durridge radon measurement technology present & future · 2019-10-16 · rad7 measurement...

19
Dr. S. W. Sadler NORM-IX, Denver, 24 September 2019 DURRIDGE Radon Measurement Technology – Present & Future

Upload: others

Post on 27-Jul-2020

6 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

Dr. S. W. Sadler

NORM-IX, Denver, 24 September 2019

DURRIDGE Radon Measurement

Technology – Present & Future

Page 2: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

Contents

1. Comparison of current DURRIDGE

technology (RAD7) with Pulse Ionization

Chambers.

2. Future DURRIDGE technology –

Preliminary sensitivity measurements of

our next-generation prototype.

2

Page 3: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

Part 1

1. Comparison of current DURRIDGE

technology (RAD7) with Pulse Ionization

Chambers.

2. Future DURRIDGE technology –

Preliminary sensitivity measurements of

our next-generation prototype.

3

Page 4: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

Radon Overview

• Radioactive gas found in the environment.

• Collects in dwellings and workplaces under certain conditions.

• Inert, colorless, odorless – undetectable by the human body.

• Radon and its decay products emit ionizing radiation when they decay.

• 21,000 deaths per annum in the USAcaused by radon-related lung cancers.

CONFIDENTIAL 4

Page 5: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

Overview of Continuous Radon

Measurement Technologies

4 types:

1. Ionization Chambers

2. Scintillation Counters (Lucas Cells)

3. Pulse Ionization Chambers

4. Electrostatic Precipitation Instruments

5

Page 6: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

2 major drawbacks:

• 1) Background from 210Po increases over

the lifetime of the instrument.

• 2) No thoron / radon discrimination.

Pulse Ionization Chambers - Overview

• Ionization electrons created as

decay alphas are stopped in the air

inside the chamber. These form

negative ions with O2 molecules,

which then drift to the anode.

• Signal is the primary alpha decay of

radon + subsequent 218Po decay.

• Energy resolution of ~ 0.25 MeV

achievable for ~ 5 MeV alpha

decays.

• Large volumes and high collection

efficiencies are possible, leading to

sensitivities as high as 50

cpm/kBq/m3.

6

From https://www.bertin-instruments.com/wp-content/uploads/secured-file/ALGU_Manual_2012-08_E.pdf

Page 7: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

Example Pulse Ionization Chamber

Energy Spectrum

7

Co

un

ts

5.49 MeV

5.29 MeV

5.31 MeV

6.00 MeV

7.69 MeV

220 Rn

210 Po

• Changes in radon concentration are

seen near-instantly in the purple

peak.

• Energy peaks from radon, thoron

and 210Po background overlap in this

peak. No clear energy separation.

• Only partial separation of 218Po and 222Rn peaks.

212 Bi 6.05 MeV

Modified from http://www.gammadata.se/assets/Uploads/ATMOS-12-DPX-EN-ver1.51.pdf

Page 8: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

Electrostatic Precipitation Instrument – RAD7

• High-resolution alpha spectrometry of

radon decay products to determine

radon and thoron concentration and

reject backgrounds.

• Electrostatic collection of radon

daughters on a silicon detector, followed

by high-resolution alpha spectrometry.

• Simultaneous, independent

measurement of radon and thoron.

• Normal (Sniff) Mode Sensitivity:

13 (6.7) cpm/kBq/m3

• Intrinsic Background:

0.2 Bq/m3 for lifetime of the instrument.

8

Page 9: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

RAD7 Measurement Technology

Electrostatic precipitation with

Alpha Spectrometry

• Radon and thoron admitted, progeny blocked.

• Radon decays to charged 218Po.

• 218Po precipitated onto a silicon detector by

electric field.

• 218Po decays to 214Po, 50% chance to be

measured (due to geometry). Full energy seen

by silicon detector.

• 214Po decays, 50% chance to be measured.

Again, full energy seen.

• Radon concentration calculated by:

Sniff Mode: Rate of decay of 218Po in the A

Window.

Normal Mode: Rate of decay of 218Po + 214Po in

the A and C Windows RAD7 Measurement Chamber

9

Inlet filter Silicon detector

HV ‘dome’Air pump

Page 10: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

RAD7 Alpha Energy Spectrum

• Near-perfect background rejection,

including long-lived 210Po

contamination (purple peak).

• Near-perfect Radon/Thoron

Discrimination (green/blue vs

red/orange peaks).

10

Co

un

ts

210Po 218Po 216Po 214Po 212Po

Page 11: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

Side-By-Side Spectrum Comparison

11

Example spectrum from a pulse ionisation type radon detector. Radon and thoron peaks overlap with each other, and with the 210 Po background peak. Low-energy shoulder from partially contained (mis-measured) events. Energy resolution of this model: 0.25 MeV.

5.49 MeV

5.29 MeV

5.31 MeV

6.00 MeV

7.69 MeV

Pulse Ionisation Chamber

Example RAD7 spectrum showing radon daughter and granddaughter peaks (218Po and 214Po), thoron daughter and granddaughter peaks (216Po and 212Po), plus rejected 210Po peak. All peaks show near-perfect energy separation, allowing near-perfect background rejection and simultaneous, independent measurement of radon and thoron.

Electrostatic Precipitation

Co

unts

210Po

218Po

216Po

214Po

212Po220 Rn

210 Po

212 Bi 6.05 MeV

Pulse ionization chamber spectrum image modified from http://www.gammadata.se/assets/Uploads/ATMOS-12-DPX-EN-ver1.51.pdf

Page 12: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

Part 2

1. Comparison of current DURRIDGE

technology (RAD7) with Pulse Ionization

Chambers.

2. Future DURRIDGE technology –

Preliminary sensitivity measurements of

our next-generation prototype.

12

Page 13: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

Next-Generation Prototype Spec.

• Same operating principle as the RAD7.

• Several improvements…

1. Waterproof and dustproof.

2. Large color touchscreen.

3. WiFi connectivity.

4. Faster electronics.

5. Higher-resolution digitizer.

6. Sensitivity the same as, or better than, the RAD7.

13

Page 14: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

Prototype – Sensitivity Measurement

• Sensitivity measured at DURRIDGE’s European calibration facility in Sheffield, UK.

• Constant radon concentration maintained in the radon reservoir tanks.

• 4 x RAD7 reference standards give the ‘true’ radon concentration.

• Simultaneous measurement with Prototype.

• Expose to radon for 24 x 2hrs. Discard first two data points to allow equilibration.

• Output: raw 12-bit spectrum of counts (4096 x 2.5 keV energy bins).

• Need to set the energy scale in order to calculate sensitivity…

14

Page 15: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

0 2 4 6 80

10

00

20

00

30

00

40

00

Energy (MeV)

AD

C I

nd

ex

Fit Data

R squared = 0.99999

p−value = 8.37e−09

Conversion factor = 401.96 +/− 0.63

Setting the Energy Scale

15

2000 2500 3000 3500 4000

01

00

200

30

04

00

50

0

ADC index

co

un

ts

218Po

216Po

214Po

212Po

• Find maxima of four alpha decay energy peaks.

• Plot the Analogue-to-Digital Converter (ADC) index against the known alpha decay energy.

• Straight line fit forced through the origin yields an extremely good fit, demonstrating a linear

energy response.

• Resulting conversion factor: 402.0 +/- 0.6 ADC points per MeV.

Page 16: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

Energy Windows

• Combine energy scale with RAD7 A, B, C, D window definitions (which we saw on slides 10 & 11) to yield energy windows for the prototype in ADC units:

16

EnergyWindow Species LowerBound ADC index Upper bound ADC indexA 218 Po 2248 2569B 216 Po 2570 2890C 214 Po 2891 3291D 212 Po 3292 3733

• Sum counts in A window (Sniff mode) and A+C windows (Normal mode),

and divide by run time and radon concentration to yield sensitivity...

Page 17: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

Prototype – Preliminary Results

• Sniff (fast) mode sensitivity = 7.64 +/- 0.06 cpm/kBq/m3

• Normal (slow) mode sensitivity = 15.39 +/- 0.04 cpm/kBq/m3

• 15% higher than RAD7, which is the most sensitive electrostatic precipitation instrument on the market.

• Improvement achieved with a measurement chamber half the physical size of the RAD7’s.

• Lower than the leading pulse ionization chamber instrument, but with the benefit of radon/thoron discrimination and 210Po background rejection.

• Work is ongoing to improve on this sensitivity with further optimization of the dome geometry.

17

Page 18: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

Summary

• Pulse ionization chamber radon detectors have a fast initial response and high sensitivity.

• However, it is important to also consider two important drawbacks:

1. 210Po background build-up. Every radon decay you measure with such an instrument adds to the background, eventually making low-level measurements impossible.

2. No real-time radon/thoron discrimination.

• Both of these problems are solved by electrostatic precipitation instruments like the DURRIDGE RAD7, thanks to near-perfect separation of the various alpha decay energy peaks associated with the progeny of radon and thoron, and 210Pb.

• DURRIDGE’s prototype instrument has superior sensitivity to the RAD7 (currently the most sensitive electrostatic precipitation device on the market), as well as a host of other improvements.

18

Page 19: DURRIDGE Radon Measurement Technology Present & Future · 2019-10-16 · RAD7 Measurement Technology Electrostatic precipitation with Alpha Spectrometry • Radon and thoron admitted,

Thanks for listening!