ec9 ex91 tension bending interaction

Upload: imotalp

Post on 14-Apr-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Ec9 Ex91 Tension Bending Interaction

    1/4

    Ec9_ex91_Interaction_Tension Tension force and bending moment Page 1 of 4

    Moment and force

    Axial tension force and eccentricity NEd 300 kN:=

    Bending moment My.Ed 40 kNm:=

    S.I. units kN 1000 newton kNm kN m MPa 1000000 Pa

    Classification of the cross section in bending. Effective thickness

    Web w 0.40bw

    tw:= w 5.6=

    250 MPa

    fo:= 0.981=

    The cross welds at the centre of the beam does not influence the buckling class (see 6.1.4.4 (3))

    [1] Table 6.21w 11 := 2w 16 := 3w 22 :=

    BC "A"=classw if w 1w> if w 2w> if w 3w> 4, 3,( ), 2,( ), 1,( ):= classw 1=

    [1] 6.1.5 (2)

    Local buckling: cw ifw

    22 1.0,32

    w

    220

    w

    2

    ,

    := tw.ef if classw 4 tw cw, tw,( ):= cw 1=

    tw.ef 12.0 mm=

    Example 9.1. Tension force and bending momentUnder the load at the centre of the beam there is a transverse web stiffener which means that there are crosswelds on both the flanges and the web.

    The beam is restrained laterally at the load application point.

    tf

    tw

    h bw

    y

    z

    bf

    Dimensions and material properties

    Flange height: h 200 mm:=

    Flange depth: b 140 mm:=

    Web thickness: tw 12 mm:=

    Flange thickness: tf 16 mm:=

    Length: L 2 m:=

    Width of web plate:

    bw h 2 tf:= bw 168 mm=

    L L

    FEd

    Lateral buckling

    Bending moment

    NNEd

    [1] Table 3.2b Alloy:EN AW-6082 T6 EP/O t >5 mm

    fo 260 MPa:= fu 310 MPa:=

    Buckling class BC "A":=

    E 70000 MPa:= G 27000 MPa:=

    Partial safety factors: M1 1.10

    M2

    1.25

    T Hglund aluMATTER 2007-07-19

  • 7/30/2019 Ec9 Ex91 Tension Bending Interaction

    2/4

    Ec9_ex91_Interaction_Tension Tension force and bending moment Page 2 of 4

    Extent of HAZ i web (MIG-weld) t1 0.333 tw 2 tf+( ):= t1 14.652 mm=

    bhaz if t1 6 mm> if t1 12 mm> if t1 25 mm> 40 mm, 35 mm,( ), 30 mm,( ), 20 mm,( ):= bhaz 35 mm=

    Bending moment resistance

    te,f

    te,w

    bhaz

    [1] 6.2.5.1 Elastic modulus of gross cross section Wel:

    Agr 2 b tf h 2 tf( ) tw+:= Agr 6.496 103

    mm2

    =

    Igr1

    12b h

    3 b tw( ) h 2 tf( )

    3:= Igr 4.276 10

    7 mm

    4=

    Wel

    Igr 2

    h:= Wel 4.276 10

    5 mm

    3=

    Plastic modulus

    Wple1

    4b h

    2 b tw( ) h 2 tf( )

    2:= Wple 4.968 10

    5 mm

    3=

    Elastic modulus of the effective cross section Weffe:

    tf 16 mm= tf.ef 13.842 mm= tw 12 mm= tw.ef 12 mm=

    Allowing for local buckling:

    Aeffe Agr b tf tf.ef( ) bhaz tw tw.ef( ):= Aeffe 6.194 103

    mm2

    =

    Shift of gravity centre:

    eef b tf tf.ef( )h

    2

    tf

    2

    bhaz tw tw.ef( )h

    2

    tfbhaz

    2

    +

    1

    Aeffe

    := eef 4.487 mm=

    Second moment of area with respect to centre of gross cross section:

    t2

    b3

    b2

    Flangesf

    b tw

    tf:= 1f 3 := 2f 4.5 := 3f 6 := f 8=

    [1] 6.1.4.3

    [1] Table 6.2 classf if f 1f> if f 2f> if f 3f> 4, 3,( ), 2,( ), 1,( ):= classf 4=[1] 6.1.5 (2)

    Local buckling: cf

    iff

    6 1.0,

    10

    f

    24

    f

    2,

    := cf

    0.865=

    tf.ef if classf 4 tf cf, tf,( ):= tf.ef 13.84 mm=

    Classification of the total cross-section:

    class if classf classw> classf, classw,( ):= class 4=

    Net section at the cross weld

    [1] Table 6.2 HAZ softening factor u.haz 0.60:=

    [1] 6.2.5.1 (2) Effective thickness, flange tf.haz u.haz tf:= tf.haz 9.6 mm= tf 16 mm=

    Effective thickness, web tw.haz u.haz tw:= tw.haz 7.2 mm=

    [1] 6.1.6.3 (3)

    T Hglund aluMATTER 2007-07-19

  • 7/30/2019 Ec9 Ex91 Tension Bending Interaction

    3/4

    Ec9_ex91_Interaction_Tension Tension force and bending moment Page 3 of 4

    Design moment and axial force resistance of the net section (My,Rd.net andNRd.ner)

    [1] (5.14) My.Rd.netfu Wnet

    M2

    := NRd.netfu Anet

    M2

    := My.Rd.net 63.5 kNm= NRd.net 966.6 kN=

    Bending and axial force [1] 6.2.9

    At effective section

    [1] 6.2.9.1 Class 4 cross section: 0 1:= 0 1:= 0 1:=

    [1] (5.40)NEd

    NRd

    0My.Ed

    My.Rd

    0

    + 0.646= in section without weld

    At net section

    0 1:= 0 1:= 0 1:=

    [1] (5.40)NEd

    NRd.net

    0My.Ed

    My.Rd.net

    0

    + 0.94= in section with weld

    Ieffe Igr b tf tf.ef2 2

    12

    tw tw.ef bhaz tw tw.ef2

    tf2

    :=

    Ieffe 4.02 107

    mm4

    =Second moment of area with respect to centre of effective cross section:

    Ieffe Ieffe eef2

    Aeffe:= Ieffe 4.007 107

    mm4

    =

    Weffe

    Ieffe

    h

    2eef+

    := Weffe 3.835 105 mm3=

    [1] Tab. 5.3 Shape factor for welded, class 4 cross-section Weffe

    Wel:= 0.897=

    Design moment and axial force resistance of the cross section (My,Rd andNRd)

    [1] (5.14) My.Rdfo Wel

    M1

    := NRdfo Aeffe

    M1

    := My.Rd 90.7 kNm= NRd 1.5 103

    kN=

    Net section with HAZ softeningAnet 2 b tf.haz tw.haz bw+:= Anet 3.898 10

    3 mm

    2=

    Inet 0.5 b tf.haz h tf( )2

    tw.haz bw3

    1

    12+:= Inet 2.56 10

    7 mm

    4=

    Wnet

    Inet 2

    h:= Wnet 2.56 10

    5 mm

    3=

    T Hglund aluMATTER 2007-07-19

  • 7/30/2019 Ec9 Ex91 Tension Bending Interaction

    4/4

    Ec9_ex91_Interaction_Tension Tension force and bending moment Page 4 of 4

    [1] I.1.2 kwt

    kw L

    E Iw

    G It:= kwt 0.894=

    [1] (I.3) crC1

    kz1 kwt

    2+:= cr 2.409=

    Mcr crE Iz G It

    L

    :=Wy Wel:=

    [1] 6.3.2.3 (1) LT Wy fo

    Mcr:= LT 0.563=

    [1] 6.3.2.2 (2) LT if class 2> 0.2, 0.1,( ):= LT 0.2=

    0LT if class 2> 0.4, 0.6,( ):= 0LT 0.4=

    [1] 6.3.2.1 (1) LT 0.5 1 LT LT 0LT( )+ LT2

    +:= LT 0.675=

    LT1

    LT LT2 LT2+

    := LT 0.955=

    Design moment and axial force resistance of the cross section (no HAZ)

    [1] (5.14) Mb.Rd LTfo Wel

    M1

    := NRdfo Agr

    M1

    := Mb.Rd 96.5 kNm= NRd 1.5 103

    kN=

    Lateral-torsional buckling check with influence of axial tensile force

    In combination with bending moment, reduce axial tension force with a factor vec 0.8:=

    My.Ed

    Mb.Rdvec

    NEd

    NRd 0.258=

    Lateral-torsional buckling [1] 6.3.2

    Lateral stiffness constant Iz2 b

    3 tf

    12

    h tw3

    12+:= Iz 7.346 10

    6 mm

    4=

    [1] Figure J .2 Varping constant:Iw

    h tf( )2

    Iz

    4:=

    Iw 6.218 10

    10

    mm

    6=

    Torsional constant: It2 b tf

    3 h tw

    3+

    3:= It 4.975 10

    5 mm

    4=

    Length L 2 m=

    [1] I.1.2 Moment relation and 0:=

    ky 1:= kz 1:= kw 1:=Support conditions

    [1] I.1.2 (6) C1 - constant C1 0.310 0.428 + 0.262 2

    +( )0.5

    := C1 1.796=

    Mono symmetry parameter zj 0:=

    Load application parameter zg 0:=

    Shear modulus G 2.7 104

    MPa=

    T Hglund aluMATTER 2007-07-19