その場放射光電子分光による...

30
SR RHEED Monitoring Pulsed Laser Deposition Moving Edge Mask Pattern Ceramic Targets 物構研シンポジウム09 放射光・中性子・ミュオンを用いた表面・界面科学の最前線 2009年11月17-18日(17日(金))@つくば国際会議場エポカル その場放射光電子分光による 強相関ヘテロ界面の電子状態の研究 その場放射光電子分光による 強相関ヘテロ界面の電子状態の研究 東京大学大学院工学系研究科 JST-さきがけ 東大放射光連携研究機構 組頭 広志

Upload: others

Post on 01-Feb-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • SR RHEEDMonitoring

    Pulsed LaserDeposition

    Moving EdgeMask Pattern

    Ceramic Targets

    物構研シンポジウム’09放射光・中性子・ミュオンを用いた表面・界面科学の最前線2009年11月17-18日(17日(金))@つくば国際会議場エポカル

    その場放射光電子分光による

    強相関ヘテロ界面の電子状態の研究

    その場放射光電子分光による

    強相関ヘテロ界面の電子状態の研究

    東京大学大学院工学系研究科JST-さきがけ

    東大放射光連携研究機構

    組頭 広志

  • SR

    COLLABORATORSCOLLABORATORS

    東京大学大学院工学系研究科応用化学専攻吉松公平、安原隆太郎、簑原誠人

    近松彰*、堀場弘司#,+、尾嶋正治#,+

    東京大学大学院理学研究科物理学専攻和達大樹、滝沢優、藤森淳

    高エネルギー加速器研究機構久保田正人、小野寛太#

    東京大学物性研究所Mikk Lippmaa

    東北大学金属材料研究所川崎雅司#

    東京大学大学院新領域研究科鯉沼秀臣

    *東大院理

    #JST-CREST+東大放射光連携研究機構

  • QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

    �ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç ÅB

    はじめにはじめに

    1. 成膜技術(レーザーMBE法など)の発展により、原

    子レベルで構造を制御した酸化物薄膜・超格子の

    作製が可能となった。

    2. 強相関酸化物においても、今後、物質設計の自由

    度が高く、物性を自由自在に制御可能な「超構

    造」を用いた研究が主流になる。

    3. 放射光を用いた分光法は、酸化物薄膜・超格子研

    究の強力な牽引力になる。

  • Heterojunctions based onPerovskite Oxides

    INTRODUCTIONINTRODUCTION

    A’B’O3

    ABO3

    Controlling physical properties using interface effects

    Ferroelectric FET

    T. Kanki et al., Appl. Phys. Lett. 83, 4860 (2003).

    Resistance RAM

    T. Fujii et al., Appl. Phys. Lett. 86, 012107 (2005).

    Spin

    Charge

    Orbital

    e-

    Heterointerface

    Epitaxial StrainSpin Exchange

    Charge Transfer

    High TcCMRMI transition

  • SR analysis for oxide heterointerfaceSR analysis for oxide heterointerface

    Charge

    Charge Transfer, ValenceBand diagram

    Orbital

    XAS(LD)

    PES(DOS, Core level)

    MCDA’B’O3

    ABO3?Spin

    SRe-

    Epitaxial StrainSpin Exchange

    界面数nmの領域(少ないボリューム)における電子・スピン・軌道状態を元素選択的に測定可能

  • ☆Non-destructive☆Surface (Interface) Sensitive(5〜30Å)☆Direct Determination

    of Electronic States

    High Directionality

    High Brilliance

    High Resolution

    Tunable Photon Energy

    Advantage of SR-PESAdvantage of SR-PES

    Chemical ShiftDOSBand Diagram

    SRAnalyzerhν

    e-High-throughput

    High-resolution

    SpaceEnergyAngle

    100μm

    yx

    Hard-XrayPES@SPring-8 (〜1000 A)

  • SR Combinatorial Laser MBE Chamber

    PhotoemissionChamber

    LEED & Auger

    Prep. Cham.

    Sample Entry

    In-situ PES + Laser MBE systemIn-situ PES + Laser MBE system

    K. Horiba, HK et al., Rev. Sci. Instrum. 74, 3406 (2003).

    Inte

    nsity

    (arb

    . uni

    ts)

    Binding Energy (eV)

    La0.6Sr0.4MnO3 thin film hν = 600 eV

    T = R.T.

    EF510

  • Combinatorial Laser MBE ApparatusCombinatorial Laser MBE ApparatusLaser Molecular Beam Epitaxy

    Pulsed Nd: YAGLaser for Ablation

    RHEED

    CW Diode LaserFor Sample Heating

    Stepping MotorFor Mask

    & Sample

    Stepping Motorfor Target

    RHEED Oscillation

    Plume

    CeramicTarget

    Substrate

    O2inlet

    PulsedLaser

  • 100 nm

    Atomically-flat surface of La1-xSrxMnO3 thin films

    0.4nm

    &Well-ordered Surface

  • Combinatorial Laser MBE ApparatusCombinatorial Laser MBE ApparatusLaser Molecular Beam Epitaxy

    Pulsed Nd: YAGLaser for Ablation

    RHEED

    CW Diode LaserFor Sample Heating

    Stepping MotorFor Mask

    & Sample

    Stepping Motorfor Target

    RHEED Oscillation

    Plume

    CeramicTarget

    Substrate

    O2inlet

    PulsedLaser

    [001

    ]

    m

    ABO3

    ABO3

    ABO3

    A’B’O3

    A’B’O3

    ・・・・

    ・・・・

  • Resonant PES of LSMO (x=0.4)

    LSMO

    LSFO

    I = exp(-d/λ)

    IPES

    d

    LSMO

    LSFO

    InterfaceInterface

    Probing Electronic Structureat the Interface (Mn 3d PDOS)

    hν = 644 eV

    Resonant PES ApproachResonant PES Approach

    Intensity (arb. units)

    660 660

    655 655

    650 650

    645 645

    640 640Ph

    oton

    Ene

    rgy

    (eV

    )

    Inte

    nsity

    (arb

    . uni

    ts)

    Binding Energy (eV)10 515 EF

    La0.6Sr0.4MnO3 thin filmT = R. T.

    On

    Off

  • RHEED Pattern & AFM ImagesRHEED Pattern & AFM Images

    1 x 1 μm

    LSFO x=0.4

    Nb-STO substrate

    LSMOx=0.55 LSMO x=0.4 (20 ML)

    1 ML2 ML

    A B C D

    A B C D

  • Inte

    nsity

    (arb

    . uni

    ts)

    Binding Energy (eV)

    A B C D

    T = R.T.

    Mn 2p-3d Resonancehν = 640 eV

    EF24 135 -1

    STO substrate

    LSMO x=0.55

    LSMO x=0.4

    LSFO x=0.4

    1ML2ML

    (20ML)

    A B C D

    LSMO

    LSFOCharge

    Transfer

    Spectral Evidence of Charge Transfer at LSMO/LSFO Interface

    Mn 2p-3d Resonant PES

    Resonant PES of LSMO at InterfaceResonant PES of LSMO at Interface

    t2geg

    K. Horiba, H.K. et al., Phys. Rev. B 71, 155420 (‘05)

    H. Kumigashira et al., Appl. Phys. Lett. 84, 5353 (2004).

  • LSMO (20ML)

    LSFO

    LSMO (3ML)

    Inte

    nsity

    (arb

    . uni

    ts)

    730725720715710705700

    Photon Energy (eV)

    Fe 2p XAS

    LSMO/LSFO(1ML)/LSMO

    LSMO/LSFO(2ML)/LSMO

    Fe-2p XAS spectra

    XAS Spectra of Interfacial LSFO LayerXAS Spectra of Interfacial LSFO Layer

  • Comparison of Fe-2p XAS spectrabetween Interfacial LSFO layer and LSFO films

    Comparison of Fe-2p XAS spectrabetween Interfacial LSFO layer and LSFO films

    Inte

    nsity

    (arb

    . uni

    ts)

    730725720715710705

    Photon Energy (eV)

    La1-xSrxFeO3 film

    x = 0.67

    x = 0.4

    x = 0.2

    x = 0

    Fe 2pthe spin-orbit splitting of the Fe 2p core hole

    Evidence of Charge Transferfrom LSMO to LSFO

    Fe-2p XAS spectraIn

    tens

    ity (a

    rb. u

    nits

    )

    725720715710705700

    Photon Energy (eV)

    Fe 2p XAS

    LSMO /LSFO (1ML) /LSMO

    LSFO film (x = 0.2)

    LSFO film (x = 0.4)

    LSMO /LSFO (2ML) /LSMO

    H. Wadati, H.K. et al., Phys. Rev. B 71, 035108 (05).

  • Robust Ti4+ states

    Ti3+

    Ti4+

    K. Morikawa et al., Phys. Rev. B 54, 5446 (1996).

    C.T.

    Mn3+→Mn4+

    Ti4+→Ti3+TiO2

    TiO2SrO

    SrOMnO20.6 0.4

    MnO2La Sr O0.6 0.4

    La Sr O

    Charge Transfer

    Ti 2p Core Level Spectra at InterfacesTi 2p Core Level Spectra at Interfaces

    H. Kumigashira et al., Appl. Phys. Lett. 88, 192504 (‘06).

    1.5 eV

    TiO 2

    TiO 2SrO

    SrO

    MnO 2La Sr O0.6 0.4

    MnO 2La Sr O0.6 0.4

    STO

    LSMO

  • Mn3+→Mn4+

    Ti4+TiO 2TiO 2SrO

    SrOMnO 2

    La Sr O0.6 0.4MnO 2

    La Sr O0.6 0.4

    STO/LSMO

    Difference of 3d levels among transition metalsFeO 2

    FeO 2

    MnO 2La Sr O0.6 0.4

    MnO 2La Sr O0.6 0.4

    La Sr O0.6 0.4

    La Sr O0.6 0.4

    Mn3+→Mn4+

    Fe4+→Fe3+

    LSFO/LSMO

    Origin of Charge TransferOrigin of Charge Transfer

    Mn 3d

    t2g

    t2g3eg1.6t2g3eg0.6t2g0

    Bin

    ding

    Ene

    rgy

    Ti 3d Fe 3d

    t2gt2g

    egeg

    e-

    Electron-donor layer Charge redistribution at interface

  • Interfacial Electronic Structure ofLaAlO3/ SrTiO3 Heterojunctions

    n-type (Metallic) p-type (lnsulating)

    LaAlO3 /TiO2-SrTiO3 LaAlO3 /SrO-SrTiO3

    A. Ohtomo and H. Y. Hwang, Nature 427, 423 (‘04).

  • Origin of the Metallic Interface

    DOS at EF is different between the two scenarios.

    2. Oxygen Vacancies

    SrTiOSrTiO33--δδ

    LaAlOLaAlO33

    W. Simons et al.,Phys. Rev. Lett. 98,196802 (2007).

    n

    z

    λIPES

    O 2p

    EF

    1. Charge Transfer

    2Ti4+(d 0 ) + e- → Ti3+( d 1 )+Ti4+

    N. Nakagawa et al.,Nature Mater. 5, 204 (2006).

    0.5 e-

    0.5 e-

    (Ti(Ti4+4+OO2222--))00(Sr(Sr2+2+OO22--))00

    (Ti(Ti3.5+3.5+OO2222--))0.50.5--(La(La3+3+OO22--))++

    λ

    n

    zIPES

    O 2p Ti 3d

    EF

    (Al(Al3+3+OO2222--))--

  • Detection Limit of PES Mearuements2. Oxygen Vacancies

    (wide distribution over STO)

    SrTiOSrTiO33--dd

    n

    IPES

    1. Charge Transfer(Confinement@interface region)

    n

    dIPES = exp(-d/λ)

    O 2p Ti 3d

    EF

    SrTiOSrTiO33--dd

    LaAlOLaAlO33LaAlOLaAlO33λ λ

    O 2p

    EF

    Ti 3dTi 3d

    EF

    PES detection limit

    DOS at EF is different between the two scenarios.

    d

  • Inte

    nsity

    (arb

    . uni

    ts)

    Binding Energy (eV)EF

    0 ML(SrTiO3)

    1 ML

    2 ML

    3 ML

    4 ML

    5 ML

    6 ML

    LaAlO3 / TiO2-SrTiO3Valence Band hν = 600 eV

    246810Binding Energy (eV)

    EF

    0 ML (SrTiO3)

    1 ML

    2 ML

    3 ML

    4 ML

    5 ML

    6 ML

    LaAlO3 / TiO2-SrTiO3

    Near EF

    123

    No detectable Ti 3d DOS at EF

    Valence Band Spectra of n-type InterfacesPES spectra of LSTO

    T. Yoshida et al., Europhys. Lett. 59, 258 (‘02)

    K. Yoshimatsu et al., Phys. Rev. Lett. 101, 026802 (08).

  • Numerical Simulations

    The 3d electrons only exist at TiO2 layer adjacent to (LaO)+ layer.

    0.5 e-

    (Sr2+O2-)0(Ti3.5+O22-)0.5-

    (Al3+O22-)-

    (La3+O2-)+

    (Ti4+O22-)0z

    N

    Inte

    nsity

    (arb

    . uni

    ts)

    2.0 1.0 0.0 -1.0Binding Energy (eV)

    1 ML

    0 ML (SrTiO3)

    LaAlO3 / TiO2-SrTiO3

    EF

    Near EF

    2 ML

    3 ML

    4 ML

    5 ML

    6 ML SimulationsConfinement at the interface(δ function)

  • Inte

    nsity

    (arb

    . uni

    ts)

    3 2 1 0 -1Binding Energy (eV)

    LaAlO3 / TiO2-SrTiO3

    6 ML

    5 ML

    4 ML

    On - Resonance Off - Resonance

    EF

    La0.6Sr0.4TiO3On-resonanceOff-resonance

    Near EF

    EF

    Ti 3d

    123

    Chemical stabilities of Ti4+ states in TiO2irrespective of the neighboring donor LaO layer

    Ti 2p → 3d Resonant Spectra

    Charge transfer doesn’t occur at the LAO/STO interface.

    Inte

    nsity

    (arb

    . uni

    ts)

    Relative Binding Energy (eV)1 0 -1 -2

    LaAlO3 / TiO2-SrTiO3hν = 800 eV

    Ti 2p

    0 ML(TiO2-SrTiO3)

    6 ML

    2

    4+3+

  • EF

    VBM

    CBM

    3.2 eV 2.9 – 3.0 eV

    SrTiO3

    5.6 eVIn

    terf

    ace

    LaAlO3

    Band Diagram of the n-type Interface

    Inten

    sity (

    arb.

    units

    )

    Binding Energy (eV)EF

    0 ML(SrTiO3)

    1 ML

    2 ML

    3 ML

    4 ML

    5 ML

    6 ML

    LaAlO3 / TiO2-SrTiO3Valence Band hν = 600 eV

    246810Binding Energy (eV)

    EF

    0 ML (SrTiO3)

    1 ML

    2 ML

    3 ML

    4 ML

    5 ML

    6 ML

    LaAlO3 / TiO2-SrTiO3 Near EF

    123

    1. VBM of STO is located at 2.9-3.0 eV below EF.2. VBM is nearly continuous between STO and LAO.

    (The leading edge of valence band structures is located at almost constant energy position.)

    Eg(STO) = 3.2 eVEg(LAO) = 5.6 eV

    Valence band spectra

    CBM is located at 0.2 - 0.3 eV above EF

  • A Notched Structure

    0.4

    0.3

    0.2

    0.1

    0.0

    -0.1

    Rel

    ativ

    e B

    indi

    ng E

    nerg

    y (e

    V)

    6543210 LAO film thickness (ML)

    LaAlO3 / TiO2-SrTiO3

    EF

    VBM

    CBM

    3.2 eV 2.9 – 3.0 eV

    SrTiO3

    5.6 eVIn

    terf

    ace

    LaAlO3

    Band Diagram of the n-type Interface

    CBM in STO is nearly attained at EF

    Ti 2p core level spectra

    461 460 459 458 457

    LaAlO3 / TiO2-SrTiO3

    hν = 800 eV Ti 2p 0 ML

    (TiO2-SrTiO3)

    6 ML

    Binding Energy (eV)

    In te n

    s i ty (

    a rb .

    u nits

    )

    n-type (metallic)

    n-type

    Band bending of 0.2-0.3 eV to higher binding energy from STO to the metallic interface.

    0.2-0.3 eV

  • EF

    VBM

    CBM

    3.2 eV 2.9 – 3.0 eV

    SrTiO3

    5.6 eVIn

    terf

    ace

    LaAlO3

    Band Diagram of LAO/STO InterfaceTi 2p core level spectra

    461 460 459 458 457

    LaAlO3 / TiO2-SrTiO3

    hν = 800 eV Ti 2p 0 ML

    (TiO2-SrTiO3)

    6 ML

    Binding Energy (eV)

    Inten

    si ty (

    a rb .

    u nits

    )

    461 460 459 458 457

    LaAlO3 / SrO-SrTiO3

    hν = 800 eV Ti 2p 0 ML

    (SrO-SrTiO3)

    6 ML

    Binding Energy (eV)

    0.4

    0.3

    0.2

    0.1

    0.0

    -0.1

    Ener

    gy S

    hift o

    f Ti 2

    p (eV

    )

    6543210LaAlO3 film thickness (ML)

    LaAlO3 / TiO2-SrTiO3

    LaAlO3 / SrO-SrTiO3

    n-type (metallic) p-type (insulating)

    n-type

    p-type

    No peak shift at the p-type interfaceBand bending on the STO side is responsible for the metallic states.

  • EF

    VBM

    CBM

    3.2 eV 2.9 – 3.0 eV

    SrTiO3

    5.6 eV

    Inte

    rfac

    e

    LaAlO3

    EF

    0.25 ± 0.07 eV

    e-e-e-

    TiO2-terminated SrTiO3

    ++++++

    ------

    + - + -

    Interface

    (LaO

    )+

    (AlO

    2)-

    (LaO

    )+

    (AlO

    2)-

    TiO

    2

    SrO

    TiO

    2

    SrO

    LaAlO3

    Origin of Metallic Conductivity in LAO/STO

    The metallic conductivity originate from the accumulation of carriers on the notched structure formed at the interface.

    A Notched Structure

    K. Yoshimatsu et al., Phys. Rev. Lett. 101, 026802 (08).

  • EF

    0.25 ± 0.07 eV

    SrO-terminated SrTiO3

    ++++++

    ------

    Interface

    +

    (LaO

    )+

    -

    (AlO

    2)-

    +

    (LaO

    )+

    -

    (AlO

    2)-

    TiO

    2

    SrO

    TiO

    2

    SrO

    LaAlO3

    Origin of M-I Transition by Inserting SrO

    The notched structure disappears by inserting SrO atomic layer between LAO and STO.

    EF

    VBM

    CBM

    3.2 eV 2.9 – 3.0 eV

    SrTiO3

    5.6 eV

    Inte

    rfac

    e

    LaAlO3

    Insulating

    K. Yoshimatsu et al., Phys. Rev. Lett. 101, 026802 (08).

  • Summary in LAO/STO InterfaceWe determined the band diagrams of LAO/STO heterojunctionsby using in situ photoemission spectroscopy.

    1. There is no detectable Ti 3d DOS at EF expected from charge transfer through the interface.

    2. Owing to the band discontinuity of LAO/STO, a notched structure is formed at the metallic interface.

    We have found

    3. The structure, however, is absent at the insulating interface.

    The metallic states at the interface between band insulators LAO/STO originate not from charge transfer through the interface on a short-range scale but from the accumulation of carrier on a long-range scale.

  • SR

    ConclusionConclusion

    1. レーザーMBE法(PLD法)の発展により、原子レベ

    ルで構造を制御した酸化物薄膜・超格子の作製が

    可能となった。

    2. 強相関酸化物においても、今後、物質設計の自由

    度が高く、物性を自由自在に制御可能な「超構

    造」を用いた研究が主流になる。

    3. 放射光を用いた分光法は、酸化物薄膜・超格子研

    究の強力な牽引力になる。

    いま

    、ここ