ece305#homework#solutions:#week#15# - nanohubweek15hwsolutions_s15.pdf ·...

8
ECE 305 Spring 2015 ECE305 Spring 2015 1 ECE 305 Homework SOLUTIONS: Week 15 Mark Lundstrom Purdue University 1) Use the EbersMoll model to determine I C for an NPN BJT biased at I B = 100 nA and V CE = 0.10 V . Assume that the EbersMoll model parameters are I F 0 = 1.25 × 10 16 A , I R0 = 2.50 × 10 16 A , and α F = 0.996 . 1a) Determine the collector current. Solution: The EbersMoll equations are: I C V BE , V BC ( ) = α F I F 0 e qV BE k B T 1 ( ) I R0 e qV BC k B T 1 ( ) (*) I E V BE , V BC ( ) = I F 0 e qV BE k B T 1 ( ) α R I R0 e qV BC k B T 1 ( ) (**) Use KVL to write: V CE = V BE + V CB V CE = V BE V BC We are given V CE , but we need V BE and V BC (the voltages across the two PN junctions). If we knew V BE , then we could determine V BC from KVL. Use the given base current and V CE to determine V BE . KCL: I B = I E I C I B = 1 α F ( ) I F 0 e qV BE k B T 1 ( ) + 1 α R ( ) I R0 e qV BC k B T 1 ( ) = 100 × 10 9 V BC = V BE V CE I B = 1 α F ( ) I F 0 e qV BE k B T 1 ( ) + 1 α R ( ) I R0 e qV BE V CE ( ) k B T 1 ( ) = 100 × 10 9 I B = 1 α F ( ) I F 0 e qV BE k B T 1 α F ( ) I F 0 + 1 α R ( ) I R0 e qV BE V CE ( ) k B T 1 α R ( ) I R0 I B = 1 α F ( ) I F 0 + 1 α R ( ) I R0 e qV CE k B T { } e qV BE k B T 1 α F ( ) I F 0 + 1 α R ( ) I R0 { } e qV BE k B T = I B + 1 α F ( ) I F 0 + 1 α R ( ) I R0 { } 1 α F ( ) I F 0 + 1 α R ( ) I R0 e qV CE k B T (***) From the given base current and saturation currents, it is clear that 1 α F ( ) I F 0 + 1 α R ( ) I R0 { } << I B so the numerator in (***) can be simplified.

Upload: others

Post on 30-Jul-2020

92 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: ECE305#Homework#SOLUTIONS:#Week#15# - nanoHUBWeek15HWSolutions_S15.pdf · HW#Week15#Solutions(continued)# # The#result#is#that#(***)#becomes#(to#a#good#approximation)# eqV BEk BT=

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  1  

ECE  305  Homework  SOLUTIONS:  Week  15    

Mark  Lundstrom  Purdue  University  

 1) Use  the  Ebers-­‐Moll  model  to  determine   IC  for  an  NPN  BJT  biased  at   IB = 100 nA  and  

VCE = 0.10 V .    Assume  that  the  Ebers-­‐Moll  model  parameters  are IF0 = 1.25 ×10−16A ,  

IR0 = 2.50 ×10−16A ,  and  αF = 0.996 .  

 1a)  Determine  the  collector  current.  

 Solution:  The  Ebers-­‐Moll  equations  are:    IC VBE ,VBC( ) =αF IF0 e

qVBE kBT −1( )− IR0 eqVBC kBT −1( )   (*)  

IE VBE ,VBC( ) = IF0 eqVBE kBT −1( )−α RIR0 eqVBC kBT −1( )   (**)  

 Use  KVL  to  write:  

VCE =VBE +VCB     VCE =VBE −VBC  We  are  given   VCE ,  but  we  need   VBE  and   VBC  (the  voltages  across  the  two  PN  junctions).    If  we  knew   VBE ,  then  we  could  determine   VBC  from  KVL.    Use  the  given  base  current  and   VCE to  determine   VBE .      KCL:     IB = IE − IC  IB = 1−αF( ) IF0 eqVBE kBT −1( ) + 1−α R( ) IR0 eqVBC kBT −1( ) = 100 ×10−9  

VBC =VBE −VCE  

IB = 1−αF( ) IF0 eqVBE kBT −1( ) + 1−α R( ) IR0 eq VBE−VCE( ) kBT −1( ) = 100 ×10−9  

IB = 1−αF( ) IF0eqVBE kBT − 1−αF( ) IF0 + 1−α R( ) IR0eq VBE−VCE( ) kBT − 1−α R( ) IR0  IB = 1−αF( ) IF0 + 1−α R( ) IR0e−qVCE kBT{ }eqVBE kBT − 1−αF( ) IF0 + 1−α R( ) IR0{ }    

eqVBE kBT =IB + 1−αF( ) IF0 + 1−α R( ) IR0{ }1−αF( ) IF0 + 1−α R( ) IR0e−qVCE kBT

        (***)  

 From  the  given  base  current  and  saturation  currents,  it  is  clear  that    

1−αF( ) IF0 + 1−α R( ) IR0{ } << IB    

so  the  numerator  in  (***)  can  be  simplified.  

Page 2: ECE305#Homework#SOLUTIONS:#Week#15# - nanoHUBWeek15HWSolutions_S15.pdf · HW#Week15#Solutions(continued)# # The#result#is#that#(***)#becomes#(to#a#good#approximation)# eqV BEk BT=

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  2  

HW  Week  15  Solutions  (continued)    The  result  is  that  (***)  becomes  (to  a  good  approximation)  

eqVBE kBT = IB1−αF( ) IF0 + IR0e−qVCE kBT −αF IF0e

−qVCE kBT  

where  we  have  used  the  “reciprocity  relation”  αF IF0 =α RIR0 .    Also,  from  the  given  VCE  e−qVCE kBT = e−0.1/0.026 = 2.14 ×10−2    Putting  in  numbers:  

eqVBE kBT = 10−7

1− 0.996( ) 1.25 ×10−16( ) + 2.50 ×10−16( ) 2.14 ×10−2( )− 0.996 1.25 ×10−16( ) 2.14 ×10−2( )  

eqVBE kBT = 3.11×1010    

VBE =kBTqln 3.11×1010( ) = 0.026 × 24.2 = 0.628 V  

Now  we  can  go  back  to  (*)  and  compute  the  collector  current:  IC =αF IF0 e

qVBE kBT −1( )− IR0 eqVBC kBT −1( )   VBC =VBE −VCE = 0.628− 0.10 = 0.528

 Both  junctions  are  forward  biased,  this  transistor  is  operating  in  the  saturation  region.  

IC =αF IF0 e0.628 0.026 −1( )− IR0 e0.528 0.026 −1( )  

IC = 0.996 1.25 ×10−16( ) 3.09 ×1010( )− 2.50 ×10−16( ) 6.60 ×108( )  IC = 3.85 ×10−6 −1.65 ×10−7    IC = 3.68 ×10−6A  

 1b)   Compare  the  collector  current  to  base  current  ratio  computed  in  1a)  to   βF    

Solution:  

In  the  active  region,   ICIB

= βF  

βF =αF

1−αF

= 0.9961− 0.996

= 249  in  problem  1a)  ICIB

= 3.68 ×10−6

100 ×10−9 = 36.8  

Page 3: ECE305#Homework#SOLUTIONS:#Week#15# - nanoHUBWeek15HWSolutions_S15.pdf · HW#Week15#Solutions(continued)# # The#result#is#that#(***)#becomes#(to#a#good#approximation)# eqV BEk BT=

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  3  

HW  Week  15  Solutions  (continued)    ICIB

= 37 1a)

ICIB

= 249 active region  

 The  moral  of  this  story  is  that   IC = βF IB  should  only  be  used  in  the  active  region.  

 2) What  is   βR    for  a  bipolar  transistor  described  by  an  Ebers-­‐Moll  model  with

IF0 = 1.25 ×10−16A ,   IR0 = 2.50 ×10

−16A  and    αF = 0.996 ?    

Solution:  

βR =

α R

1−α R

 but  we  are  not  given   α R  

According  to  the  reciprocity  relation:    αF IF0 =αRIR0 ,  so    

α R =αFIF0IR0

= 0.996 1.25 ×10−16

2.50 ×10−16 = 0.498  

 

βR = 0.498

1− 0.498= 0.992  

 

βR = 0.992  

 Note:    for  this  transistor,  

βF =α F 1−α F( ) = 249 .      3) In  general,  the  common  emitter  IV  characteristics  of  a  BJT  do  not  go  through  the  

origin.    That  is,   IC VBE ,VCE = 0( ) ≠ 0 .  Instead,  the  collector  current  goes  to  zero  at  some  

positive  value  of   VCE  known  as  the  collector-­‐emitter  offset  voltage,   VOS .    Use  the  Ebers-­‐Moll  equations  to  answer  the  following  questions  for  an  NPN  transistor.    3a)   Derive  an  expression  for   VOS .    Hint:    Since  the  transistor  is  in  saturation,  we  can  

assume   eqVBE kBT >>1and   eqVBC kBT >>1 .          

Page 4: ECE305#Homework#SOLUTIONS:#Week#15# - nanoHUBWeek15HWSolutions_S15.pdf · HW#Week15#Solutions(continued)# # The#result#is#that#(***)#becomes#(to#a#good#approximation)# eqV BEk BT=

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  4  

HW  Week  15  Solutions  (continued)    

Solution:  Begin  with:   IC VBE ,VBC( ) =αF IF0 e

qVBE kBT −1( )− IR0 eqVBC kBT −1( ) = 0  Assume  both  junctions  are  forward  biased  significantly:  0 =αF IF0e

qVBE kBT − IR0eqVBC kBT

   Use  KVL:    VCE =VOS =VBE +VCB =VBE −VBC   VBC =VBE −VOS    αF IF0e

qVBE kBT = IR0eq VBE−VOS( ) kBT

 αF IF0 = IR0e

−qVOS kBT  

 Use  reciprocity:    αF IF0 =α RIR0    α RIR0 = IR0e

−qVOS kBT

 eqVOS kBT = 1

α R    

VOS =kBTqln 1

α R

⎛⎝⎜

⎞⎠⎟  

 3b)   Give  a  physical  explanation  for  the  answer  of  part  3a).        

Solution:  Both  junctions  are  forward  biased.    Assume  that  the  base  transport  factor,   αT ,  is  one  (which  makes  the  explanation  simpler,  but  you  are  invited  to  think  about  the  case  where   αT <1).      In  the  limit,   α R →1 ,  our  result  says  that   VOS = 0 .    Why?    In  this  case,  both  junctions  are  forward  biased  the  same.    Both  inject  the  same  electron  currents  into  the  base,  and  they  cancel  out.    Because  the  emitter-­‐base  junction  is  forward  biased,  holes  are  injected  into  the  emitter  and  contribute  to  the  emitter  current.    If   α R = 1,  and   αT = 1 ,  then  the  emitter  injection  efficiency  of  the  base  collector  junction  is  one,  so  no  holes  are  injected  from  the  base  into  the  collector.    Since  there  is  no  electron  current  and  no  hole  current  at  the  BC  junction,   IC = 0 .    If   α R <1,  then  it  means  that  at   VCE = 0 ,  holes  are  injected  from  the  base  to  the  collector,  and   IC < 0 .    To  make   IC = 0 ,  we  need  a  positive  voltage  on  the  collector  to  reverse  bias  it  and  shut  off  the  hole  injection.    This  positive  voltage  is  the  collector-­‐emitter  offset  voltage.  

     

Page 5: ECE305#Homework#SOLUTIONS:#Week#15# - nanoHUBWeek15HWSolutions_S15.pdf · HW#Week15#Solutions(continued)# # The#result#is#that#(***)#becomes#(to#a#good#approximation)# eqV BEk BT=

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  5  

HW  Week  15  Solutions  (continued)    3c)   What  is   VOS    for  a  bipolar  transistor  described  by  an  Ebers-­‐Moll  model  with

IF0 = 1.25 ×10−16A ,   IR0 = 2.50 ×10

−16A  and  αF = 0.996 .    Solution:  

VOS =kBTqln 1

α R

⎛⎝⎜

⎞⎠⎟  

α R =αFIF0IR0

= 0.996 1.25 ×10−16

2.50 ×10−16 = 0.498  

VOS = 0.026 ln1

0.498⎛⎝⎜

⎞⎠⎟ = 0.018 V  

VOS = 18 mV      

4) Assume  that  the  measurements  listed  below  are  performed  on  a  NPN  BJT.    Determine  which  two  Ebers-­‐Moll  parameters  can  be  found,  and  determine  them.    

VBE  (Volts)   VBC  (Volts)   IB  (µA)   IC  (mA)          0.75   -­‐3.5   2.9   0.55          

 Solution:  The  device  is  clearly  biased  in  the  forward  active  region,  so    IC VBE ,VBC( ) =αF IF0 e

qVBE kBT −1( )− IR0 eqVBC kBT −1( )    simplifies  to      IC =αF IF0e

qVBE kBT  

 (in  the  active  region,  we  can  ignore   IR0 ,  the  reverse  leakage  current  of  the  BC  junction).  So  we  can  determine  two  parameters:  αF  and   IF0 .  

βF =

IC

IB

= 5502.9

= 190  

α F =

βF

βF +1= 190

191= 0.9948  

   

Page 6: ECE305#Homework#SOLUTIONS:#Week#15# - nanoHUBWeek15HWSolutions_S15.pdf · HW#Week15#Solutions(continued)# # The#result#is#that#(***)#becomes#(to#a#good#approximation)# eqV BEk BT=

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  6  

HW  Week  15  Solutions  (continued)    

IC =αF IF0eqVBE kBT

 or    

IF0 =ICαF

e−qVBE kBT = 0.55 ×10−3

0.9948× e−0.75/0.026 = 1.64 ×10−16 A  

so  the  final  answers  are:    

α F = 0.9948, IF 0 = 1.64×10−16 A  

   

5)     The  transistor  show  below  has  a  voltage,  VC = 5 V ,  applied  to  the  collector,  the  emitter  is  grounded,  and  the  base  terminal  is  open-­‐circuited.    Use  the  Ebers-­‐Moll  model  to  answer  the  following  questions.    Assume  that   IF0 = 1.25 ×10

−16A ,  IR0 = 2.50 ×10

−16A  and  αF = 0.996  and  αR = 0.498 .    

   5a)    What  is  the  base  voltage?    

Solution:  The  Ebers-­‐Moll  equations  are:    IC VBE ,VBC( ) =αF IF0 e

qVBE kBT −1( )− IR0 eqVBC kBT −1( )   (*)  IE VBE ,VBC( ) = IF0 eqVBE kBT −1( )−α RIR0 e

qVBC kBT −1( )   (**)    Use  KCL:     IB = IE − IC  IB = 1−αF( ) IF0 eqVBE kBT −1( ) + 1−αR( ) IR0 eqVBC kBT −1( ) = 0  1−αF( ) IF0 eqVBE kBT −1( ) = − 1−αR( ) IR0 eqVBC kBT −1( )   (+)  

Page 7: ECE305#Homework#SOLUTIONS:#Week#15# - nanoHUBWeek15HWSolutions_S15.pdf · HW#Week15#Solutions(continued)# # The#result#is#that#(***)#becomes#(to#a#good#approximation)# eqV BEk BT=

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  7  

HW  Week  15  Solutions  (continued)    

VBE =VB −VE =VB  

VBC =VB −VC =VB − 5    Equation  (+)  becomes:  

eqVB kBT −1( ) = −1−αR( )1−αF( )

IR0IF0

⎛⎝⎜

⎞⎠⎟eqVB kBT e−q5/kBT −1( )  

 Solve  for  the  base  voltage:    

eqVB kBT 1+1−αR( )1−αF( )

IR0IF0

⎛⎝⎜

⎞⎠⎟e−q5/kBT

⎝⎜⎞

⎠⎟= 1+

1−αR( )1−αF( )

IR0IF0

⎛⎝⎜

⎞⎠⎟  

 

eqVB kBT =1+

1−αR( )1−αF( )

IR0IF0

⎛⎝⎜

⎞⎠⎟

1+1−αR( )1−αF( )

IR0IF0

⎛⎝⎜

⎞⎠⎟e−q5/kBT

⎝⎜⎞

⎠⎟  

 The  quantity,   e

−q5/kBT ,  is  really,  really  small.    e−q5/kBT = e−5/0.026 = 3.30 ×10−84 ,  so  the  denominator  simplifies    

eqVB kBT =1+

1−αR( )1−αF( )

IR0IF0

⎛⎝⎜

⎞⎠⎟

1    

Putting  in  numbers:    

eqVB kBT = 1+ 1− 0.498( )1− 0.996( )

2.501.25

⎛⎝⎜

⎞⎠⎟ = 252  

VB = 0.026ln 252( ) = 0.144 V    

VB = 0.144 V  

 This  makes  sense.    Most  of  the  voltage  drops  across  the  reverse-­‐biased  (high  resistance  junction)  –  not  the  forward-­‐biased  (low  resistance  junction).  

   

Page 8: ECE305#Homework#SOLUTIONS:#Week#15# - nanoHUBWeek15HWSolutions_S15.pdf · HW#Week15#Solutions(continued)# # The#result#is#that#(***)#becomes#(to#a#good#approximation)# eqV BEk BT=

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  8  

HW  Week  15  Solutions  (continued)    5b)    What  is  the  collector  current?    

Solution:    IC VBE ,VBC( ) =αF IF0 e

qVBE kBT −1( )− IR0 eqVBC kBT −1( )  IC 0.144,0.144 − 5( ) =αF IF0 e

0.144/0.026 −1( )− IR0 eq 0.144−5( ) kBT −1( )    IC 0.144,−4.86( ) =αF IF0 e

0.144/0.026 −1( )− IR0 e−q 4.86( ) kBT −1( )  IC 0.144,−4.86( ) =αF IF0 e

0.144/0.026 −1( ) + IR0    Now  put  in  the  other  numbers:    IC = 0.996 1.25 ×10−16( ) 254 −1( ) + 2.50 ×10−16 = 3.18 ×10−14

 IC = 31.8 fA

   Note  that  this  is  a  very  small  current,  but  larger  than  the  saturation  currents  of  the  two  junctions.