early work – mar. 26 list five ways in which you use a mirror or a lens on a daily basis. ch. 18...

49
Early Work – Mar. 26 List five ways in which you use a mirror or a lens on a daily basis. Ch. 18 Vocab

Upload: tara-ask

Post on 15-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Early Work – Mar. 26

• List five ways in which you use a mirror or a lens on a daily basis.

• Ch. 18 Vocab

18

Mirrors and Lenses

Lab

• Converging and Diverging Lenses

Early Work – Mar. 26

• Being juniors and seniors in high school, what type of lab etiquette should you exhibit?

• Turn in vocab to InBox

Finish Lab

• Lab Etiquette

• 20 minutes to finish

18.1

Mirrors

Mirrors

• Pre-historic man saw his image reflected to him in water

• Ancient Egyptians used polished metals to see their images

• In 1857, Jean Foucault developed a method of coating glass with silver – letting people see a clean, clear image of himself.

• A flat, smooth surface that reflects light through regular reflection– Angle of incidence equals angle of

reflection

Plane Mirrors

object image

Plane Mirrors

Object Image

Virtual Image

dO = di

hO = hi

Erect Image

Plane Mirror

Concave Mirrors

Concave Mirrors

Concave Mirrors

Concave Mirrors

Convex Mirrors

Convex Mirrors

Early Work – Mar. 30

• List the three rays to follow to find an image.

Early Work – Apr. 3

• How can you tell if an image is real or virtual?

• $2…

Concave Mirror Review• Principal Axis – line perpendicular to

center of mirror• Focal Point – point where rays

converge or diverge to• Center of curvature (or radius) = 2F• Focal length – distance from focal

point to mirror, f 2f = r

Real v. Virtual

• Real image – rays that converge on a single point and that image can be displayed on a screen– Looking for if rays actually converge at

the point

• Virtual image – image formed without rays converging on point

Real Images

• Concave mirrors can form real images – when object is past C– Three rays to follow

• One parallel• One through focal point• One to center of mirror

Image Equations

Magnification – ratio of size of image to size or object

Describing a Real Image

• Mathematically –– If hi is negative, the image is

inverted

– If di is positive, the image is real

Example

• A concave mirror has a radius of curvature of 20.0 cm. An object, 2.0 cm high, is placed 30.0 cm from the mirror.– Where is the image located?– How high is the image?

Virtual Images• Concave mirrors can form virtual images – when

object between F and mirror– Three rays to follow

• One parallel• One through focal point• One to center of mirror

Example

• An object, 2.0 cm high, is placed 5.0 cm in front f a concave mirror with a focal length of 10.0 cm. How large is the image, and where is it located?

Early Work – Apr. 9

• Draw the image formed by an object and a convex mirror. Describe the image (3).

Spherical Aberration

• When we draw rays, have them reflect off perpendicular plane rather than curved mirror– Equations even follow this

• But real rays reflect off curved surface so only rays close to principal axis reflect through the focus

18.2

Lenses

Lens History

• Eyeglasses – 13th century• 1610 – Galileo made telescope

– Observed moons of Jupiter

• Since– Microscopes– Cameras– Solar Powered Marshmallow Roasters

• Probably most useful optical device

Types of Lenses• Lens – transparent material with

index of refraction larger than that of air– Faces can be concave, convex, or

plane– Convex Lens – thicker in middle.

• Converging lens because light rays converge to one point on other side.

– Concave Lens – thinner in middle.• Diverging lens because light rays

spread out on other side.

Types of Lenses

Convex Lenses

• Light refracts at both surfaces of lens

• For simplicity, we will refract it at center (perpendicular to principal axis)– This is called the thin lens model,

which does apply to the lenses we talk about

Convex Lenses

Early Work – Apr. 11

• Which lens is a converging lens?• Which lens is a diverging lens?

• Last day for $2 donation to lens fund.

• Bkwk due Tues. Apr. 17

Conventions Applied to Lenses (P430)

• f is positive for convex lenses• f is negative for concave lenses

• do is positive on the object side of the lens

• di is positive on the other side (image side) of the lens, where images are real

• di is negative on the object side of the lens where images are virtual

Diagrams

Example

• An object is placed 32.0 cm from a convex lens that has a focal length of 8.0 cm.– Where is the image?– If the object is 3.0 cm high, how

high is the image?– Is the image inverted or upright?

Virtual Images

• When an object is in front of the focal point, a virtual, erect, enlarged image appears

• A magnifying glass!

Example

• A convex lens with a focal length of 6.0 cm is held 4.0 cm from an insect that is 0.50 cm long.– Where is the image located?– How large does the insect appear

to be?

Concave Lenses

Lens Defects

Spherical Aberration

Early Work – Apr. 13

• How far behind the surface of a convex mirror, focal length of -6.0 cm, does a car 10.0 m from the mirror appear?

Chromatic Lens

Lens Uses

Nearsightedness Farsightedness

Microscope Lenses

Telescope Lenses

Ch 18

• P 439: 1 – 3, 5, 7 – 11, 13 – 15, 18 – 21, 25 - 38