ece 802-604: nanoelectronics

50
ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University [email protected]

Upload: pink

Post on 05-Jan-2016

34 views

Category:

Documents


0 download

DESCRIPTION

ECE 802-604: Nanoelectronics. Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University [email protected]. Lecture 04, 10 Sep 13. In Chapter 01 in Datta: Two dimensional electron gas (2-DEG) DEG goes down, mobility goes up Define mobility - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ECE 802-604: Nanoelectronics

ECE 802-604:Nanoelectronics

Prof. Virginia AyresElectrical & Computer EngineeringMichigan State [email protected]

Page 2: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Lecture 04, 10 Sep 13

In Chapter 01 in Datta:

Two dimensional electron gas (2-DEG)DEG goes down, mobility goes up

Define mobility Proportional to momentum relaxation time m

Count carriers nS available for current – Pr. 1.3 (1-DEG)How nS influences scattering in unexpected ways – Pr 1.1 (2-

DEG)

One dimensional electron gas (1-DEG)Special Schrödinger eqn (Con E) that accommodates:

Electronic confinement: band bending due to space chargeUseful external B-field

Experimental measure for mobility

Page 3: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Lecture 04, 10 Sep 13

In Chapter 01 in Datta:

Two dimensional electron gas (2-DEG)DEG goes down, mobility goes up

Define mobility Proportional to momentum relaxation time m

Count carriers nS available for current – Pr. 1.3 (1-DEG)How nS influences scattering in unexpected ways – Pr 1.1 (2-

DEG)

One dimensional electron gas (1-DEG)Special Schrödinger eqn (Con E) that accommodates:

Electronic confinement: band bending due to space chargeUseful external B-field

Experimental measure for mobility

Page 4: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

z

y

x

-z

y

Wire up HEMT to use the triangular quantum well region in GaAs

Correct for e-’s with Drain = +Note: current I is IDS

n-E y

= (-|e |)(-|E y|)

Page 5: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Why do this: increase in Mobility in using 2-DEG region in GaAs instead of 3-DEG bulk GaAs

931C: 3D Scattering

T = hot:Phonon latticescattering

T = cold:Impurity = ND+, NA- scattering

Sweet spot at 300K

mo

bil

ity

Page 6: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Scattering involves energy and momentum conserving interactions. Putting quantum restrictions on these interactions means that fewer can occur.

Increase in Mobility is based on decrease of scattering, or said another way, increase e-s not scattered.

Page 7: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Streetman t:

Datta m t: The statement below is true for a group of e-s not a single scattering event. m is an average or mean time

Page 8: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Lecture 04, 10 Sep 13

In Chapter 01 in Datta:

Two dimensional electron gas (2-DEG)DEG goes down, mobility goes up

Define mobility Proportional to momentum relaxation time m

Count carriers nS available for current – Pr. 1.3 (1-DEG)How nS influences scattering in unexpected ways – Pr 1.1 (2-

DEG)

One dimensional electron gas (1-DEG)Special Schrödinger eqn (Con E) that accommodates:

Electronic confinement: band bending due to space chargeUseful external B-field

Experimental measure for mobility

Page 9: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG: Major improvement in performance at low temperatures

931C: 3D Scattering

T = hot:Phonon latticescattering

T = cold:Impurity = ND+, NA- scattering

Sweet spot at 300K

mo

bil

ity

Page 10: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG: large increase in carrier concentration nS:

intrinisic

Page 11: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG: large increase in carrier concentration nS:

3-DEG

intrinisic

Page 12: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG: Energy:

Special Schrödinger eqn (Con E) that accommodates:Electronic confinement: band bending due to space chargeUseful external B-field

Example: ECE874, Pr. 3.5 with E-field: determine direction of motion.

Datta 1.2.1 would be correct way to continue the problem to get energy levels

Page 13: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG: Energy:

2-DEG wavefunction

Use this wave function in the special Schroedinger eq’n and it will separate into kz and kx, ky parts.

kz is a fixed quantized number(s).kx, ky are continuous numbers

Page 14: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG: Energy:

For the kx, ky part:

Page 15: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Bulk Dimensionality Systems: 3-DEG

Macroscopic World Bulk Materials

y

x

z

px2 + py

2 + pz2

2m* 2m* 2m*KE =

Silicon Ingot

Free motion in all directions

px , py , pz can take any values

B. Jacobs, PhD thesis

Page 16: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Thin Films

y

x

z

px2 + py

2 + nz2 ħ22

2m* 2m* 2m*Lz2

J.S. Moodera, Francis Bitter Magnet Lab, MITA.K. Geim and K.S. Novoselov, Nat. Mater., 2007, 6, 183

Graphene

Free motion in x and y directions

Shown: Infinite potential well in z direction

pz is constrained to be a number(s)

Thin layers

Reduced Dimensionality Systems: 2-DEG

E =

KE

B. Jacobs, PhD thesis

Page 17: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Carbon Nanotubes,

Nanowires,

Molecular Electronics

y

x

z nx

2 ħ22 + py2 + nz

2 ħ22

2m*Lx2 2m* 2m*Lz

2

Richard E. Smalley Institute, Rice University

1μm

Reduced Dimensionality Systems: 1-DEG

Free motion in y direction

Shown: Infinite potential well in x and z directions

px , pz are constrained to be a number(s)

E =

KE

B. Jacobs, PhD thesis

Page 18: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Quantum Dots

z

yx

nx2 ħ22 + ny

2 ħ22 + nz2 ħ22

2m*Lx2 2m*Ly

2 2m*Lz2

A. Kadavanich, MRSCE, University of Wisconsin

Reduced Dimensionality Systems: 0-DEG

No free motion. Enter and leave QD by tunnelling

Shown: Infinite potential well in x, y and z directions

px, py, pz are constrained to be a number(s)

E =

B. Jacobs, PhD thesis

Page 19: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor:

KE

Page 20: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor:

Page 21: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor:

You have put integral travelling waves in a large box but are ignoring the edges

Page 22: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor:

Standing waves in a small box.Edges matter.

Page 23: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor:

Page 24: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor:

S

ES is the minimum energy required for an e- to be out of a bond.

Page 25: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor:

1

Similar to:

EC = Egap

ES is the minimum energy required for an e- to be out of a bond.

Page 26: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor:

1

Page 27: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor:

1

kx

Any little patch on there would have some values of kx, ky

Page 28: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor:

1

kx

y-axis is E.

The bowl is the KE that an e- has above the minimum requirement of ES required to be out of a bond

p = hbar k and KE = p2/ 2m

Page 29: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Thin Films

y

x

z

px2 + py

2 + nz2 ħ22

2m* 2m* 2m*Lz2

J.S. Moodera, Francis Bitter Magnet Lab, MITA.K. Geim and K.S. Novoselov, Nat. Mater., 2007, 6, 183

Graphene

Free motion in x and y directions

Shown: Infinite potential well in z direction

pz is constrained to be a number(s)

Thin layers

Reduced Dimensionality Systems: 2-DEG

E =

KE: write p in terms of hbar k

Page 30: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Go back to this idea:

You have put integral travelling waves in a large box but are ignoring the edges

Page 31: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Combine with this idea:

1

kx

y-axis is E.

The bowl is the KE that an e- has above the minimum requirement of ES required to be out of a bond

p = hbar k and KE = p2/ 2m

Page 32: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Count the number of available energy levels in a 2-DEG conduction band: NT(E)

Page 33: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor: NT(E)

Page 34: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor : NT(E)

Page 35: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor: NT(E)

Page 36: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor: NT(E)

Page 37: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor : NT(E)

Page 38: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor : NT(E)

Page 39: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG in a semiconductor: NT(E)

Page 40: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Use NT(E) to get energy density of states N(E):

Page 41: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Your Homework Pr 1.3: 1 Deg in a semiconductor:

Page 42: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Your Homework Pr 1.3: 1 Deg in a semiconductor:

Page 43: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Page 44: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Use N(E) to get concentration nS

Page 45: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Use N(E) to get concentration nS

Page 46: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Page 47: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Fermi wavenumber kf:

Page 48: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Corresponding Fermi velocityr vf:

Page 49: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Characteristic mean free path length Lm:

Page 50: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Lecture 04, 10 Sep 13

In Chapter 01 in Datta:

Two dimensional electron gas (2-DEG)DEG goes down, mobility goes up

Define mobility Proportional to momentum relaxation time m

Count carriers nS available for current – Pr. 1.3 (1-DEG)How nS influences scattering in unexpected ways – Pr 1.1 (2-

DEG)

One dimensional electron gas (1-DEG)Special Schrödinger eqn (Con E) that accommodates:

Electronic confinement: band bending due to space chargeUseful external B-field

Experimental measure for mobility