–2012, Texas Instruments Incorporated

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • 50 to 500 mA Load Step

    V = 3.6 V,

    V = 5.0 VI

    O

    C = 22 F 10V (1210) X5R, muRataO μ

    V = 3.6 V,

    V = 5.0 VI

    O

    0 to 400mA Load Sweep

    V = 5.0 VO

    3.3V to 3.9V Line Step

    50mA to 500mALoad Step

    50 to 500 mA Load Step

    V = 3.6 V,

    V = 5.0 VI

    O

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259

    www.ti.com.cn ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012

    LOAD TRANSIENT RESPONSE INCOMBINED LINE/LOAD TRANSIENT RESPONSE PFM/PWM OPERATION

    Figure 29. Figure 30.

    LOAD TRANSIENT RESPONSE INAC LOAD TRANSIENT RESPONSE PFM/PWM OPERATION

    Figure 31. Figure 32.

    Copyright © 2011–2012, Texas Instruments Incorporated 15

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • V = 3.6 VI

    V = 5.0 V,

    IO

    O = 0 mA

    V = 4.5 VI

    V = 2.7 VI

    V = 3.6 V,

    V = 5.0I

    O

    0 to 400mA Load

    C = 22 F 10V (1210) X5R, muRataO μ

    V = 3.6 V,

    V = 5.0 V,

    I

    I

    O

    O = 0 mA

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012 www.ti.com.cn

    AC LOAD TRANSIENT RESPONSE START-UP

    Figure 33. Figure 34.

    START-UP

    Figure 35.

    16 Copyright © 2011–2012, Texas Instruments Incorporated

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • TPS61253, TPS61254, TPS61256TPS61258, TPS61259

    www.ti.com.cn ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012

    DETAILED DESCRIPTION

    OPERATION

    The TPS6125x synchronous step-up converter typically operates at a quasi-constant 3.5-MHz frequency pulsewidth modulation (PWM) at moderate to heavy load currents. At light load currents, the TPS6125x converteroperates in power-save mode with pulse frequency modulation (PFM).

    During PWM operation, the converter uses a novel quasi-constant on-time valley current mode control scheme toachieve excellent line/load regulation and allows the use of a small ceramic inductor and capacitors. Based onthe VIN/VOUT ratio, a simple circuit predicts the required on-time.

    At the beginning of the switching cycle, the low-side N-MOS switch is turned-on and the inductor current rampsup to a peak current that is defined by the on-time and the inductance. In the second phase, once the on-timerhas expired, the rectifier is turned-on and the inductor current decays to a preset valley current threshold. Finally,the switching cycle repeats by setting the on timer again and activating the low-side N-MOS switch.

    In general, a dc/dc step-up converter can only operate in "true" boost mode, i.e. the output “boosted” by a certainamount above the input voltage. The TPS6125x device operates differently as it can smoothly transition in andout of zero duty cycle operation. Therefore the output can be kept as close as possible to its regulation limitseven though the converter is subject to an input voltage that tends to be excessive. In this operation mode, theoutput current capability of the regulator is limited to ca. 150mA. Refer to the typical characteristics section (DCOutput Voltage vs. Input Voltage) for further details.

    The current mode architecture with adaptive slope compensation provides excellent transient load response,requiring minimal output filtering. Internal soft-start and loop compensation simplifies the design process whileminimizing the number of external components.

    POWER-SAVE MODE

    The TPS6125X integrates a power-save mode to improve efficiency at light load. In power save mode theconverter only operates when the output voltage trips below a set threshold voltage.

    It ramps up the output voltage with several pulses and goes into power save mode once the output voltageexceeds the set threshold voltage.

    The PFM mode is left and PWM mode entered in case the output current can not longer be supported in PFMmode.

    Copyright © 2011–2012, Texas Instruments Incorporated 17

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • f

    D

    L

    VΔI

    INL ×=

    I = IVALLEY LIM

    IL

    f

    IPEAK

    RectifierCurrent

    IOUT(DC)

    InductorrCurrent

    IncreasedLoad Current

    IIN(DC)

    IIN(DC)

    Current LimitThreshold

    IOUT(CL)DIL

    DIL

    IN

    L

    V DI =

    L fD g

    IN

    OUT

    VD 1

    V

    h= -

    g

    - DgOUT(CL) VALLEY L

    1I = (1 D) (I + I )

    2

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012 www.ti.com.cn

    STANDBY MODE

    The TPS6125x device is able to maintain its output biased at the input voltage level. In so called standby mode(EN = 0, BP = 1), the synchronous rectifier is current limited to ca. 150mA allowing an external load (e.g. audioamplifier) to be powered with a restricted supply. The output voltage is slightly reduced due to voltage dropacross the rectifier MOSFET and the inductor DC resistance. The device consumes only a standby current of22µA (typ).

    Table 3. Operating Mode Control

    OPERATING MODE EN BP

    Shutdown, True Load Disconnect (SD) 0 0

    Standby Mode, Output Pre-Biased (SM) 0 1

    1 0Boost Operating Mode (BST)

    1 1

    CURRENT LIMIT OPERATION

    The TPS6125x device employs a valley current limit sensing scheme. Current limit detection occurs during theoff-time by sensing of the voltage drop across the synchronous rectifier.

    The output voltage is reduced as the power stage of the device operates in a constant current mode. Themaximum continuous output current (IOUT(CL)), before entering current limit (CL) operation, can be defined byEquation 1.

    (1)

    The duty cycle (D) can be estimated by Equation 2

    (2)

    and the peak-to-peak current ripple (ΔIL) is calculated by Equation 3

    (3)

    The output current, IOUT(DC), is the average of the rectifier ripple current waveform. When the load current isincreased such that the lower peak is above the current limit threshold, the off-time is increased to allow thecurrent to decrease to this threshold before the next on-time begins (so called frequency fold-back mechanism).When the current limit is reached the output voltage decreases during further load increase.

    Figure 36 illustrates the inductor and rectifier current waveforms during current limit operation.

    Figure 36. Inductor/Rectifier Currents in Current Limit Operation

    18 Copyright © 2011–2012, Texas Instruments Incorporated

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • TPS61253, TPS61254, TPS61256TPS61258, TPS61259

    www.ti.com.cn ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012

    ENABLE

    The TPS6125x device starts operation when EN is set high and starts up with the soft-start sequence. For properoperation, the EN pin must be terminated and must not be left floating.

    Pulling the EN and BP pins low forces the device in shutdown, with a shutdown current of typically 1µA. In thismode, true load disconnect between the battery and load prevents current flow from VIN to VOUT, as well asreverse flow from VOUT to VIN.

    Pulling the EN pin low and the BP pin high forces the device in standby mode, refer to the STANDBY MODEsection for more details.

    LOAD DISCONNECT AND REVERSE CURRENT PROTECTION

    Regular boost converters do not disconnect the load from the input supply and therefore a connected battery willbe discharge during shutdown. The advantage of TPS6125x is that this converter is disconnecting the outputfrom the input of the power supply when it is disabled (so called true shutdown mode). In case of a connectedbattery it prevents it from being discharge during shutdown of the converter.

    SOFTSTART

    The TPS6125x device has an internal softstart circuit that limits the inrush current during start-up. The first stepin the start-up cycle is the pre-charge phase. During pre-charge, the rectifying switch is turned on until the outputcapacitor is charged to a value close to the input voltage. The rectifying switch is current limited (approx. 200mA)during this phase. This mechanism is used to limit the output current under short-circuit condition.

    Once the output capacitor has been biased to the input voltage, the converter starts switching. The soft-startsystem progressively increases the on-time as a function of the input-to-output voltage ratio. As soon as theoutput voltage is reached, the regulation loop takes control and full current operation is permitted.

    UNDERVOLTAGE LOCKOUT

    The under voltage lockout circuit prevents the device from malfunctioning at low input voltages and the batteryfrom excessive discharge. It disables the output stage of the converter once the falling VIN trips the under-voltagelockout threshold VUVLO which is typically 2.0V. The device starts operation once the rising VIN trips VUVLOthreshold plus its hysteresis of 100 mV at typ. 2.1V.

    THERMAL REGULATION

    The TPS6125x device contains a thermal regulation loop that monitors the die temperature during the pre-chargephase. If the die temperature rises to high values of about 110 °C, the device automatically reduces the currentto prevent the die temperature from increasing further. Once the die temperature drops about 10 °C below thethreshold, the device will automatically increase the current to the target value. This function also reduces thecurrent during a short-circuit condition.

    THERMAL SHUTDOWN

    As soon as the junction temperature, TJ, exceeds 140°C (typ.) the device goes into thermal shutdown. In thismode, the high-side and low-side MOSFETs are turned-off. When the junction temperature falls below thethermal shutdown minus its hysteresis, the device continuous the operation.

    Copyright © 2011–2012, Texas Instruments Incorporated 19

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • hg g

    OUTL(DC) OUT

    IN

    V 1I = I

    V

    OUTIN INL(PEAK)

    OUT

    IV D VI = + with D 1

    2 f L (1 D) V

    h= -

    - h

    g g

    g g g

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012 www.ti.com.cn

    APPLICATION INFORMATION

    INDUCTOR SELECTION

    A boost converter normally requires two main passive components for storing energy during the conversion, aninductor and an output capacitor are required. It is advisable to select an inductor with a saturation current ratinghigher than the possible peak current flowing through the power switches.

    The inductor peak current varies as a function of the load, the input and output voltages and can be estimatedusing Equation 4.

    (4)

    Selecting an inductor with insufficient saturation performance can lead to excessive peak current in theconverter. This could eventually harm the device and reduce it's reliability.

    When selecting the inductor, as well as the inductance, parameters of importance are: maximum current rating,series resistance, and operating temperature. The inductor DC current rating should be greater (by some margin)than the maximum input average current, refer to Equation 5 and CURRENT LIMIT OPERATION section formore details.

    (5)

    The TPS6125x series of step-up converters have been optimized to operate with a effective inductance in therange of 0.7µH to 2.9µH and with output capacitors in the range of 10µF to 47µF. The internal compensation isoptimized for an output filter of L = 1µH and CO = 10µF. Larger or smaller inductor values can be used tooptimize the performance of the device for specific operating conditions. For more details, see the CHECKINGLOOP STABILITY section.

    In high-frequency converter applications, the efficiency is essentially affected by the inductor AC resistance (i.e.quality factor) and to a smaller extent by the inductor DCR value. To achieve high efficiency operation, careshould be taken in selecting inductors featuring a quality factor above 25 at the switching frequency. Increasingthe inductor value produces lower RMS currents, but degrades transient response. For a given physical inductorsize, increased inductance usually results in an inductor with lower saturation current.

    The total losses of the coil consist of both the losses in the DC resistance, R(DC) , and the following frequency-dependent components:• The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)• Additional losses in the conductor from the skin effect (current displacement at high frequencies)• Magnetic field losses of the neighboring windings (proximity effect)• Radiation losses

    The following inductor series from different suppliers have been used with the TPS6125x converters.

    Table 4. List of Inductors

    MANUFACTURER SERIES DIMENSIONS (in mm)

    HITACHI METALS KSLI-322512BL1-1R0 3.2 x 2.5 x 1.2 max. height

    LQM32PN1R0MG0 3.2 x 2.5 x 1.0 max. heightMURATA

    LQM2HPN1R0MG0 2.5 x 2.0 x 1.0 max. height

    TOKO DFE322512C-1R0 3.2 x 2.5 x 1.2 max. height

    20 Copyright © 2011–2012, Texas Instruments Incorporated

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • ESR OUT ESRV I R= g

    ( )OUT OUT INMIN

    OUT

    I V VC

    f V V

    -=

    D

    g

    g g

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259

    www.ti.com.cn ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012

    OUTPUT CAPACITOR

    For the output capacitor, it is recommended to use small ceramic capacitors placed as close as possible to theVOUT and GND pins of the IC. If, for any reason, the application requires the use of large capacitors which cannot be placed close to the IC, using a smaller ceramic capacitor in parallel to the large one is highlyrecommended. This small capacitor should be placed as close as possible to the VOUT and GND pins of the IC.To get an estimate of the recommended minimum output capacitance, Equation 6 can be used.

    (6)

    Where f is the switching frequency which is 3.5MHz (typ.) and ΔV is the maximum allowed output ripple.

    With a chosen ripple voltage of 20mV, a minimum effective capacitance of 9μF is needed. The total ripple islarger due to the ESR of the output capacitor. This additional component of the ripple can be calculated usingEquation 7

    (7)

    An MLCC capacitor with twice the value of the calculated minimum should be used due to DC bias effects. Thisis required to maintain control loop stability. The output capacitor requires either an X7R or X5R dielectric. Y5Vand Z5U dielectric capacitors, aside from their wide variation in capacitance over temperature, become resistiveat high frequencies. There are no additional requirements regarding minimum ESR. Larger capacitors causelower output voltage ripple as well as lower output voltage drop during load transients but the total outputcapacitance value should not exceed ca. 50µF.

    DC bias effect: high cap. ceramic capacitors exhibit DC bias effects, which have a strong influence on thedevice's effective capacitance. Therefore the right capacitor value has to be chosen very carefully. Package sizeand voltage rating in combination with material are responsible for differences between the rated capacitor valueand it's effective capacitance. For instance, a 10µF X5R 6.3V 0603 MLCC capacitor would typically show aneffective capacitance of less than 4µF (under 5V bias condition, high temperature).

    In applications featuring high pulsed load currents (e.g. TPS61253 based solution) it is recommended to run theconverter with a reasonable amount of effective output capacitance, for instance x2 10µF X5R 6.3V 0603 MLCCcapacitors connected in parallel.

    INPUT CAPACITOR

    Multilayer ceramic capacitors are an excellent choice for input decoupling of the step-up converter as they haveextremely low ESR and are available in small footprints. Input capacitors should be located as close as possibleto the device. While a 4.7μF input capacitor is sufficient for most applications, larger values may be used toreduce input current ripple without limitations.

    Take care when using only ceramic input capacitors. When a ceramic capacitor is used at the input and thepower is being supplied through long wires, such as from a wall adapter, a load step at the output can induceringing at the VIN pin. This ringing can couple to the output and be mistaken as loop instability or could evendamage the part. Additional "bulk" capacitance (electrolytic or tantalum) should in this circumstance be placedbetween CI and the power source lead to reduce ringing than can occur between the inductance of the powersource leads and CI.

    Copyright © 2011–2012, Texas Instruments Incorporated 21

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • L1

    CIN

    CO

    UT

    U1

    GND

    VIN

    VOUT

    GND

    EN

    BP

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012 www.ti.com.cn

    CHECKING LOOP STABILITY

    The first step of circuit and stability evaluation is to look from a steady-state perspective at the following signals:• Switching node, SW• Inductor current, IL• Output ripple voltage, VOUT(AC)

    These are the basic signals that need to be measured when evaluating a switching converter. When theswitching waveform shows large duty cycle jitter or the output voltage or inductor current shows oscillations, theregulation loop may be unstable. This is often a result of board layout and/or L-C combination.

    As a next step in the evaluation of the regulation loop, the load transient response is tested. The time betweenthe application of the load transient and the turn on of the P-channel MOSFET, the output capacitor must supplyall of the current required by the load. VOUT immediately shifts by an amount equal to ΔI(LOAD) x ESR, where ESRis the effective series resistance of COUT. ΔI(LOAD) begins to charge or discharge COUT generating a feedbackerror signal used by the regulator to return VOUT to its steady-state value. The results are most easily interpretedwhen the device operates in PWM mode.

    During this recovery time, VOUT can be monitored for settling time, overshoot or ringing that helps judge theconverter’s stability. Without any ringing, the loop has usually more than 45° of phase margin. Because thedamping factor of the circuitry is directly related to several resistive parameters (e.g., MOSFET rDS(on)) that aretemperature dependant, the loop stability analysis has to be done over the input voltage range, load currentrange, and temperature range.

    LAYOUT CONSIDERATIONS

    For all switching power supplies, the layout is an important step in the design, especially at high peak currentsand high switching frequencies. If the layout is not carefully done, the regulator could show stability problems aswell as EMI problems. Therefore, use wide and short traces for the main current path and for the power groundtracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC.Use a common ground node for power ground and a different one for control ground to minimize the effects ofground noise. Connect these ground nodes at any place close to the ground pins of the IC.

    Figure 37. Suggested Layout (Top)

    22 Copyright © 2011–2012, Texas Instruments Incorporated

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • TPS61253, TPS61254, TPS61256TPS61258, TPS61259

    www.ti.com.cn ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012

    THERMAL INFORMATION

    Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requiresspecial attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, addedheat sinks and convection surfaces, and the presence of other heat-generating components affect the power-dissipation limits of a given component.

    Three basic approaches for enhancing thermal performance are listed below:• Improving the power dissipation capability of the PCB design• Improving the thermal coupling of the component to the PCB• Introducing airflow in the system

    As power demand in portable designs is more and more important, designers must figure the best trade-offbetween efficiency, power dissipation and solution size. Due to integration and miniaturization, junctiontemperature can increase significantly which could lead to bad application behaviors (i.e. premature thermalshutdown or worst case reduce device reliability).

    Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications wherehigh maximum power dissipation exists (e.g. TPS61253 or TPS61259 based solutions), special care must bepaid to thermal dissipation issues in board design. The device operating junction temperature (TJ) should be keptbelow 125°C.

    Copyright © 2011–2012, Texas Instruments Incorporated 23

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • 10 μF

    10 uF (x2)

    SW

    VIN

    EN

    VOUT

    BP

    GND

    L

    1 μH

    VIN3.3 V .. 4.35 V

    5 V, up to 1500mATPS61253

    Audio Input L

    Audio Input L

    EN APA

    CLASS-D APA

    EN DC/DC

    EN APA

    CLASS-D APA

    HIGH-POWER CLASS-D AUDIO AMPLIFIER

    Audio Input R

    Audio Input R

    4.7 μF

    10 uF

    SW

    VIN

    EN

    VOUT

    BP

    GND

    L

    1 μHVIN3.3 V .. 4.8 V

    5.0 V, up to 750mATPS61256

    Audio Input

    Audio Input

    EN

    Class-D APA

    EN DC/DC EN APA

    4.7 μF

    10 uF

    SW

    VIN

    EN

    VOUT

    BP

    GND

    L

    1 μH

    VIN2.65 V .. 4.35 V

    4.5 V / VINTPS61254

    Audio Input

    Audio Input

    EN IHF

    CLASS-D APA

    EN DC/DC

    EN HP

    EN HP

    CLASS-AB APA

    AUDIO AMPLIFIER (HANDS-FREE, HEADPHONE)

    Audio Input

    Audio Input

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012 www.ti.com.cn

    TYPICAL APPLICATION

    Figure 38. Combined Audio Amplifier Power Supply

    Figure 39. "Boosted" Audio Power Supply

    Figure 40. "Boosted" Stereo Audio Power Supply

    24 Copyright © 2011–2012, Texas Instruments Incorporated

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • 4.7 μF

    10 uF

    L

    VIN

    EN

    VOUT

    BP

    GND

    L

    1 μHVIN3.2 V .. 5.25 V

    TPS61259

    IN

    OC1

    EN1

    OC2

    OUT1

    EN2GND

    TPS2052B

    Data

    5V, 500mAUSB Port #1

    OUT2

    5V USB Power

    5V USB Power

    Data

    5V, 500mAUSB Port #2

    Requirement for USB host applications.Downstream facing ports should be bypassed with 120µF min. per hub.

    (1)

    VIO

    100nF

    100nF 150µF(1)(2)

    100nF 150µF(1)(2)

    IN

    OC

    ON

    OUT

    GND

    TPS22945

    1 μF

    VIO

    Data

    5V, 100mAHDMI Port

    100nF

    Bypass capacitor should be tantalum type (>10V rated voltage).(2)

    5V HDMI Power

    Enable DC/DC

    Enable USB, HDMI

    ≥ 1000µs ≥ 0µs

    Enable DC/DC

    Enable USB1

    Enable USB2

    Enable HDMI

    VOTG_IN

    EN

    DET

    FLT

    VBUS

    ADJGND

    TPD4S214

    Data100nF

    10 μF

    10 µF (x2)

    SW

    VIN

    EN

    VOUT

    BP

    GND

    L

    1 μH

    VIN3.3 V .. 4.35 V

    5 V, up to 1500mATPS61253

    EN DC/DCEN APA

    CLASS-D APA

    HIGH-POWER CLASS-D AUDIO AMPLIFIER

    Audio Input R

    Audio Input R

    D+

    ID

    D-

    4.7µF

    VIO

    4.7µF

    EN APA

    CLASS-D APA

    Audio Input L

    Audio Input L

    4.7µF

    USB PHY

    5V, 500mAUSB-OTG Port

    VUSB

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259

    www.ti.com.cn ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012

    Figure 41. Single Cell Li-Ion Power Solution for Tablet PCs featuring"Boosted" Audio Power Supply and USB-OTG I/F

    Figure 42. Single Cell Li-Ion Power Solution for Tablet PCs featuring x2 USB Host Ports, HDMI I/F

    Copyright © 2011–2012, Texas Instruments Incorporated 25

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • A1

    B1

    C1

    A2

    B2D

    E

    C2

    A3

    B3

    C3

    YMS

    CC

    LLLL

    A1

    TPS61253, TPS61254, TPS61256TPS61258, TPS61259ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012 www.ti.com.cn

    PACKAGE SUMMARY

    CHIP SCALE PACKAGECHIP SCALE PACKAGE(BOTTOM VIEW)

    (TOP VIEW)

    Code:

    • YM - 2 digit date code

    • S - assembly site code

    • CC - chip code (see ordering table)

    • LLLL - lot trace code

    PACKAGE DIMENSIONS

    The dimensions for the YFF-9 package are shown in Table 5. See the package drawing at the end of this datasheet.

    Table 5. YFF-9 Package Dimensions

    Packaged Devices D E

    TPS6125xYFF 1.206 ±0.03 mm 1.306 ±0.03 mm

    26 Copyright © 2011–2012, Texas Instruments Incorporated

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • TPS61253, TPS61254, TPS61256TPS61258, TPS61259

    www.ti.com.cn ZHCS479C –SEPTEMBER 2011–REVISED AUGUST 2012

    REVISION HISTORY

    Note: Page numbers of current revision may differ from previous versions.

    Changes from Original (September 2011) to Revision A Page

    • Changed device TPS61256 to production status ................................................................................................................. 2

    Changes from Revision A (October 2011) to Revision B Page

    • Added TPS61253 and TPS61258 to data sheet header as production devices .................................................................. 1

    • Changed devices TPS61253 and TPS61258 to production status ...................................................................................... 2

    • Changed graphic entity for Figure 5 ..................................................................................................................................... 9

    • Changed graphic entity for Figure 12 ................................................................................................................................. 10

    • Changed graphic entity for Figure 15 ................................................................................................................................. 11

    • Changed graphic entity for Figure 25 ................................................................................................................................. 14

    Changes from Revision B (May 2012) to Revision C Page

    • Added TPS61259 to data sheet header as production device ............................................................................................. 1

    • Changed device TPS61259 to production status ................................................................................................................. 2

    Copyright © 2011–2012, Texas Instruments Incorporated 27

    http://www.ti.com.cn/product/cn/tps61253?qgpn=tps61253http://www.ti.com.cn/product/cn/tps61254?qgpn=tps61254http://www.ti.com.cn/product/cn/tps61256?qgpn=tps61256http://www.ti.com.cn/product/cn/tps61258?qgpn=tps61258http://www.ti.com.cn/product/cn/tps61259?qgpn=tps61259http://www.ti.com.cn

  • PACKAGE OPTION ADDENDUM

    www.ti.com 11-Apr-2013

    Addendum-Page 1

    PACKAGING INFORMATION

    Orderable Device Status(1)

    Package Type PackageDrawing

    Pins PackageQty

    Eco Plan(2)

    Lead/Ball Finish MSL Peak Temp(3)

    Op Temp (°C) Top-Side Markings(4)

    Samples

    TPS61253YFFR ACTIVE DSBGA YFF 9 3000 Green (RoHS& no Sb/Br)

    SNAGCU Level-1-260C-UNLIM -40 to 85 SBF

    TPS61253YFFT ACTIVE DSBGA YFF 9 250 Green (RoHS& no Sb/Br)

    SNAGCU Level-1-260C-UNLIM -40 to 85 SBF

    TPS61254YFFR ACTIVE DSBGA YFF 9 3000 Green (RoHS& no Sb/Br)

    SNAGCU Level-1-260C-UNLIM -40 to 85 QWR

    TPS61254YFFT ACTIVE DSBGA YFF 9 250 Green (RoHS& no Sb/Br)

    SNAGCU Level-1-260C-UNLIM -40 to 85 QWR

    TPS61256YFFR ACTIVE DSBGA YFF 9 3000 Green (RoHS& no Sb/Br)

    SNAGCU Level-1-260C-UNLIM -40 to 85 RAV

    TPS61256YFFT ACTIVE DSBGA YFF 9 250 Green (RoHS& no Sb/Br)

    SNAGCU Level-1-260C-UNLIM -40 to 85 RAV

    TPS61258YFFR ACTIVE DSBGA YFF 9 3000 Green (RoHS& no Sb/Br)

    SNAGCU Level-1-260C-UNLIM -40 to 85 SAZ

    TPS61258YFFT ACTIVE DSBGA YFF 9 250 Green (RoHS& no Sb/Br)

    SNAGCU Level-1-260C-UNLIM -40 to 85 SAZ

    TPS61259YFFR ACTIVE DSBGA YFF 9 3000 Green (RoHS& no Sb/Br)

    SNAGCU Level-1-260C-UNLIM -40 to 85 SAY

    TPS61259YFFT ACTIVE DSBGA YFF 9 250 Green (RoHS& no Sb/Br)

    SNAGCU Level-1-260C-UNLIM -40 to 85 SAY

    (1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.

    (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availabilityinformation and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement thatlead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used betweenthe die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weightin homogeneous material)

    http://www.ti.com/product/TPS61253?CMP=conv-poasamples#samplebuyhttp://www.ti.com/product/TPS61253?CMP=conv-poasamples#samplebuyhttp://www.ti.com/product/TPS61254?CMP=conv-poasamples#samplebuyhttp://www.ti.com/product/TPS61254?CMP=conv-poasamples#samplebuyhttp://www.ti.com/product/TPS61256?CMP=conv-poasamples#samplebuyhttp://www.ti.com/product/TPS61256?CMP=conv-poasamples#samplebuyhttp://www.ti.com/product/TPS61258?CMP=conv-poasamples#samplebuyhttp://www.ti.com/product/TPS61258?CMP=conv-poasamples#samplebuyhttp://www.ti.com/product/TPS61259?CMP=conv-poasamples#samplebuyhttp://www.ti.com/product/TPS61259?CMP=conv-poasamples#samplebuyhttp://www.ti.com/productcontent

  • PACKAGE OPTION ADDENDUM

    www.ti.com 11-Apr-2013

    Addendum-Page 2

    (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

    (4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is acontinuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

    Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on informationprovided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken andcontinues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

    In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

  • TAPE AND REEL INFORMATION

    *All dimensions are nominal

    Device PackageType

    PackageDrawing

    Pins SPQ ReelDiameter

    (mm)

    ReelWidth

    W1 (mm)

    A0(mm)

    B0(mm)

    K0(mm)

    P1(mm)

    W(mm)

    Pin1Quadrant

    TPS61253YFFR DSBGA YFF 9 3000 180.0 8.4 1.41 1.31 0.69 2.0 8.0 Q1

    TPS61253YFFT DSBGA YFF 9 250 180.0 8.4 1.41 1.31 0.69 2.0 8.0 Q1

    TPS61254YFFR DSBGA YFF 9 3000 180.0 8.4 1.41 1.31 0.69 2.0 8.0 Q1

    TPS61254YFFT DSBGA YFF 9 250 180.0 8.4 1.41 1.31 0.69 2.0 8.0 Q1

    TPS61256YFFR DSBGA YFF 9 3000 180.0 8.4 1.41 1.31 0.69 2.0 8.0 Q1

    TPS61256YFFT DSBGA YFF 9 250 180.0 8.4 1.41 1.31 0.69 2.0 8.0 Q1

    TPS61258YFFR DSBGA YFF 9 3000 180.0 8.4 1.41 1.31 0.69 2.0 8.0 Q1

    TPS61258YFFT DSBGA YFF 9 250 180.0 8.4 1.41 1.31 0.69 2.0 8.0 Q1

    TPS61259YFFT DSBGA YFF 9 250 180.0 8.4 1.41 1.31 0.69 2.0 8.0 Q1

    PACKAGE MATERIALS INFORMATION

    www.ti.com 25-Jun-2017

    Pack Materials-Page 1

  • *All dimensions are nominal

    Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

    TPS61253YFFR DSBGA YFF 9 3000 182.0 182.0 20.0

    TPS61253YFFT DSBGA YFF 9 250 182.0 182.0 20.0

    TPS61254YFFR DSBGA YFF 9 3000 182.0 182.0 20.0

    TPS61254YFFT DSBGA YFF 9 250 182.0 182.0 20.0

    TPS61256YFFR DSBGA YFF 9 3000 182.0 182.0 20.0

    TPS61256YFFT DSBGA YFF 9 250 182.0 182.0 20.0

    TPS61258YFFR DSBGA YFF 9 3000 182.0 182.0 20.0

    TPS61258YFFT DSBGA YFF 9 250 182.0 182.0 20.0

    TPS61259YFFT DSBGA YFF 9 250 182.0 182.0 20.0

    PACKAGE MATERIALS INFORMATION

    www.ti.com 25-Jun-2017

    Pack Materials-Page 2

  • www.ti.com

    PACKAGE OUTLINE

    C0.625 MAX

    0.300.12

    0.8TYP

    0.8 TYP

    0.4 TYP

    0.4 TYP

    9X 0.30.2

    B E A

    D

    DSBGA - 0.625 mm max heightYFF0009DIE SIZE BALL GRID ARRAY

    4219552/A 05/2016

    NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.

    BALL A1CORNER

    SEATING PLANE

    BALL TYP 0.05 C

    B

    1 2 3

    0.015 C A B

    SYMM

    SYMM

    A

    C

    SCALE 10.000

    D: Max =

    E: Max =

    1.336 mm, Min =

    1.236 mm, Min =

    1.276 mm

    1.176 mm

  • www.ti.com

    EXAMPLE BOARD LAYOUT

    9X ( 0.23)

    (0.4) TYP

    (0.4) TYP

    ( 0.23)METAL

    0.05 MAX

    SOLDER MASKOPENING

    METAL UNDERSOLDER MASK

    ( 0.23)SOLDER MASKOPENING

    0.05 MIN

    DSBGA - 0.625 mm max heightYFF0009DIE SIZE BALL GRID ARRAY

    4219552/A 05/2016

    NOTES: (continued) 3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

    SYMM

    SYMM

    LAND PATTERN EXAMPLESCALE:30X

    C

    1 2 3A

    B

    NON-SOLDER MASKDEFINED

    (PREFERRED)

    SOLDER MASK DETAILSNOT TO SCALE

    SOLDER MASKDEFINED

  • www.ti.com

    EXAMPLE STENCIL DESIGN

    (0.4) TYP

    (0.4) TYP

    9X ( 0.25) (R0.05) TYP

    METALTYP

    DSBGA - 0.625 mm max heightYFF0009DIE SIZE BALL GRID ARRAY

    4219552/A 05/2016

    NOTES: (continued) 4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

    SYMM

    SYMM

    C

    1 2 3A

    B

    SOLDER PASTE EXAMPLEBASED ON 0.1 mm THICK STENCIL

    SCALE:30X

  • IMPORTANT NOTICE重重要要声声明明

    德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改,并不再按最新发布的 JESD48 提供任何产品和服务。买方在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。

    TI 公布的半导体产品销售条款 (http://www.ti.com/sc/docs/stdterms.htm) 适用于 TI 已认证和批准上市的已封装集成电路产品的销售。另有其他条款可能适用于其他类型 TI 产品及服务的使用或销售。复制 TI 数据表上 TI 信息的重要部分时,不得变更该等信息,且必须随附所有相关保证、条件、限制和通知,否则不得复制。TI 对该等复制文件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去相关 TI 产品或服务的明示或暗示保证,且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。买方和在系统中整合 TI 产品的其他开发人员(总称“设计人员”)理解并同意,设计人员在设计应用时应自行实施独立的分析、评价和判断,且应全权 负责并确保 应用的安全性, 及设计人员的 应用 (包括应用中使用的所有 TI 产品)应符合所有适用的法律法规及其他相关要求。设计人员就自己设计的 应用声明,其具备制订和实施下列保障措施所需的一切必要专业知识,能够 (1) 预见故障的危险后果,(2) 监视故障及其后果,以及 (3) 降低可能导致危险的故障几率并采取适当措施。设计人员同意,在使用或分发包含 TI 产品的任何 应用前, 将彻底测试该等 应用和 该等应用中所用 TI 产品的 功能。TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称“TI 资源”),旨在帮助设计人员开发整合了 TI 产品的 应用, 如果设计人员(个人,或如果是代表公司,则为设计人员的公司)以任何方式下载、访问或使用任何特定的 TI 资源,即表示其同意仅为该等目标,按照本通知的条款使用任何特定 TI 资源。TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外,TI 未进行任何其他测试。设计人员只有在开发包含该等 TI 资源所列 TI 产品的 应用时, 才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或其他法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权的许可。

    TI 资源系“按原样”提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、无屡发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任何申索,包括但不限于因组合产品所致或与之有关的申索,也不为或对设计人员进行辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔偿,TI 概不负责。除 TI 已明确指出特定产品已达到特定行业标准(例如 ISO/TS 16949 和 ISO 26262)的要求外,TI 不对未达到任何该等行业标准要求而承担任何责任。

    如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准,则该等产品旨在帮助客户设计和创作自己的 符合 相关功能安全标准和要求的应用。在应用内使用产品的行为本身不会 配有 任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和 标准。设计人员不可将任何 TI 产品用于关乎性命的医疗设备,除非已由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗设备是指出现故障会导致严重身体伤害或死亡的医疗设备(例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入设备)。此类设备包括但不限于,美国食品药品监督管理局认定为 III 类设备的设备,以及在美国以外的其他国家或地区认定为同等类别设备的所有医疗设备。

    TI 可能明确指定某些产品具备某些特定资格(例如 Q100、军用级或增强型产品)。设计人员同意,其具备一切必要专业知识,可以为自己的应用选择适合的 产品, 并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。

    设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。

    邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122Copyright © 2017 德州仪器半导体技术(上海)有限公司

    http://www.ti.com/sc/docs/stdterms.htm

    特性应用范围说明ABSOLUTE MAXIMUM RATINGSRECOMMENDED OPERATING CONDITIONSTHERMAL INFORMATIONELECTRICAL CHARACTERISTICSPIN ASSIGNMENTS

    PARAMETER MEASUREMENT INFORMATIONTYPICAL CHARACTERISTICSDETAILED DESCRIPTIONOPERATIONPOWER-SAVE MODESTANDBY MODECURRENT LIMIT OPERATIONENABLELOAD DISCONNECT AND REVERSE CURRENT PROTECTIONSOFTSTARTUNDERVOLTAGE LOCKOUTTHERMAL REGULATIONTHERMAL SHUTDOWN

    APPLICATION INFORMATIONINDUCTOR SELECTIONOUTPUT CAPACITORINPUT CAPACITORCHECKING LOOP STABILITYLAYOUT CONSIDERATIONSTHERMAL INFORMATION

    TYPICAL APPLICATIONPACKAGE SUMMARYPACKAGE DIMENSIONS

    Revision History