dynamics lecture_part 2-mshafik

Upload: moustafa-shafik

Post on 06-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    1/44

    DYNAMICS 2

    Multi Degrees of Freedom (MDOF)Systems Using Modal Superposition

    By

    Moustafa M Shafik Mohamed

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    2/44

    Objectives

    Outline of the modal superposition method

    To introduce the Modal superposition as a powerful technique in solvingthe MDOF systems thru a solved example

    Applying the modal superposition for solving MDOF systems usingSAP2000

    Introduction to the Response spectrum method

    Application of the Modal Superposition in Floor Vibration Problems

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    3/44

    *Outline of Modal Superposition Method 1

    *This section is extracted from Structural

    Analysis By Coates, Coutie and Kong

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    4/44

    Outline of Modal Superposition Method 2

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    5/44

    Outline of Modal Superposition Method 3

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    6/44

    Outline of Modal Superposition Method 4

    Similarly,

    Transposing the I mode equation,

    Because of the symmetry ofM ,

    Equation 2

    Equation 1

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    7/44

    Outline of Modal Superposition Method 5

    Pre-multiplying 1 by

    , Post-multiplying 2 by

    , then subtracting yields ,

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    8/44

    Outline of Modal Superposition Method 6

    The above equation shows the different modes areorthogonal to each other with respect to the Mass Matrix.Similarly, we can prove that they are orthogonal to eachother with respect to the Stiffness Matrix.

    By using this property, the coupled D Eqs of equilibrium

    can be decoupled and solved as a group of SDOFsystems. Then,

    The final answer is obtained by combining again alldifferent modes.

    The steps are,

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    9/44

    Outline of Modal SuperpositionMethod 7

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    10/44

    Outline of Modal SuperpositionMethod 8

    Then solve the individual (uncoupled) SDOF systems

    Then obtain the final answer by combining all the modes using,

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    11/44

    Solved Example of 2DOF system 1

    l d E l f 2DOF

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    12/44

    olved Example of 2DOFsystem 2

    l d E l f 2DOF

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    13/44

    olved Example of 2DOFsystem 3

    l d E l f 2DOF

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    14/44

    olved Example of 2DOFsystem 4

    l d E l f 2DOF

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    15/44

    olved Example of 2DOFsystem 5

    l d E l f 2DOF

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    16/44

    olved Example of 2DOFsystem 6

    l d E l f 2DOF

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    17/44

    olved Example of 2DOFsystem 7

    l d E l f 2DOF

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    18/44

    olved Example of 2DOFsystem 8

    l d E l f 2DOF

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    19/44

    olved Example of 2DOFsystem 9

    l d E m l f 2DOF

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    20/44

    olved Example of 2DOFsystem 10

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    21/44

    Solved Example of 2DOF system 11

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    22/44

    Solved Example of 2DOF system 12

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    23/44

    Solved Example of 2DOF system 13

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    24/44

    Solved Example of 2DOF system 13a

    2

    1tan

    l

    l

    Mk

    c

    222

    02

    )/2(])/(1[

    /)sin(cossin

    slsl

    ldd

    tM

    c

    ffff

    ktPtBtAey

    where the Phase Angle or the Angle of Lag of the response

    The complete solution becomes

    tPkydt

    dyc

    dt

    ydM lsin02

    2

    The Equation of Motion is:

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    25/44

    Solved Example of 2DOF system 13b

    222)/2(])/(1[

    1

    slsl ffffDLF

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    26/44

    Solved Example of 2DOF system 14

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    27/44

    Solved Example of 2DOF system 15

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    28/44

    Solved Example of 2DOF system 16

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    29/44

    Solved Example of 2DOF system 17

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    30/44

    Solved Example of 2DOF system 18

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    31/44

    Solved Example of 2DOF system 19

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    32/44

    Solved Example of 2DOF system 20

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    33/44

    Solved Example of 2DOF system 21

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    34/44

    Solved Example of 2DOF system 22

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    35/44

    Response Spectrum Analysis 1

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    36/44

    Response Spectrum Analysis 2

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    37/44

    Response Spectrum Analysis 3

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    38/44

    Response Spectrum Analysis 4

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    39/44

    Response Spectrum Analysis 5

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    40/44

    Response Spectrum Analysis 6

    Floor Vibration using Modal

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    41/44

    Floor Vibration using ModalSuperposition

    nnnnnn

    nn

    F

    F

    xKxKxm

    xKxKxm 1

    11

    ..

    1

    1111

    ..

    11

    .

    ....

    ....

    .Equilibrium Equation,

    Decouple using,

    FXKXM..

    j

    m

    j

    jiix

    1

    Consider thefirst mode only,

    FKMTTT

    1

    111

    1

    ..

    11)()(

    1

    1

    1

    2

    11

    ..

    M

    FT

    Fl Vib i i M d l

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    42/44

    Floor Vibration using ModalSuperposition

    Normalize the maximum

    Eigenvector value to 1 andconsider only one load at midspan,

    For a simple beam, themodal mass of mode 1 is

    given by,

    max1

    FFT

    1

    max

    1

    2

    11

    ..

    M

    F

    21

    mLM

    The solution of thisequation is given by,

    DlfM

    FDLf

    K

    Fx

    1

    2

    1

    ma x

    1

    max

    max

    2/12222})(4])(1{[

    1

    s

    L

    s

    L

    f

    f

    f

    fDLF

    2

    1DLf

    For sinusoidal loadingfunction, the DLF isgiven by,

    For resonance case,

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    43/44

    Floor Vibration using ModalSuperposition

    Considering the loading function givenin section 2, zero initial conditions, andthe matching between the forcefrequency and the floor frequency, thedynamic response in terms of

    acceleration is given by

    In terms of acceleration, theresponse is given by,

    2

    1

    2

    2

    1

    max2max

    ..

    ml

    Fx

    1001

    %maxmax

    ..

    xmgl

    F

    g

    x

    10029.0

    %

    )35.0(max

    ..

    xW

    e

    g

    xf

  • 8/3/2019 Dynamics Lecture_Part 2-Mshafik

    44/44

    Floor Vibration Using Modal Superposition)(sin tax

    )(cos.

    tax

    )(sin2

    ..

    tax

    )(cos3

    ...

    tax

    ..

    ...

    x

    x

    )()()(......

    fLogxLogxLog

    )()()(.....

    fLogxLogxLog

    mXCY