dynamics of a particle in some cases of the n-body problem · dynamics of a particle in some cases...

79
Dynamics of a particle in some cases of the N -body problem Elipe, A. (1,2) 1 Grupo de Mecánica Espacial. (IUMA) 2 Centro Universitario de la Defensa. Zaragoza A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 1 / 25

Upload: dinhque

Post on 18-Jan-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

Dynamics of a particle in some cases of theN -body problem

Elipe, A.(1,2)

1Grupo de Mecánica Espacial. (IUMA)2Centro Universitario de la Defensa. Zaragoza

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 1 / 25

Introduction

Motivation

Two-body problem (no secrets)N -body problem (too difficult)R3BP (still difficult and 200 years of history)Add complications to the R3BP (non spherity, radiation pressure. . . , ribbon,. . . )Crazy models, but accepted in “journals”

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 2 / 25

Introduction

Motivation

Two-body problem (no secrets)N -body problem (too difficult)R3BP (still difficult and 200 years of history)Add complications to the R3BP (non spherity, radiation pressure. . . , ribbon,. . . )Crazy models, but accepted in “journals”

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 2 / 25

Introduction

Motivation

Two-body problem (no secrets)N -body problem (too difficult)R3BP (still difficult and 200 years of history)Add complications to the R3BP (non spherity, radiation pressure. . . , ribbon,. . . )Crazy models, but accepted in “journals”

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 2 / 25

Introduction

Motivation

Two-body problem (no secrets)N -body problem (too difficult)R3BP (still difficult and 200 years of history)Add complications to the R3BP (non spherity, radiation pressure. . . , ribbon,. . . )Crazy models, but accepted in “journals”

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 2 / 25

Introduction

Motivation

Two-body problem (no secrets)N -body problem (too difficult)R3BP (still difficult and 200 years of history)Add complications to the R3BP (non spherity, radiation pressure. . . , ribbon,. . . )Crazy models, but accepted in “journals”

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 2 / 25

Introduction

Motivation

thousands of exoplanets discoveredextrasolar systems with one or several stars and none or severalplanetsmotion of small particles (dust)⇒ force of radiationforce can be very big compared with the gravity force (Lamy &Perrin, 1997)This problem is a generalization of the classical RTBwith radiation emitted from the primaries (Schuerman, 1980).A rich dynamics

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 3 / 25

Introduction

Motivation

thousands of exoplanets discoveredextrasolar systems with one or several stars and none or severalplanetsmotion of small particles (dust)⇒ force of radiationforce can be very big compared with the gravity force (Lamy &Perrin, 1997)This problem is a generalization of the classical RTBwith radiation emitted from the primaries (Schuerman, 1980).A rich dynamics

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 3 / 25

Introduction

Motivation

thousands of exoplanets discoveredextrasolar systems with one or several stars and none or severalplanetsmotion of small particles (dust)⇒ force of radiationforce can be very big compared with the gravity force (Lamy &Perrin, 1997)This problem is a generalization of the classical RTBwith radiation emitted from the primaries (Schuerman, 1980).A rich dynamics

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 3 / 25

Introduction

Motivation

thousands of exoplanets discoveredextrasolar systems with one or several stars and none or severalplanetsmotion of small particles (dust)⇒ force of radiationforce can be very big compared with the gravity force (Lamy &Perrin, 1997)This problem is a generalization of the classical RTBwith radiation emitted from the primaries (Schuerman, 1980).A rich dynamics

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 3 / 25

Introduction

Motivation

thousands of exoplanets discoveredextrasolar systems with one or several stars and none or severalplanetsmotion of small particles (dust)⇒ force of radiationforce can be very big compared with the gravity force (Lamy &Perrin, 1997)This problem is a generalization of the classical RTBwith radiation emitted from the primaries (Schuerman, 1980).A rich dynamics

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 3 / 25

Introduction

Motivation

thousands of exoplanets discoveredextrasolar systems with one or several stars and none or severalplanetsmotion of small particles (dust)⇒ force of radiationforce can be very big compared with the gravity force (Lamy &Perrin, 1997)This problem is a generalization of the classical RTBwith radiation emitted from the primaries (Schuerman, 1980).A rich dynamics

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 3 / 25

Formulation of the problem

• we consider the Restricted collinear four-body problem with radiationpressure

• 3 primaries:(P0,m0, q0) and two identical bodies (P1,m, q), (P2,m, q)

• planar motion of a massless P in a synodic reference frame

m0 = βm, ω2 = ∆ = 2(1 + 4β)

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 4 / 25

Formulation of the problem

Radiation coefficients

b =FrFg→ qi = 1− bi

bi = 0 classical problembi ∈ (0, 1) reduction of gravitational forces by radiationbi ≥ 1 radiation has overhelmed gravitational forces by radiation

So, qi ∈ (−∞, 1] (i = 0, 1, 2)

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 5 / 25

Formulation of the problem

Radiation coefficients

b =FrFg→ qi = 1− bi

bi = 0 classical problembi ∈ (0, 1) reduction of gravitational forces by radiationbi ≥ 1 radiation has overhelmed gravitational forces by radiation

So, qi ∈ (−∞, 1] (i = 0, 1, 2)

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 5 / 25

Formulation of the problem

Radiation coefficients

b =FrFg→ qi = 1− bi

bi = 0 classical problembi ∈ (0, 1) reduction of gravitational forces by radiationbi ≥ 1 radiation has overhelmed gravitational forces by radiation

So, qi ∈ (−∞, 1] (i = 0, 1, 2)

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 5 / 25

Formulation of the problem

Equations of motion

x− 2 y =∂U

∂x, y + 2 x =

∂U

∂y,

where the effective potential U is

U(x, y) =1

2(x2 + y2) +

1

(β q0r0

+q1r1

+q1r2

),

in which

r0 =√x2 + y2,

r1 =

√(x− 1/2)2 + y2,

r2 =

√(x+ 1/2)2 + y2.

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 6 / 25

Equilibrium points

Equilibrium points

Ux = x− 1

[β q0r30

x+q1r31

(x− 1

2

)+q1r32

(x+ 1

2

)]= 0,

Uy = y

[1− 1

(β q0r30

+q1r31

+q1r32

)]= 0.

Two types of solutions:

• triangular points when y 6= 0• collinear points when y = 0

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 7 / 25

Equilibrium points Triangular points (y 6= 0)

Triangular points (y 6= 0)

Are defined by the value of y verifying the equation

∆ =

[β q0y3

+2 q1

(y2 + 1/4)3/2

].

PropositionThe number of triangular equilibria is

a) 2, when q0 > 0,b) 0, when q0 < 0 and q1 < 0,c) if q0 < 0 and q1 > 0, for each value of β there exists a function

Ψβ(q0) such that the number of equilibria isc.1) 0, when q1 < Ψβ(q0),c.2) 2, when q1 = Ψβ(q0),c.3) 4, when q1 > Ψβ(q0),

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 8 / 25

Equilibrium points Triangular points (y 6= 0)

Triangular points (y 6= 0)

Are defined by the value of y verifying the equation

∆ =

[β q0y3

+2 q1

(y2 + 1/4)3/2

].

PropositionThe number of triangular equilibria is

a) 2, when q0 > 0,b) 0, when q0 < 0 and q1 < 0,c) if q0 < 0 and q1 > 0, for each value of β there exists a function

Ψβ(q0) such that the number of equilibria isc.1) 0, when q1 < Ψβ(q0),c.2) 2, when q1 = Ψβ(q0),c.3) 4, when q1 > Ψβ(q0),

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 8 / 25

Equilibrium points Triangular points (y 6= 0)

Triangular points (y 6= 0)

Are defined by the value of y verifying the equation

∆ =

[β q0y3

+2 q1

(y2 + 1/4)3/2

].

PropositionThe number of triangular equilibria is

a) 2, when q0 > 0,b) 0, when q0 < 0 and q1 < 0,c) if q0 < 0 and q1 > 0, for each value of β there exists a function

Ψβ(q0) such that the number of equilibria isc.1) 0, when q1 < Ψβ(q0),c.2) 2, when q1 = Ψβ(q0),c.3) 4, when q1 > Ψβ(q0),

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 8 / 25

Equilibrium points Triangular points (y 6= 0)

Triangular points (y 6= 0)

Are defined by the value of y verifying the equation

∆ =

[β q0y3

+2 q1

(y2 + 1/4)3/2

].

PropositionThe number of triangular equilibria is

a) 2, when q0 > 0,b) 0, when q0 < 0 and q1 < 0,c) if q0 < 0 and q1 > 0, for each value of β there exists a function

Ψβ(q0) such that the number of equilibria isc.1) 0, when q1 < Ψβ(q0),c.2) 2, when q1 = Ψβ(q0),c.3) 4, when q1 > Ψβ(q0),

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 8 / 25

Equilibrium points Triangular points (y 6= 0)

Triangular points (y 6= 0)

Are defined by the value of y verifying the equation

∆ =

[β q0y3

+2 q1

(y2 + 1/4)3/2

].

PropositionThe number of triangular equilibria is

a) 2, when q0 > 0,b) 0, when q0 < 0 and q1 < 0,c) if q0 < 0 and q1 > 0, for each value of β there exists a function

Ψβ(q0) such that the number of equilibria isc.1) 0, when q1 < Ψβ(q0),c.2) 2, when q1 = Ψβ(q0),c.3) 4, when q1 > Ψβ(q0),

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 8 / 25

Equilibrium points Triangular points (y 6= 0)

Triangular points (y 6= 0)

Are defined by the value of y verifying the equation

∆ =

[β q0y3

+2 q1

(y2 + 1/4)3/2

].

PropositionThe number of triangular equilibria is

a) 2, when q0 > 0,b) 0, when q0 < 0 and q1 < 0,c) if q0 < 0 and q1 > 0, for each value of β there exists a function

Ψβ(q0) such that the number of equilibria isc.1) 0, when q1 < Ψβ(q0),c.2) 2, when q1 = Ψβ(q0),c.3) 4, when q1 > Ψβ(q0),

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 8 / 25

Equilibrium points Triangular points (y 6= 0)

Triangular points (y 6= 0)

Are defined by the value of y verifying the equation

∆ =

[β q0y3

+2 q1

(y2 + 1/4)3/2

].

PropositionThe number of triangular equilibria is

a) 2, when q0 > 0,b) 0, when q0 < 0 and q1 < 0,c) if q0 < 0 and q1 > 0, for each value of β there exists a function

Ψβ(q0) such that the number of equilibria isc.1) 0, when q1 < Ψβ(q0),c.2) 2, when q1 = Ψβ(q0),c.3) 4, when q1 > Ψβ(q0),

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 8 / 25

Equilibrium points Collinear points (y = 0)

Collinear points (y = 0)

The second equation is always satisfied. Then,

x− 1

[β q0r30

x+q1r31

(x− 1

2

)+q1r32

(x+

1

2

)]= 0,

where now r0 = |x|, r1 = |x− 1/2|, r2 = |x+ 1/2|.

There are four intervals in which the collinear equilibria can appear:

• the outer positive interval O = (1/2,∞)• the inner positive interval I = (0, 1/2)• the inner negative interval In = (−1/2, 0)• the outer negative interval On = (−∞,−1/2)

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 9 / 25

Equilibrium points Collinear points (y = 0)

Outer collinear equilibria

PropositionThe number of positive outer collinear equilibria, regardless of thevalue of β, is

a) 0, when q1 < 0,b) 1, when q1 > 0.

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 10 / 25

Equilibrium points Collinear points (y = 0)

Outer collinear equilibria

PropositionThe number of positive outer collinear equilibria, regardless of thevalue of β, is

a) 0, when q1 < 0,b) 1, when q1 > 0.

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 10 / 25

Equilibrium points Collinear points (y = 0)

Outer collinear equilibria

PropositionThe number of positive outer collinear equilibria, regardless of thevalue of β, is

a) 0, when q1 < 0,b) 1, when q1 > 0.

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 10 / 25

Equilibrium points Collinear points (y = 0)

Inner collinear equilibria

PropositionThe number of positive inner collinear equilibria is

a) 1, when q1 > 0 and q0 > 0,b) 0, when q1 > 0 and q0 < 0,c) 1, when q1 < 0 and q0 < 0,d) if q1 < 0 and q0 > 0, for each value of β there exists a function

Φβ(q0) such that the number of equilibria is:d.1) 0, when q1 < Φβ(q0),d.2) 1, when q1 = Φβ(q0),d.3) 2, when q1 > Φβ(q0).

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 11 / 25

Equilibrium points Collinear points (y = 0)

Inner collinear equilibria

PropositionThe number of positive inner collinear equilibria is

a) 1, when q1 > 0 and q0 > 0,b) 0, when q1 > 0 and q0 < 0,c) 1, when q1 < 0 and q0 < 0,d) if q1 < 0 and q0 > 0, for each value of β there exists a function

Φβ(q0) such that the number of equilibria is:d.1) 0, when q1 < Φβ(q0),d.2) 1, when q1 = Φβ(q0),d.3) 2, when q1 > Φβ(q0).

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 11 / 25

Equilibrium points Collinear points (y = 0)

Inner collinear equilibria

PropositionThe number of positive inner collinear equilibria is

a) 1, when q1 > 0 and q0 > 0,b) 0, when q1 > 0 and q0 < 0,c) 1, when q1 < 0 and q0 < 0,d) if q1 < 0 and q0 > 0, for each value of β there exists a function

Φβ(q0) such that the number of equilibria is:d.1) 0, when q1 < Φβ(q0),d.2) 1, when q1 = Φβ(q0),d.3) 2, when q1 > Φβ(q0).

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 11 / 25

Equilibrium points Collinear points (y = 0)

Inner collinear equilibria

PropositionThe number of positive inner collinear equilibria is

a) 1, when q1 > 0 and q0 > 0,b) 0, when q1 > 0 and q0 < 0,c) 1, when q1 < 0 and q0 < 0,d) if q1 < 0 and q0 > 0, for each value of β there exists a function

Φβ(q0) such that the number of equilibria is:d.1) 0, when q1 < Φβ(q0),d.2) 1, when q1 = Φβ(q0),d.3) 2, when q1 > Φβ(q0).

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 11 / 25

Equilibrium points Collinear points (y = 0)

Inner collinear equilibria

PropositionThe number of positive inner collinear equilibria is

a) 1, when q1 > 0 and q0 > 0,b) 0, when q1 > 0 and q0 < 0,c) 1, when q1 < 0 and q0 < 0,d) if q1 < 0 and q0 > 0, for each value of β there exists a function

Φβ(q0) such that the number of equilibria is:d.1) 0, when q1 < Φβ(q0),d.2) 1, when q1 = Φβ(q0),d.3) 2, when q1 > Φβ(q0).

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 11 / 25

Equilibrium points Collinear points (y = 0)

Inner collinear equilibria

PropositionThe number of positive inner collinear equilibria is

a) 1, when q1 > 0 and q0 > 0,b) 0, when q1 > 0 and q0 < 0,c) 1, when q1 < 0 and q0 < 0,d) if q1 < 0 and q0 > 0, for each value of β there exists a function

Φβ(q0) such that the number of equilibria is:d.1) 0, when q1 < Φβ(q0),d.2) 1, when q1 = Φβ(q0),d.3) 2, when q1 > Φβ(q0).

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 11 / 25

Equilibrium points Collinear points (y = 0)

Inner collinear equilibria

PropositionThe number of positive inner collinear equilibria is

a) 1, when q1 > 0 and q0 > 0,b) 0, when q1 > 0 and q0 < 0,c) 1, when q1 < 0 and q0 < 0,d) if q1 < 0 and q0 > 0, for each value of β there exists a function

Φβ(q0) such that the number of equilibria is:d.1) 0, when q1 < Φβ(q0),d.2) 1, when q1 = Φβ(q0),d.3) 2, when q1 > Φβ(q0).

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 11 / 25

Equilibrium points Collinear points (y = 0)

Inner collinear equilibria

PropositionThe number of positive inner collinear equilibria is

a) 1, when q1 > 0 and q0 > 0,b) 0, when q1 > 0 and q0 < 0,c) 1, when q1 < 0 and q0 < 0,d) if q1 < 0 and q0 > 0, for each value of β there exists a function

Φβ(q0) such that the number of equilibria is:d.1) 0, when q1 < Φβ(q0),d.2) 1, when q1 = Φβ(q0),d.3) 2, when q1 > Φβ(q0).

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 11 / 25

Regions with different number of equilibrium points

Region For any β Equilibria(T ;NO, NI , PI , PO)

I q0 ∈ [0, 1] q1 ∈ [0, 1] (2; 1,1,1,1)II q0 ∈ [0, 1] q1 ∈ (Φβ(q0), 0) (2; 0,2,2,0)Φβ curve q0 ∈ [0, 1] q1 = Φβ(q0) (2; 0,1,1,0)III q0 ∈ [0, 1] q1 < Φβ(q0) (2; 0,0,0,0)IV q0 < 0 q1 < 0 (0; 0,1,1,0)V q0 < 0 q1 ∈ (0,Ψβ(q0)) (0; 1,0,0,1)Ψβ curve q0 < 0 q1 = Ψβ(q0) (2; 1,0,0,1)VI q0 < 0 q1 > Ψβ(q0) (4; 1,0,0,1)

Six regions and two bifurcation curves

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 12 / 25

Regions with different number of equilibrium points

IVI

ΨβV

IV

II

Φβ

III

� T1� T2

� T3

-T4 T5 -

-T6

6

T7?

T8

6

q 1ax

is

q1 = 1

-q0 axis

q0

=1

Each Ti represents a transition between adjacent regions.

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 13 / 25

Regions with different number of equilibrium points

Transitions between adjacent regions (a)

T1 I→ VI T3 I→ V

Region I Region V Region VI

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 14 / 25

Regions with different number of equilibrium points

Transitions between adjacent regions (b)

T4 IV→ II T6 IV→ III

Region II Region III Region IV

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 15 / 25

Regions with different number of equilibrium points

Transitions between adjacent regions (c)

T7 IV→ V T8 I→ II

Region V Region IV Region I Region II

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 16 / 25

Regions with different number of equilibrium points

Transition T2

Transition from region VI to region V.Through a saddle-node bifurcation.

Figure: Transition T2: saddle-node bifurcation of triangular equilibrium oncurve q1 = Ψβ(q0). Left: two equilibria in region VI. Center: one cuspequilibrium in bifurcation line. Right: no equilibrium in region V

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 17 / 25

Regions with different number of equilibrium points

Transition T5 from region II to region III

It appears when the value of q0 crosses the bifurcation line.The two inner collinear equilibria approach and collide into a cupequilibrium point when q0 = Φβ(q1). After that, the equilibriumdisappears.

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 18 / 25

Regions with different number of equilibrium points

Linear stability of the equilibrium points

It is characterized by the roots of the characteristic equation:

λ4 + a λ2 + b = 0,

where coefficients

a = 4 − Uxx − Uyy, b = Uxx Uyy − U2xy

depend on the three parameters β, q0, q1 and the coordinates,x(β, q0, q1) and y(β, q0, q1), of the equilibrium points

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 19 / 25

Regions with different number of equilibrium points Stability of triangular equilibria

Stability of triangular equilibria

Coefficients of the characteristic equation, in this case, are

a = 4− (1 +Tx∆T

)− (1 +Ty∆T

) = 2− Tx + Ty∆T

= 1,

b = (1 +Tx∆T

)(1 +Ty∆T

) = 2 +TxTy∆2T

.

Proposition

In region I there is a β-parameter family of bifurcation lines,q1 = σ

β(q0), such as, for a given β, the line σ

βseparates region Ia,

q1 > σβ(q0), from region Ib, q1 < σ

β(q0).

In region Ia, the equilibrium is unstable, while in region Ib is stable.

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 20 / 25

Regions with different number of equilibrium points Stability of triangular equilibria

Proposition

In region I there is a β-parameter family of bifurcation lines,q1 = σ

β(q0), such as, for a given β, the line σ

βseparates region Ia,

q1 > σβ(q0), from region Ib, q1 < σ

β(q0).

In region Ia, the triangular equilibrium is unstable, while in region Ib isstable.

σβ(q0)

Ia

Ib

σ20

σ10

σ1 σ1/10

Figure: Left: Bifurcation lines for β = 1/10, 1, 10, 20. Right: Zones Ia and IbThe equilibria are stable on the colored region Ib.

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 21 / 25

Regions with different number of equilibrium points Stability of triangular equilibria

PropositionTriangular equilibrium points in regions II and III are unstable.

PropositionInside region VI there exists a β-parameter family of bifurcation lines,q1 = ψ

β(q0), such as, for a given β, the line ψ

βseparates region VIa

={q1 |ψβ (q0) < q1 < ψβ(q0)}, from region VIb = {q1 |ψβ (q0) < q1}. In

region VIa the triangular equilibrium farthest to the origin is stable,while in VIb it is unstable; in the rest of region VI it is always unstable.

VIb

VIa

ψβ(q0)Ψ

β(q0) - �

?

Figure: The equilibrium point is stable on the colored region VIa.

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 22 / 25

Regions with different number of equilibrium points Stability of triangular equilibria

PropositionTriangular equilibrium points in regions II and III are unstable.

PropositionInside region VI there exists a β-parameter family of bifurcation lines,q1 = ψ

β(q0), such as, for a given β, the line ψ

βseparates region VIa

={q1 |ψβ (q0) < q1 < ψβ(q0)}, from region VIb = {q1 |ψβ (q0) < q1}. In

region VIa the triangular equilibrium farthest to the origin is stable,while in VIb it is unstable; in the rest of region VI it is always unstable.

VIb

VIa

ψβ(q0)Ψ

β(q0) - �

?

Figure: The equilibrium point is stable on the colored region VIa.

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 22 / 25

Regions with different number of equilibrium points Stability of collinear equilibria

Stability of collinear equilibria (a)

Two kind of positive collinear equilibria: the outer equilibria, inO = (1/2,∞), and the inner ones, in I = (0, 1/2).

PropositionOuter collinear equilibria in regions I, V and VI are unstable.

PropositionInner collinear equilibria in regions I and IV are unstable.

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 23 / 25

Regions with different number of equilibrium points Stability of collinear equilibria

Stability of collinear equilibria (a)

Two kind of positive collinear equilibria: the outer equilibria, inO = (1/2,∞), and the inner ones, in I = (0, 1/2).

PropositionOuter collinear equilibria in regions I, V and VI are unstable.

PropositionInner collinear equilibria in regions I and IV are unstable.

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 23 / 25

Regions with different number of equilibrium points Stability of collinear equilibria

Stability of collinear equilibria (b)

Region II: there are two β-parameter families of bifurcation linesq1 = φ

β(q0) and q1 = φ∗

β(q0) that separates region im

IIb = {q1 |φβ (q0) < q1 < φ∗β(q0)},

IIa = {q1 | q1 > φ∗β(q0)} IIc = {q1 |Φβ

(q0) < q1 < φβ(q0)}.

Inner collinear equil. unstable stable

nearest to the origin in IIb in IIa and IIc

farthest to the origin in II

,

γβ,q0

(q1)

q1 axis

γ

3/225/18

1/2

0

φ∗β(q0)

IIa

IIbIIc

φβ(q0)Φβ(q0)

Figure: Top: γ curve for a pair of values β, qo. Red part represents the valuesof q1 where the equilibrium is stable. Bottom: zones with different stability forthe inner collinear equilibria nearest to the origin. Colored regions IIa, IIcrepresent stable equilibria.

A.Elipe (GME, UZ) D-Days 2016. Salou November 2016 24 / 25

Another problem

Periodic solutions and their parametric evolution in

the planar case of the (n + 1) ring problem with

oblateness

A. Elipe et al. D-Days. Salou. Noviembre 2016. 2

Problem:

⋆ n equal bodies of mass m at the vertices of a regular n- gon

⋆ a central body of mass m0 = βm at the center of the n- gon

⋆ the n- gon is rotating on its plane

⋆ an infinitesimal mass orbiting around the bodies

P0Pi

Pj

rij

rj

ri

r0

A. Elipe et al. D-Days. Salou. Noviembre 2016. 3

An old problem (Maxwell, 1859), Saturn ring

Recent interest:

Astrodynamics, Dynamical systems, . . .

– Scheeres (1992)

– Kalvouridis (1999, 2000, . . . )

– Arribas and Elipe (2004, 2005)

– Pinotsis (2005)

– – –

A. Elipe et al. D-Days. Salou. Noviembre 2016. 4

New problem:

Consider the central body spheroid or radiating source

Consequences:

⋆ A new parameter ǫ

⋆ New equilibria

⋆ New bifurcations

⋆ Dynamics much richer

A. Elipe et al. D-Days. Salou. Noviembre 2016. 5

Equations of motion

x− 2y = −∂U

∂x, y + 2x = −

∂U

∂y,

effective potential

U(x, y) = −1

2(x2 + y2)−

1

(

β

(

1

r0+

ǫ

r20

)

+

n∑

i=1

1

ri

)

,

Introduce the angle θ = π/n, then

xi =1

Mcos 2(i− 1)θ, yi =

1

Msin 2(i− 1)θ,

with M = 2 sin θ, and ∆ = M(Λ + βM2) a constant

Λ = sin2 θn∑

i=2

1

sin(i− 1)θ.

The parameter ǫ ⋚ 0,

Jacobian first integral C = 2U + (x2 + y2)

A. Elipe et al. D-Days. Salou. Noviembre 2016. 6

-2-1

01

2

-2-1

012

-5

-4.5

-4

-3.5

-3

-2-1

01

2

-2-1

012

-2-1

01

2

-2-1

012

-5

-4.5

-4

-3.5

-3

-2-1

01

2

-2-1

012

A. Elipe et al. D-Days. Salou. Noviembre 2016. 7

-2 -1 1 2

-4.5

-3.5

-3

-2 -1 1 2

-5

-4

-3

-2

-1

-2 -1 1 2

-20

-10

10

20

30

ε=−0.1 ε=−0.14 ε=−0.3

A. Elipe et al. D-Days. Salou. Noviembre 2016. 8

Periodic orbits

β = 2, n = 7, ǫ = −0.1,−0.14 and −0.3;

Grid search in the plane C—x0

Periodic orbits with x- symmetry, then, y0 = 0, x0 = 0

C = (x2

0+ y2

0) + 2U(x0, y0) =⇒ C, x0, y0 = 0, x0 = 0, y0

Integrate until the orbit crosses the x- axis (T/2);

Keep the value x(T/2)

Repeat for x′

0 = x0 + δx0

Check the sign x(T/2)x′(T/2) until negative

Repeat the procedure for another C + δC

A. Elipe et al. D-Days. Salou. Noviembre 2016. 9

Distribution of periodic orbits in the x0-C diagram (e=-0.1, =7, =2.0)

-1

0

1

2

3

4

5

6

7

8

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x0

C

F

GI

IA

IB

N

ND

J

K

P‘sN‘s

A. Elipe et al. D-Days. Salou. Noviembre 2016. 10

Distribution of periodic orbits in the x0-C diagram (e=-0.14, =7, =2.0)

0

1

2

3

4

5

6

7

8

9

-2,6 -1,6 -0,6 0,4 1,4 2,4

x0

C

groups NUand ND

groups PUand PD

J

K

I

IA

IB

F

G

ND

A. Elipe et al. D-Days. Salou. Noviembre 2016. 11

Distribution of periodic orbits in the x0-C diagram (e=-0.3, =7, =2.0)

-5

-3

-1

1

3

5

7

9

11

-3 -2 -1 0 1 2 3

x0

C

J

K

F

I

G

A. Elipe et al. D-Days. Salou. Noviembre 2016. 12

Family F

-1 1 2 3

-2

-1

1

2

-1 1 2 3

-2

-1

1

2

-1 1 2 3

-2

-1

1

2

Stability

0 1 2 3 4 5 60

200

400

600

800

1000

A. Elipe et al. D-Days. Salou. Noviembre 2016. 13

Family G

-1 -0.5 0.5 1

-1.5

-1

-0.5

0.5

1

1.5

-1 -0.5 0.5 1

-1.5

-1

-0.5

0.5

1

1.5

-1 -0.5 0.5 1

-1.5

-1

-0.5

0.5

1

1.5

Stability

2 2.5 3 3.5 4 4.50

2000

4000

6000

8000

10000

A. Elipe et al. D-Days. Salou. Noviembre 2016. 14

Family I

-1 -0.5 0.5 1 1.5 2

-1.5

-1

-0.5

0.5

1

1.5

-1 -0.5 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0.5

1

1.5

-1 -0.5 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0.5

1

1.5

Stability

0 1 2 3 4 5 60

100

200

300

400

500

600

700

A. Elipe et al. D-Days. Salou. Noviembre 2016. 15

Family IA

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Stability

2 2.5 3 3.5 40

200

400

600

800

1000

1200

A. Elipe et al. D-Days. Salou. Noviembre 2016. 16

Family IB

-1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

A. Elipe et al. D-Days. Salou. Noviembre 2016. 17

Family J

-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

-1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

0.25 0.5 0.75 1 1.25

-0.6

-0.4

-0.2

0.2

0.4

Stability

5 6 7 8 9 100

0.25

0.5

0.75

1

1.25

1.5

1.75

A. Elipe et al. D-Days. Salou. Noviembre 2016. 18

Family K

0.40.60.8 1.21.4

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.4 0.6 0.8 1.2 1.4 1.6

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.4 0.6 0.8 1.2 1.4 1.6

-0.6

-0.4

-0.2

0.2

0.4

0.6

Stability

7 7.5 8 8.5 9 9.50

0.5

1

1.5

2

A. Elipe et al. D-Days. Salou. Noviembre 2016. 19

Groups N’s and P’s

A. Elipe et al. D-Days. Salou. Noviembre 2016. 20

A. Elipe et al. D-Days. Salou. Noviembre 2016. 21

A. Elipe et al. D-Days. Salou. Noviembre 2016. 22

A. Elipe et al. D-Days. Salou. Noviembre 2016. 23

Families N and NB

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-0.5 -0.4 -0.3 -0.2

-0.2

-0.15

-0.1

-0.05

0.05

0.1

0.15

0.2

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

-0.2

-0.1

0.1

0.2

A. Elipe et al. D-Days. Salou. Noviembre 2016. 24

Families NL and PL

-0.4 -0.2 0.2

-0.4

-0.2

0.2

0.4

-0.3 -0.2 -0.1 0.1 0.2 0.3

-0.3

-0.2

-0.1

0.1

0.2

0.3

A. Elipe et al. D-Days. Salou. Noviembre 2016. 25

Stability

5.9 6 6.1 6.2 6.3

0.5

1

1.5

2

2.5

A. Elipe et al. D-Days. Salou. Noviembre 2016. 26

Families NL and PL (cont.)

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.2

0.4

0.6

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

A. Elipe et al. D-Days. Salou. Noviembre 2016. 27

Families PL and PR

-0.2 -0.1 0.1 0.2

-0.2

-0.1

0.1

0.2

-0.2 -0.1 0.1 0.2

-0.2

-0.1

0.1

0.2