ece 3450 m. a. jupina, vu, 2014 metal-oxide-semiconductor field-effect transistor digital logic...

80
ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology CMOS Fabrication MOS Device Structure and Operation NMOS Circuits CMOS Circuits The Future of CMOS Technology BiCMOS Circuits

Upload: naomi-mccarthy

Post on 20-Jan-2016

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

ECE 3450 M. A. Jupina, VU, 2014

Metal-Oxide-Semiconductor Field-Effect Transistor

Digital Logic Technology

CMOS Fabrication MOS Device Structure and Operation NMOS Circuits CMOS Circuits The Future of CMOS Technology BiCMOS Circuits

Page 2: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Some Key Lecture Objectives A basic understanding of the layout and structure of MOS

devices and circuits A basic understanding of the electrical operation of MOSFETs How logic functions can be synthesized in CMOS and why

CMOS is the dominate digital technology today A more fundamental understanding of power dissipation and

propagation delay in CMOS technologies The future of CMOS technology (FinFETs and TFETs) When should BiCMOS technology be used and why

Reference:Fundamentals of Digital Logic, Chapter 3 and references at course website.

ECE 3450 M. A. Jupina, VU, 2014

Page 3: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

CMOS Fabrication Processes

IC built on silicon substrate:– some structures diffused into substrate;

– other structures built on top of substrate.

Substrate regions are doped with n-type and p-type impurities. (n+ = heavily doped)

Wires made of polycrystalline silicon (poly), multiple layers of aluminum/copper (metal).

Silicon dioxide (SiO2) is an insulator.

ECE 3450 M. A. Jupina, VU, 2014

Page 4: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Simple Cross Section of a MOS Integrated Circuit

substraten+ n+p

substrate

metal1

poly

SiO2

metal2

metal3

transistorvia

ECE 3450 M. A. Jupina, VU, 2014

Page 5: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Example: Cross Section of Intel 0.25 Micron Process

ECE 3450 M. A. Jupina, VU, 2014

Page 6: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

CMOS Fabrication Processing Steps

First place tubs or wells to provide properly-doped substrate for nmos and pmos transistors:

p-tub n-tub

substrate

ECE 3450 M. A. Jupina, VU, 2014

Page 7: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Processing Steps, Cont’d.

Pattern polysilicon before diffusion regions:

p-tub n-tub

poly polygate oxide

ECE 3450 M. A. Jupina, VU, 2014

Page 8: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Processing Steps, Cont’d

Add diffusions (self-aligned source and drain)

p-tub n-tub

poly poly

n+n+ p+ p+

ECE 3450 M. A. Jupina, VU, 2014

Page 9: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Processing Steps, Cont’d

Start adding metal layers:

p-tub n-tub

poly poly

n+n+ p+ p+

metal 1 metal 1

vias

ECE 3450 M. A. Jupina, VU, 2014

Page 10: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Processing Steps, Cont’d

Add other metal interconnect layers:

p-tub n-tub

poly poly

n+n+ p+ p+

metal 1 metal 1

vias

metal 2

ECE 3450 M. A. Jupina, VU, 2014

Page 11: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

MOS Transistor Layout

NMOS FET: PMOS FET:

w

L

w

L

ECE 3450 M. A. Jupina, VU, 2014

Page 12: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

NMOS Transistor Structure

nmos transistor:

ECE 3450 M. A. Jupina, VU, 2014

Page 13: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

+

(a) Small transistor

L

W 1

L

W 2

(b) Larger transistor

Transistor Sizes

ECE 3450 M. A. Jupina, VU, 2014

Page 14: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

++++++++++ ++++++ +++ ++++++++++++ ++++++ ++++++

+++++++++ +++++++++ +++++++++++ +++++++++++

Drain (type n)Source (type n)

Substrate (type p)

SiO 2

When V GS < VT, the transistor is off

V S

0 V =

V G

0 V =

V D

++++++

++++++++++++++++++

0DI

NMOS Transistor When Turned Off

ECE 3450 M. A. Jupina, VU, 2014

Page 15: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

++++++++++ +++ ++++++++++++ ++++++

+++++++++ +++++++++++++++++++++ +++++++++++++++++

Channel (type n)

SiO 2

V DD

When V GS > VT, the transistor is on

+++++++++

V D

V G 5 V =

V S 0 V =

0DI

NMOS Transistor When Turned On

ECE 3450 M. A. Jupina, VU, 2014

Page 16: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Drain Source

in = "low" in = "high"

(a) A simple switch controlled by the input

V D V S

(b) NMOS transistor

Gate

(c) Simplified symbol for an NMOS transistor

V G

Substrate (Body)

NMOS Transistor as a Switch

ECE 3450 M. A. Jupina, VU, 2014

Page 17: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Gate

in = "high" in = "low"

(a) A switch with the opposite behavior

V G

V D V S

(b) PMOS transistor

(c) Simplified symbol for an PMOS transistor

V DD

Drain Source

Substrate (Body)

PMOS Transistor as a Switch

ECE 3450 M. A. Jupina, VU, 2014

Page 18: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

(a) NMOS transistor

V G

V D

V S = 0 V

V S = V DD

V D

V G

Closed switch whenV G =V DD

V D = 0 V

Open switch whenV G = 0 V

V D

Open switch whenV G =V DD

V D

V DD

Closed switch whenV G = 0 V

V D =V DD

V DD

(b) PMOS transistor

NMOS and PMOS Transistors in Logic Circuits

ECE 3450 M. A. Jupina, VU, 2014

Page 19: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

0

Linear or

Triode

V DS

Saturation

I D

V GS V T > ID,SAT

The Current-Voltage Relationship of a NMOS Transistor

VDS,SAT = VGS - VT

ECE 3450 M. A. Jupina, VU, 2014

Page 20: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

NMOS Drain Current Characteristics

Sub-Threshold (ID=0)

ECE 3450 M. A. Jupina, VU, 2014

Page 21: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Drain Current Equations

For VGS > VT,

Linear region (VDS < VGS - VT)

Saturation region (VDS >= VGS - VT)

For VGS < VT, ID = 0 (Sub-Threshold region)

21D GS T DS DS2I = k (W/L)[(V - V )V - V ]

21D GS T2I = k (W/L) (V - V )

ECE 3450 M. A. Jupina, VU, 2014

Page 22: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

NMOS and PMOS I-V Characteristics

ECE 3450 M. A. Jupina, VU, 2014

Page 23: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

(b) Simplified circuit diagram

V x

V f

V DD

x f

(c) Graphical symbols

x f

R

V x

V f

R +

-

(a) Circuit diagram

5 V

An Inverter (NOT gate) Circuit for NMOS Technology

ECE 3450 M. A. Jupina, VU, 2014

Page 24: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

V DD

(b) V x = VDD=5V

I stat

R

R DS

V f V OL=

(a) NMOS NOT gate

V f

V DD

V x

Voltage Levels in an NMOS Inverter

212

stat

For 5V

1' range

I

GS X DD

DS DSDS

D n GS T DS DS n GS T

fDS DDf OL DD

DS DS DS

V V V

V VR K s

W WI k V V V V k V VL LVR V

V V VR R R R R

-1/RVOL VOH=VDD

Load Line Analysis

V DD

(c) V x = 0

R

R DS

V f V OH=

Istat

ECE 3450 M. A. Jupina, VU, 2014

~

Page 25: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

V f

V DD

(a) Circuit

(c) Graphical symbols

(b) Truth table

f f

0 0 1 1

0 1 0 1

1 1 1 0

x 1 x 2 f

V x 2

V x 1

x 1

x 2

x 1

x 2

NMOS Realization of a NAND Gate

ECE 3450 M. A. Jupina, VU, 2014

Page 26: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

V x 1 V x 2

V f

V DD

(a) Circuit

(c) Graphical symbols

(b) Truth table

f

0

0

1

1

0

1

0

1

1

0

0

0

x 1 x 2 f

f x 1

x 2

x 1

x 2

NMOS Realization of a NOR Gate

ECE 3450 M. A. Jupina, VU, 2014

Page 27: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

V f

V DD

Pull-down network

V x 1

V x n

(PDN)

Structure of an NMOS Circuit

ECE 3450 M. A. Jupina, VU, 2014

Page 28: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Open Collector Examples

High Current External Loads

Wire-Anding

Open Drain logic devices are also available in MOS technologies.

ECE 3450 M. A. Jupina, VU, 2014

Page 29: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Static Complementary CMOS Circuits

high noise margins - full rail to rail swing (VOH and VOL are at VDD and GND, respectively)

low output impedance, high input impedance no steady state path between VDD and GND (no static

power consumption) delay is a function of load capacitance and transistor

resistance comparable propagation delay times (under the

appropriate transistor sizing conditions) logic levels not dependent upon the relative device

sizes; ratioless

ECE 3450 M. A. Jupina, VU, 2014

Page 30: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Static Complementary Gate Structure

pullupnetwork

pulldownnetwork

VDD

VSS

outinin out

+

Drain

ECE 3450 M. A. Jupina, VU, 2014

Page 31: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Switch Models of CMOS Inverter

VDD

Rn

Vout = 0

Vin = V DD

VDD

Rp

Vout = VDD

Vin = 0

ECE 3450 M. A. Jupina, VU, 2014

Page 32: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

VDD

Vf

Vx

IDVx

Vf

ID

(a) Current flow when input Vx

changes from 0 V to 5 V

(b) Current flow when input Vx

changes from 5 V to 0 V

Dynamic Current Flow in CMOS Circuits

ECE 3450 M. A. Jupina, VU, 2014

Page 33: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

ECE 3450 M. A. Jupina, VU, 2014

CMOS Power Dissipation

2

1( )

AVER LEAKAGE

TOTAL STATIC DYNAMIC

LEAKAGE DD LOAD DD

I I i t dtT

P P P

I V fC V

IAVER

OFF

ON

Page 34: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Ways to Reduce CMOS Power Dissipation Lower VDD – Hardware steps down supply voltage when system’s activity decreases (DVS)

Reduce Capacitance in logic circuits (minimize the size of transistors)

Lower fCLK – Hardware steps down clock frequency when system’s activity decreases (DFS)

Use Gated-Clock Circuits to power-off logic circuits when not being used

Clock

Clock

DisableSignal

Gatedclock

Can insert clock gating at multiple levels in clock treeCan shut off entire subtree if all gating conditions are satisfied

ECE 3450 M. A. Jupina, VU, 2014

Page 35: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

CMOS Propagation Delay

, ,

GS in DD DS out DD

GS

212

in DD DS out DD

1, 2

212

saturatio

2

at t = 0 V =V =V , V =V =V ( )

at t = V =V =V linear

2

, V =V =V / 2 (

n

)

2

DDpHL

D AVG D AVG

pHL

D A DDDD T DD DV n D TG V V V V

C

V V

V CVt

I I

t

WI k L

2.43 1.7 2.43

Also, 0.69 thus Similarly, and pHL n n pLH p

n DD p DD p DD

Ct R C R t R

W W Wk V k V k VL L L

OFF

ON

tpHL tpHL

tpLH

21

T DD , DD5

1.7Assuming V = V , 0.298 V thus D AVG n pHL

n DD

CWI k tL Wk VL

ECE 3450 M. A. Jupina, VU, 2014

Page 36: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Examples of MOSFET Electrical Parameters

L 1 m 0.25 m

VDD (V) 5 2.5

kn’(A/V2) 120 115

VTn (V) 0.8 0.43

kp’(A/V2) 40 30

VTp (V) -0.9 -0.4

ECE 3450 M. A. Jupina, VU, 2014

Page 37: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

CMOS NAND

A

B

A • B

A BA B M1 M2 M3 M4

F

0 0 on on off off 1

0 1 on off off on 1

1 0 off on on off 1

1 1 off off on on 0

A

B

M1

M2

M3

M4

F

ECE 3450 M. A. Jupina, VU, 2014

Page 38: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

CMOS NOR

A + B

A

B

A B

AB

A B M1 M2 M3 M4F

0 0

0 1

1 0

1 1

M1

M2

M3

M4

F

on on off off 1

on off off on 0

off on on off 0

off off on on 0

ECE 3450 M. A. Jupina, VU, 2014

Page 39: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

CMOS Realization of an AND Gate

A

B

F = A • B

ECE 3450 M. A. Jupina, VU, 2014

Page 40: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Static Complementary CMOS

VDD

F(In1,In2,…InN)

In1

In2

InN

In1

In2

InN

PUN

PDN

PUN and PDN are dual logic networks

……

Pull-up network (PUN) and pull-down network (PDN)

PMOS transistors only

pull-up: make a connection from VDD to F when F(In1,In2,…InN) = 1

NMOS transistors only

pull-down: make a connection from F to GND when F(In1,In2,…InN) = 0

ECE 3450 M. A. Jupina, VU, 2014

Page 41: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Construction of PDN NMOS devices in series implement a NAND function

NMOS devices in parallel implement a NOR function

A

B

A • B

A B

A + B

ECE 3450 M. A. Jupina, VU, 2014

Page 42: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Dual PUN and PDN PUN and PDN are dual networks

DeMorgan’s theorems

a parallel connection of transistors in the PUN corresponds to a series connection of the PDN

Complementary gate is naturally inverting (NAND, NOR, AOI, OAI)

Number of transistors for an N-input logic gate is 2N

A + B = A • B

A • B = A + B

ECE 3450 M. A. Jupina, VU, 2014

Page 43: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Complex CMOS Gate

D

A

B C

D

A

B

C

OUT = (D+A•(B+C))

ECE 3450 M. A. Jupina, VU, 2014

Page 44: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

V f

V DD

V x 1

V x 2

V x 3

Examples 3.1 and 3.2 in Textbook

V f

V DD

V x 1

V x 2

V x 3

V x 4

1 2 3 1 2 3f x x x x x x 1 2 3 4 1 2 3 4f x x x x x x x x ECE 3450 M. A. Jupina, VU, 2014

Page 45: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

F

V DD

A

B

C

D

Given the PUN of a CMOS Circuit, Sketch the PDN.What is Logic Expression for F?

D

C

B

A

F

F = (A+B)•(C+D)ECE 3450 M. A. Jupina, VU, 2014

Page 46: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

(a) Circuit

f x

(b) Truth table

Hi-Z x

0 1

f s

s

s

s 0 =

s 1 =

x

x

f = Hi-Z

f = x

(c) Equivalent circuit (d) Graphical symbol

f x

s

s

A Transmission Gate

ECE 3450 M. A. Jupina, VU, 2014

Page 47: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

(b) Graphical symbol(a) Truth table

0 0 1 1

0 1 0 1

0 1 1 0

A B

A

B

f A B =

f A B =

(c) Sum-of-products implementation

f A B =

A

B

Exclusive-OR Gate Example

ECE 3450 M. A. Jupina, VU, 2014

Page 48: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

A

B

F A B =

Exclusive-OR (XOR) Gate Implementation with Transmission Gates

0

on1

off

B

1

off

on0

B

ECE 3450 M. A. Jupina, VU, 2014

Page 49: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

(b) Equivalent circuit

(c) Truth table

x f

e

(a) A tri-state buffer

0 0 1 1

0 1 0 1

Hi-Z Hi-Z 0 1

f e x

x f

e = 0

e = 1x f

f x

e

(d) Implementation

Tri-State Buffer using TGs

ECE 3450 M. A. Jupina, VU, 2014

Page 50: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

x 1

x 2 f

s

A 2-to-1 Multiplexer using TGs

ECE 3450 M. A. Jupina, VU, 2014

Page 51: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

F

A

B

What is the Logic Function of This Circuit?

0

1

on

=B

A B F

0 0

0 1

1 0

1 1off

10

1

0

off

B1

0

XOR F A B

off

ECE 3450 M. A. Jupina, VU, 2014

Page 52: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Standard Cell Frame Layout of CMOS Circuits

NMOS Transistors

PMOS Transistors

ECE 3450 M. A. Jupina, VU, 2014

Page 53: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

A Simplified Floor Plan of a Standard Cell Design

VDD

GND

BU

SPads

StandardCells

RoutingChannels

forWires

ECE 3450 M. A. Jupina, VU, 2014

Page 54: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Standard Cell Layout Methodology

Routingchannel

VDD

GND

x x

x x

xx

xx

x

f

f

a

b

a b

x x“Stick Diagram”

Routingchannel

ECE 3450 M. A. Jupina, VU, 2014

Page 55: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Standard Cell Layout Methodology

Routingchannel

VDD

GND

x x

xx

xx

f a b

D S

G

D S

G

x

S D

G

D S

G

f a

b

D S

G

D S

G

x xx x

Routingchannel

ECE 3450 M. A. Jupina, VU, 2014

Page 56: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Final Circuit Schematic of the Standard Cell

a

b

f = a • b

ECE 3450 M. A. Jupina, VU, 2014

Page 57: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Standard Cell Layout of a CMOS Circuit

Microwind CAD Generated Drawing “Stick” Drawing in Power Point

ECE 3450 M. A. Jupina, VU, 2014

Page 58: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Nanoscale MOS Technology

ECE 3450 M. A. Jupina, VU, 2014

Page 59: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Power Supply, Threshold Voltage, & Oxide Thickness

Scaling with Channel Length

Reduction

ECE 3450 M. A. Jupina, VU, 2014

Page 60: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Trends in MOS Device Scaling

ECE 3450 M. A. Jupina, VU, 2014

Page 61: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Constant Electric Field Scaling Example

ECE 3450 M. A. Jupina, VU, 2014

Page 62: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

The Future (L 10 nm) To improve performance, silicon will be mixed with

a semiconductor like germanium to produce a more spacious, strained crystalline structure that lets electric charge carriers move faster.

To reduce the leakage of current that drives up power consumption, gate oxides will be made of materials with more than eight times the dielectric constant (k) of today’s silicon dioxide.

For better control of the transistor’s on and off states, gates will be of metal, instead of polysilicon.

For better control and (again) to reduce power consumption, gates themselves will be doubled up so that two will do the job a single gate does now.

ECE 3450 M. A. Jupina, VU, 2014

Page 63: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Higher Mobilities in Strained Si

ECE 3450 M. A. Jupina, VU, 2014

Page 64: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

MOSFETs vs. FinFETs

ECE 3450 M. A. Jupina, VU, 2014

Page 65: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

The FinFET

ECE 3450 M. A. Jupina, VU, 2014

Page 66: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Multi-Gate FinFETsTriGate

-Gate QuadGate

Double Gate/

FinFET

ECE 3450 M. A. Jupina, VU, 2014

Page 67: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Multi-Gate FinFETs

FinFETTriGate

-Gate QuadGate

Double-gate/

ECE 3450 M. A. Jupina, VU, 2014

Page 68: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

FinFET Advantages Excellent control of short channel effects in the deep

submicron regime exists and transistors are still scalable. Due to this reason, the small-length transistor can have a larger intrinsic gain (transconductance) compared to MOSFETs.

Much lower off-state current compared to MOSFETs. 22 nm Tri-Gate FinFETs have a 37% performance

increase and a 50% power reduction compared to 22 nm planar MOSFET technology at low voltages (< 1 V).

Allows MOS technology to stay on track with Moore’s Law.

ECE 3450 M. A. Jupina, VU, 2014

Page 69: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Intel Device Technology

ECE 3450 M. A. Jupina, VU, 2014

Page 70: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Intel’s Ivy Bridge: 3D ICs with FinFETs and TSVs

ECE 3450 M. A. Jupina, VU, 2014

Page 71: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

ECE 3450 M. A. Jupina, VU, 2014

After FinFETs, What Is Next?

p-type TFET

Page 72: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

A Comparison of ID Versus VG in Various Devices

ECE 3450 M. A. Jupina, VU, 2014

Page 73: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

TFET Advantages

■ Extends silicon-based CMOS technology possibly below 10 nm by enabling a new generation of device topologies while allowing the use of current manufacturing processes.

■ Steep sub-threshold slopes (below 60mV/decade) are possible, and therefore, even less leakage current in the "off" state

ECE 3450 M. A. Jupina, VU, 2014

Page 74: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

BiCMOS BiCMOS stands for Bipolar Complementary Metal-Oxide Semiconductor.

BJTs and MOSFETs are used to construct logic gates.

Additional fabrication steps are required (increased cost).

BiCMOS advantages: Better switching speed than CMOS and lower power consumption than BJT logic circuits.

p

pp

pppp+p+

ECE 3450 M. A. Jupina, VU, 2014

Page 75: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

NPN Bipolar Junction Transistor (BJT): Physical Layout, Circuit Symbol, & Simplified Model

ECE 3450 M. A. Jupina, VU, 2014

Page 76: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Charge Storage in the Base of a NPN

n(x

)

x

EMITTER BASE COLLECTOR

Cutoff

Forward Active

Saturation

( )BQ n x dx

p

QC t RC

V

ECE 3450 M. A. Jupina, VU, 2014

Page 77: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Operation of a BiCMOS Inverter

ECE 3450 M. A. Jupina, VU, 2014

Page 78: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Propagation Delay

ECE 3450 M. A. Jupina, VU, 2014

Page 79: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

tp

CLOADCX

CMOS

BiCMOS

Propagation Delay of BiCMOS and CMOS Gates as a function of CL

ECE 3450 M. A. Jupina, VU, 2014

Page 80: ECE 3450 M. A. Jupina, VU, 2014 Metal-Oxide-Semiconductor Field-Effect Transistor Digital Logic Technology  CMOS Fabrication  MOS Device Structure and

Applications of BiCMOS Circuits

BiCMOS (Tri-State) buffers to drive off-chip loads

Data BusOn-Chip Clock Distribution Network

Composed of BiCMOS Inverters

ECE 3450 M. A. Jupina, VU, 2014