e = electron charge = 1.6x10-19 c me = electron mass = 9.1x10-31

13
Exam 3DEX1: Physics of new energy 26-1-2016 van 9:00-12:00 PLEASE READ THESE INSTRUCTIONS FIRST! In this exam we would like to summarize with you the issues discussed in this class by 4 exercises: 1. Energy in general: the energy problem, consumption and storage. 2. Thermodynamics: how thermodynamics imposes a limit on the maximum efficiency to convert heat into work. 3. Fusion power: the basic principles and its challenges to realise a fusion power plant 4. Solar cells: its structure and the operating principle All four questions are posed in English. You can choose yourself to answer in either English or Dutch. For each of the sub questions the number of points that can be scored is indicated. The total number of points is 100. The final result F is calculated according to F= 1.0 + 0.09 x (number of points score) and rounded to 1 decimal. We also provide an indicative time needed to complete the exercise (just our own estimate, maybe it helps you to check whether your pace is sufficient). The use of calculators is allowed, but any other books, phones, laptops, internet access, formulary is strictly prohibited. Below you find some constants, which you might need for solving some exercises. (Note that you do not necessarily need all of them, it is just a standard list). Constants e= electron charge = 1.6x10 -19 C m e = electron mass = 9.1x10 -31 kg m p proton mass = 1.67x10 -27 kg c= speed of light = 2.99x10 8 m/s ε 0 = vacuum permittivity = 8.85x10 -12 F/m μ 0 = magnetic permeability= 1.26x10 -6 Vs/Am h= Planck constant = 6.63x10 -34 Js k B = Boltzmann constant = 1.38x10 -23 J/K g= gravitation of Earth = 9.81 m/s 2 N A = Avogadro’s number = 6.02x10 23 mol -1 R= Gas constant = 8.31 J/(mol K) (= 8.31 Pa m 3 /(mol K) atm = atmosphere = 1.01x10 5 Pa ρ air = density of air = 1.3 kg/m 3 ρ water = density of water = 1000 kg/m 3 k w = thermal conductivity wood= 0.1 W/(m K) k r = heat conductivity rubber= 0.15 W/(m K) atomic mass (amu): hydrogen=1 , helium=4, carbon=12, oxygen=16

Upload: vumien

Post on 02-Feb-2017

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: e = electron charge = 1.6x10-19 C me = electron mass = 9.1x10-31

Exam3DEX1:Physicsofnewenergy26-1-2016van9:00-12:00

PLEASEREADTHESEINSTRUCTIONSFIRST!Inthisexamwewouldliketosummarizewithyoutheissuesdiscussedinthisclassby4exercises:

1. Energyingeneral:theenergyproblem,consumptionandstorage.2. Thermodynamics:howthermodynamicsimposesalimitonthemaximumefficiency

toconvertheatintowork.3. Fusionpower:thebasicprinciplesanditschallengestorealiseafusionpowerplant4. Solarcells:itsstructureandtheoperatingprinciple

AllfourquestionsareposedinEnglish.YoucanchooseyourselftoanswerineitherEnglishorDutch.Foreachofthesubquestionsthenumberofpointsthatcanbescoredisindicated.Thetotalnumberofpointsis100.ThefinalresultFiscalculatedaccordingtoF=1.0+0.09x(numberofpointsscore)androundedto1decimal.Wealsoprovideanindicativetimeneededtocompletetheexercise(justourownestimate,maybeithelpsyoutocheckwhetheryourpaceissufficient). Theuseofcalculatorsisallowed,butanyotherbooks,phones,laptops,internetaccess,formularyisstrictlyprohibited.Belowyoufindsomeconstants,whichyoumightneedforsolvingsomeexercises.(Notethatyoudonotnecessarilyneedallofthem,itisjustastandardlist).Constants e= electroncharge = 1.6x10-19 Cme= electronmass = 9.1x10-31 kgmp protonmass = 1.67x10-27 kgc= speedoflight = 2.99x108 m/sε0= vacuumpermittivity = 8.85x10-12 F/mμ0= magneticpermeability= 1.26x10-6 Vs/Amh= Planckconstant = 6.63x10-34 JskB= Boltzmannconstant = 1.38x10-23 J/Kg= gravitationofEarth = 9.81 m/s2

NA=Avogadro’snumber = 6.02x1023 mol-1R= Gasconstant = 8.31 J/(molK)(=8.31Pam3/(molK)atm= atmosphere = 1.01x105 Paρair= densityofair = 1.3 kg/m3

ρwater=densityofwater = 1000 kg/m3kw= thermalconductivitywood= 0.1 W/(mK)kr= heatconductivityrubber= 0.15 W/(mK)atomicmass(amu):hydrogen=1,helium=4,carbon=12,oxygen=16

Page 2: e = electron charge = 1.6x10-19 C me = electron mass = 9.1x10-31

1. Energy–General–15pts–estimatedtime:25minutesa) [5pts]EnergyProblem:Whatarethethreemainfactorsdeterminingtheenergy

problemwhichwewillfaceinthenearfuture?Giveonesolutiontothis.Inwhichwaycansciencecontributetothis?Provideoneexample.

Answer:1pt:growthofpopulation1pt:energyuseindevelopingcountriesisincreasing1pt:fossilefuelsupplyisdecreasing1pt:CO2à4points,butmax3forthispart.Solution:1pt:userenewableenergysources,increasedefficiency,decreaseenergyconsumptionExampleScience:(manypossibilities,ownjudgement)à1pt.(e.q.developnewsources.Likenuclearfusion,newhighefficiencysolarcells,developnewbatterieselectricalcars….)b) [5pts]EnergyUse:Thelargestenergyconsumptionbyhouseholdsisfortransport

(cars)andheating.Let’shavealookatthelatterone.Whatismostefficientenergyuseforcooking:anelectricalcookingplateoragascooker(gasstove).Why?Calculatethepowerneededtoraisethetemperatureofa5litrepanfilledwithwaterfrom5°Cto100°C(theboilingtemperature)in3minutes.Whatisthepriceforthisifitisdoneelectrically(25ct/kWh,40%efficiency)?

1pt:gasisbestchoice:,efficiencytoproduceelectricityislow(40%),atleastforfossilpowerplant:a)chemicalenergyàb)thermalenergyàc)electricalenergyàd)thermalenergy:stepcàdveryinefficient 2pt:P=E/t=(c.m.dT)/t=4.18x5x95kJ/180s=11kW2pt:E=P.t/eff=c.m.dT=4.18x5x95/0.4=5MJ=(5/3.6)kWhàprice=5/3.6*0.25euro=0.35euroc) [5pts]Energystorage:Inanelectriccartheenergyisstoredinabattery.Typicallythis

carcandriveonly100kmonfullelectricenergy,whereasaconventionalcaronpetrolcandriveeasily500kmonasingletank.Whatistheessentialdifferenceintheenergystorage?Howisthisdifferentforfuelcellsbasedonhydrogen?Explain

2pt:Batterieshavealowerenergydensityperkgcomparedtopetrol 3pt:Fuel(H)hasevenmuchhigherenergydensityperkgthanpetrol,butthequestionishowhydrogencanbetransported:asafluid(alotofmassneededforkeepingthefuelcool)asagas(heavytankneededtokeepitathighpressure),orashydride(alsoheavy).Sofinallystillnotahighenergydensityperkg.

Page 3: e = electron charge = 1.6x10-19 C me = electron mass = 9.1x10-31
Page 4: e = electron charge = 1.6x10-19 C me = electron mass = 9.1x10-31

2. Thermodynamics–15pts–estimatedtime:25minutes

Two moles of an ideal mono-atomic gas (cV= 12.47 J/(mol⋅K), cp=20.78 J/(mol⋅K)) follow athermodynamiccycleaccordingtothepathDgAgBgCgD.ThestepsDAenBCareisochoric.ThestepsABandCDareisothermal.InstateD,thepressureis2⋅105Paandthetemperatureis360K.InstateB,thevolumeisVB=3VDandthepressureisPB=2PC.

a) [2pts]DrawthePVdiagramforthecycleDABCD.b) [8pts]Calculatetheworkandtheheatforeachstepofthecycle.c) [5pts]Calculatetheefficiencyofthecyclicprocess.

Page 5: e = electron charge = 1.6x10-19 C me = electron mass = 9.1x10-31

( )

( )

29.098.815.136.615.13

6.6

6.6ln

0

98.80

98.823

15.13

15.13ln

0

98.80

98.823

104

720

1033.12

1066.0

09.03

360

03.0

5

5

5

3

3

=+−==

⎪⎪⎩

⎪⎪⎨

−=

−==

⎪⎪

⎪⎪

−==

−=−=Δ

⎪⎪⎩

⎪⎪⎨

=

==

⎪⎪

⎪⎪

==

=−=Δ

−=Δ

⋅==

===

⋅==

⋅==

===

===

==

H

C

D

BC

A

B

AD

A

AA

BBAB

CB

C

CC

DBC

CD

AD

D

DD

QWtot

kJQ

kJVVnRTW

JU

stapCD

kJQJW

kJTTnRU

stapBC

kJQ

kJVVnRTW

JU

staAB

kJQW

kJTTnRU

stapDA

WQU

PaVnRTP

KnRVPTT

PaPP

PaVnRTP

mVVVKTT

VV

mPnRTV

η

Page 6: e = electron charge = 1.6x10-19 C me = electron mass = 9.1x10-31

3. Fusion–35pts–estimatedtime50minutesFusionEnergyisaverypromisingnewenergysource:

• Thefuelisabundantlypresentforthousandsofyears• NoCO2emission• Inherentsafe• Largescale

Nevertheless,westilldonothaveaworkingfusionreactoryet.Beforethiswillberealisedmanychallengeshavetobeovercome.Let’shaveacloserlookatafewofthose.

a) (6pts)Challenge1:Thefuel:theeasiestfusionreactionistheonebetween

deuteriumandtritiumnuclei.However,inaplasmamixofdeuteriumandtritiumalsootherfusionreactionsarepossible.Giveatleasttwootherreactionsthatwilloccurinthisplasmaandusethepicturebelowtoestimatetheamountofenergyreleasedinthisreaction.

Differentpossibilities(energiesonlyapproximate,countvaluecorrectifdifferenceislessthen1MeV)D+DàT+p+4MeVD+Dà3He+n+3.3MeVT+Tà4He+2n+11MeV3He+Dà4He+p+18MeV3He+Tà4He+D(orp+n)+12-14MeV3He+3Heà4He+p+13MeV

Page 7: e = electron charge = 1.6x10-19 C me = electron mass = 9.1x10-31

b) (3pts)Challenge2:TheBurnCondition.Tohavenetfusionpowerweneedtofulfilthefollowingcondition:Morepowershouldbeproducedbyfusionreactionsthanweneedtoprovidetoheattheplasma.Thisleadstothefusiontripleproduct.Whicharethethreeparameterswhichdeterminethiscondition?

nxTxτE>constantn=densityT=temperatureτE=energyconfinementtime

c) (7pts)Challenge3:Magneticconfinement.Weneedtoconfinethehotplasmawith

amagneticfieldBof5T.• (2pt)calculatetheaveragespeedofadeuteriumionina15keVplasma• (2pt)calculatetheradiusatwhichthisiongyratesaroundthemagneticfield

line.• (3pt)Sketchthemotionofthisioninthefollowingthreesituations:theionis

movingparalleltothemagneticfield,perpendiculartothemagneticfieldandoblique(i.e.underanangle)tothemagneticfield.Indicateclearlythedirectionsofmagneticfieldandvelocity.

Averagevelocity:0.5*md*v2=kTàv=√(2kT/md)

=√(2x15000*1.6.10-19/2x1.6x10-27)=√1011=3.3x105m/s

(Note:kTisenergyunit.Thisisgivenhereas15keV,toconvertthisbacktoJoule,youhavetomultiplybye=1.6x10-19J/eV)Radius:rlarmor=mxv/(qxB)=2x1.6x10-27x3.3x105/(1.6x10-19x5)=1.3x10-3mMotion(1pteach):- parallel:noforce,ioncontinuestomovestraighton- perpendicular:circulatingthemagneticfield.Checkalsodirection(-0.5ptifthisis

notindicatedorincorrect! - oblique:combinationofboth:spiral(alsocheckdirection)

Page 8: e = electron charge = 1.6x10-19 C me = electron mass = 9.1x10-31

d) (4pts)Challenge4:Temperature.FusionoftheD-Treactioniseasiestat15keV

(equaltoapproximately165MillionK).Thiscanbedonebyeitherinjectingparticlesorinjectingelectromagneticwaves

• (2pts)Whichparticlesarebesttoinjecttobesttoinjecttoheattheplasma.Explainthisheatingprinciplein2-3sentences.

• (2pts)toheatthedeuteriumnucleiintheplasma,whichfrequencyofelectromagneticwaveisbesttoinjectinareactorwithamagneticfieldof5T?

Besttoinjectfuelparticles(0.5pt)DeuteriumortritiumTheseshouldbeneutral(0.5pt)withanenergymuchhigherthantheplasmatemperature(0.5pt).Neutralparticlesareinjectedintotheplasma,particlesgetionizedandthenfollowthemagneticfieldlines.Thentheycollidewiththeplasmaparticlesandtransfertheirkineticenergytotheplasma(0.5pt)Frequencytoheatdeuterium:f=eB/(2pi.Md)=1.6x10-19x5/(2x3.14x2x1.67x10-27)Hz=38MHz(note:ifangularfrequencyisgiven,ie..withoutfactor2pithisisalsocorrectiftherightunitsisgiven)

e) (7pts)Challenge5:Wallpowerload.Theaimofafusionpowerplantistoproduceelectricity.Assumewehaveafusionpowerreactorofthetypetokamak,producing4GWoffusionpower(fromtheD-Treaction).Themajorradiusis6meter,theminorradius=2meter.Assumethetorushasacircularcrosssection.

• (2pt)Describehowthisfusionpowerisconvertedtoelectricityandgiveacoarseestimateofthetheelectricoutputpowerofthisreactor.

• (3pt)Thefusionpowerisdistributedbetweentheneutronsandthealphaparticles.Let’sconcentrateontheneutrons.Whatisthepoweroftheseneutrons?Whereisitdeposited?Besidesthepowerproduction,whatotherusedotheneutronshave?

• (2pt)Calculatethepowerwallload(inMW/m2)asaresultoftheneutrons.Fusionpoweriskineticenergyofneutrons(80%)andalphaparticles(20%).Thiswillbedepositedinthereactorwall(neutrons)orinthedivertor(plasmalossesincludingalphaparticlepower).Coolingpipesinreactorwallandivertorwillheatupthewater,generatingsteam,rotatingturbine,producingelectricityinconventionalmanner.The4GWoffusionpowerwillleadwithaconversionefficiencyofabout25%to1GWofelectricpower.PowerofNeutrons:80%of4GW=3.2GWWheredeposited:inreactorwallOtherreaction:produceTritium:n+6,7LiàHe+T+(n)Powerwallload:Totalarea=4π2Rxa=474m2àpowerload=3.2GW/474m2=6.8MW/m2

f) (4pts)Challenge6:control.Tocontroltheplasmaweneedtomeasureinrealtime

Page 9: e = electron charge = 1.6x10-19 C me = electron mass = 9.1x10-31

someplasmaparameters,liketheplasmatemperature.• (2pt)Describeameasurementtechnique(physicsprinciple)todothis.• (2pt)Useasketchtoillustratethisandindicatethemainhardware

component.Temperature:a) ThomsonScattering:injectionoflaser.Laserphotonsscatteron

electrons.PhotonsaredetectedataDopplershiftedfrequency.ThisDopplershiftisameasureoftheelectronvelocity.Fullspectrumrepresentsvelocitydistribution.Itwidthdeterminesthetemperature.

b) Components:laser,lensestodetect,spectrometer.(AlternativelyECEcanbeexplained:microwaves,blackbodyradiation,intensityproportionaltotemperature)g) (4pts)Challenge7:Fusionisonlycompetitivewithalternativeenergysourcesifthe

costs/kWharecomparable.Afusionreactorisextremelyexpensive(about10BillionEuro’s)becauseoftheinfrastructure.

• (2pt)Giveoneargumentwhythecosts/kWhcanstillbereasonable• (2pt)Alsogiveanargumentwhythecosts/kWhareatriskofrisingtoohigh

(assumethatwewillbeabletoreachtherequiredfusioncriteriontoproducenetenergy).

Investmentscostareverylarge,butrunningcostverylow,soeffectivelythecost/kwHcanstillbereasonable.Systemiscomplex.Ifthereactorisdown(lowavailability)thenthecosts/kwHrise.

Page 10: e = electron charge = 1.6x10-19 C me = electron mass = 9.1x10-31

4. SolarCells–35pts–estimatedtime50minutes

Analyseandcarefullydescribeinyourownwordsthestructureofacrystallinesiliconsolarcellbyaddressingthefollowingquestions:a) (4pts)Makeacompletesketchofac-Sisolarcellandindicateitscomponents.

b) (3 pts) The p-n junction in a solar cell is essential because it takes care of the

separationof theelectronsandholes,once theyhavebeengenerated bysunlightabsorption in the semiconductor. Make an accurate sketch of the energy banddiagram of a p-n junction in a solar cell and indicate in which directions theelectrons andholeswill be transportedwhen they experience the electric fieldofthejunction.

c) (6 pts) Explainwhy it is not possible to convert all the photocurrent (i.e. all thephoto-generatedcharges)inusefulelectricalcurrentfromasolarcell.Makeuseof

Page 11: e = electron charge = 1.6x10-19 C me = electron mass = 9.1x10-31

theelectricalcircuitofasolarcell.

Thephotocurrent(Iph)anddiodecurrent(Id)areinoppositedirectionssincethefirstrelateswiththecurrentofthechargesgeneratedbysunlightabsorptionandbeingsweptacrossthejunctionviadriftmechanism,whilethediodecurrentisarecombinationcurrentduetothediffusionofelectronsfromntopandholesfrompton.Thisrecombinationdiodecurrentisalwayspresentbecausetheseparationofchargesinducesaforwardbias(p-typesiliconbecomesp-polarizedandn-typesiliconbecomesn-polarized)whichisthenresponsibleforthedevelopmentofthediffusion(diode)recombinationcurrent.ThisisthereasonwhyapartofIphwillbealwayslostintheformofdiodecurrentandtheusefulcurrentIwillbealwayslessthanIph.

d) (4 pts) According to the Matlab simulation, a crystalline silicon (c-Si) wafer with a

thickness of just 200-250 µm is sufficient to quantitatively absorb the solar light.However,thisisindiscrepancywiththevalueofthepenetrationdepthofthesunlightinto c-Si,which suggests thatwewouldneedat least a thicknessof1000µmto takeadvantageofallphotonswithenergyabovethec-Siband-gap(1.1eV).Canyouexplainthisdiscrepancybytakingintoconsiderationthestructureofthesolarcell?

Thediscrepancybetweenthetworesultsarisesfromthefactthatthefirstansweristheresultoftheoptimizationinthedesignofthesolarcell.Specifically,wecanuse“only”200-250µmofc-Si because the optimized structure of the cell includes ametal (preferably of Au, Al or Cu)back contact which serves also as back-reflector and reflects back into the c-Si absorber allthosephotonswhichhavenotbeenabsorbedyetfromc-Si.

e) (5pts)Theefficiencyofthesunlight-to-electricityconversionprocess is limitedbythe2nd law of thermodynamics. Why? Furthermore, provide an estimate of thethermodynamic limit values, according to the twomodelswhichwedescribedduringclasses.Whydothetwomodelsprovidedifferentthermodynamicefficiencyvalues?

Thethermodynamiclimitisduetothefactthatwecannotconvertwith100%efficiencytheheat(photons)fromthesunintousefulelectricalwork,otherwisewewouldgoagainstthe2ndlawofthermodynamics.AccordingtotheShockley-Queissermodel,thislimitisequalto44%.TheDetailedBalancemodelmodelmakesamoreaccuratecalculation:31%.TheDetailedBalancemodelcorrectstheShockleyQueissermodelby:1)consideringthatthecurrentisalwayslowerbecausefundamentalchargerecombinationoccurs;2)themaximumvoltagewecangainfromasolarcellwillbeneverequaltothebandgapvalueofthesemiconductor,butequaltotheVoc(Voc<Bg).

Page 12: e = electron charge = 1.6x10-19 C me = electron mass = 9.1x10-31

f) (8pts)Providealistofalllossmechanismsoccurringinacommercialsolarcellandexplainthemindetailbymakinguseofsketches.

Spectralmismatchisduetothemismatchbetweenthesunlightspectrumandthebandgapofthesemiconductor.PhotonswithlowerenergythanBgwillnotbeabsorbedwhilephotonsabovetheBgwillbeabsorbedbuttherestoftheenergywillbelostasheat.Shadowingandreflectionlossesarerelatedtotheopticalpathofthelightwhenhittingacell.Lightreflectingonthemetalcontactswillnotbeabsorbedandlightcanbereflectedalsoattheglasssurfacetoo.Chargescanrecombinebecauseelectronscanfallbackintothevalencebands.Furthermorethepresenceofdefectsatsurfacesandinterfacestrapchargestoo.Afewsketchesareherepresented:

g) (5pts)Whichisthemajorlossmechanism?Canyouprovideandexplainindetailone

approachtoaddressthisspecificlossmechanism?Makealsouseofasketchtopresent

Page 13: e = electron charge = 1.6x10-19 C me = electron mass = 9.1x10-31

yourapproach.Spectralmismatchisthemajorlossinsolarcells.Oneapproachistotakeadvantageofsolarcellsmadeoutofmultiplejunctions(tandem,triple)wheretwoorthreesemiconductorswithdifferentbandgapvaluesareusedtobetterexploitthesolarspectrum.Anotherapproachistoconvertphotonsnotusefulforthespecificband-gaptoenergyrangeswhichhaveabettermatchwiththebandgapvalue:wetalkthenaboutconvertors(upconvertersanddownconverters).