dynamo and magnetic helicity flux hantao ji cmso & pppl cmso general meeting princeton, october...

15
Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart Prager (Wisconsin)

Upload: tyler-mccann

Post on 27-Mar-2015

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart

Dynamo and Magnetic Helicity Flux

Hantao JiCMSO & PPPL

CMSO General MeetingPrinceton, October 5-7, 2005

Contributors:Eric Blackman (Rochester)Stewart Prager (Wisconsin)

Page 2: Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart

Outline• Introduction to magnetic relaxation

• Magnetic helicity transport

• The -effect

• Relation between the -effect and helicity transport

• Summary

Page 3: Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart

Reversed Field Pinch (RFP) Plasmas Sustained by a Toroidal

Electric Field• Donut-shaped plasmas is enclosed by electrically conducting “shells”– Cuts in both toroidal and poloidal directions allow flux penetration.

– Rate of flux change corresponds to finite “loop voltages”.

Page 4: Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart

Determining Integrated Quantities

• Directly measured– Total toroidal current (plasma current)

– Total toroidal flux– Toroidal and poloidal loop voltages

• Inferred from equilibrium– Total internal poloidal flux

– Total magnetic helicity– Total magnetic energy

• Periodic “relaxations”

Toroidal flux in MST

K = A ⋅BdV∫

Page 5: Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart

Balance of Integrated Quantities

• Between relaxations: dissipation injection

• During relaxations: dissipation rate of change

dK

dt= −2 E ⋅BdV − 2φ ⋅B + A ×

∂A

∂t

⎝ ⎜

⎠ ⎟⋅dS∫∫

dW

dt= − E ⋅ jdV − E × B( ) ⋅dS∫∫

ensemble average:

injectiondissipation

Page 6: Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart

Balance of Mean Profiles: Transport

• K is transported outward

• W is dissipated in the core

dK

dt= −2 E ⋅BdV − 2φB + A ×

∂A

∂t

⎝ ⎜

⎠ ⎟⋅dS∫∫

dW

dt= − E ⋅ jdV − E × B( ) ⋅dS∫∫

Page 7: Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart

Helicity in a Sub-volume of a Torus

• Total helicity K can be split into three parts:

K = Kcore + Kedge + K link

b

a

ΦbΨ −Ψa b

K link = 2Φb Ψa − Ψb( )

d K − Kcore( )dt

=dKedge

dt+

dKlink

dt

d K − Kcore( )dt

= −2 E ⋅BdVb

a∫ − 2φB + A ×

∂A

∂t

⎝ ⎜

⎠ ⎟⋅dS

a∫ + 2φB + A ×

∂A

∂t

⎝ ⎜

⎠ ⎟⋅dS

b∫

ΦaVa

ΦbVb

Page 8: Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart

Transport of Magnetic Helicity

• The required magnetic helicity flux at r=b can be determined.

dKedge

dt+

dKlink

dt+ 2 E ⋅BdV

b

a∫ − 2ΦaVa + 2ΦbVb = 2 ΓdS

b∫

outward helicity transport

Page 9: Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart

Fluctuation-driven Flux Explains Helicity Transport

Γ= ˜ φ ̃ B r +1

2˜ A ×

∂ ˜ A

∂t≈ ˜ φ ̃ B r

Page 10: Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart

Balance of Mean Electric Field Profile: the -Effect

–0.5

0.5

1.0

1.5

2.0

V/m

0

0 0.2 0.4 0.6 0.8 1.0ρ/a

E||

ηneo J ||(Zeff = 2)

E||

+ α B = η j||

Requires nonzero

Page 11: Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart

The -effect in MHD• Ohm’s law:

• The mean and turbulent parts:

• The -effect:

E + v × B = ηj

E0 + v0 × B0 +ε = ηj0

˜ E + ˜ v × B0 + v0 × ˜ B + ˜ v × ˜ B −ε = η˜ j

=ε⋅B0

Β 02

=˜ v × ˜ B ⋅B0

Β 02

= −˜ v × B0( ) ⋅ ˜ B

Β 02

=˜ E ⋅ ˜ B

Β 02

−η ˜ j ⋅ ˜ B

Β 02

ε = ˜ v × ˜ B

≈˜ E ⋅ ˜ B

Β 02

≈˜ E ⊥⋅ ˜ B ⊥

Β 02

Page 12: Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart

Measured -effect Satisfies Mean Ohm’s Law

Page 13: Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart

Experiment (plasma edge):

Electric Field is Mainly Electrostatic

˜ E st = (1− 3)kV /m

˜ E = ˜ E st + ˜ E ind

˜ E ind = (10 − 20)V /m

Simulation:

Bonfiglio, Cappello & Escande (2005)€

˜ E st ~ 30 ˜ E ind

˜ E ≈ −∇ ˜ φ

Page 14: Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart

˜ E ⋅ ˜ B ≈ − ∇ ˜ φ ⋅ ˜ B = −∂ ˜ φ

∂z˜ B z +

∂ ˜ φ

∂y˜ B y +

∂ ˜ φ

∂r˜ B r

Averaging over periodic (toroidal & poloidal) directions:

˜ E ⋅ ˜ B ≈ −∂ ˜ φ ̃ B z( )

∂z− ˜ φ

∂ ˜ B z∂z

+∂ ˜ φ ̃ B y( )

∂y− ˜ φ

∂ ˜ B y∂y

+∂ ˜ φ ̃ B r( )

∂r− ˜ φ

∂ ˜ B r∂r

˜ E ⋅ ˜ B ≈ −∂ ˜ φ ̃ B r

∂r= −

∂Γ

∂r

-effect Closely Related to Helicity Flux

The -effect is propotional to the convergence of helicity flux.

Page 15: Dynamo and Magnetic Helicity Flux Hantao Ji CMSO & PPPL CMSO General Meeting Princeton, October 5-7, 2005 Contributors: Eric Blackman (Rochester) Stewart

Summary• Magnetic relaxation is accompanied by -effect and magnetic helicity transport.

and helicity flux are related by

– where averaging is taken in the periodic direction(s), and

– helicity flux points towards the un-averaged direction(s).

• Astrophysical implications– Averaging directions important

E||

+ α B = η j||

≈−1

B 2

∂Γ

∂r