durability against wetting-drying cycles of sustainable lightweight cellular cemented construction...

Upload: bkollarou9632

Post on 17-Feb-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 Durability Against Wetting-drying Cycles of Sustainable Lightweight Cellular Cemented Construction Material Comprising Clay and Fly Ash Wastes

    1/10

    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/274008948

    Durability against wetting-drying cycles ofsustainable lightweight cellular cemented

    construction material comprising clay and fly

    ash wastes

    ARTICLEJANUARY 2015

    READS

    150

    1 AUTHOR:

    Suksun Horpibulsuk

    Suranaree University of Technology

    149PUBLICATIONS 1,616CITATIONS

    SEE PROFILE

    All in-text references underlined in blueare linked to publications on ResearchGate,

    letting you access and read them immediately.

    Available from: Suksun Horpibulsuk

    Retrieved on: 06 January 2016

    https://www.researchgate.net/profile/Suksun_Horpibulsuk?enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA%3D%3D&el=1_x_7https://www.researchgate.net/?enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA%3D%3D&el=1_x_1https://www.researchgate.net/profile/Suksun_Horpibulsuk?enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA%3D%3D&el=1_x_7https://www.researchgate.net/institution/Suranaree_University_of_Technology?enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA%3D%3D&el=1_x_6https://www.researchgate.net/profile/Suksun_Horpibulsuk?enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA%3D%3D&el=1_x_5https://www.researchgate.net/profile/Suksun_Horpibulsuk?enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA%3D%3D&el=1_x_4https://www.researchgate.net/?enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA%3D%3D&el=1_x_1https://www.researchgate.net/publication/274008948_Durability_against_wetting-drying_cycles_of_sustainable_lightweight_cellular_cemented_construction_material_comprising_clay_and_fly_ash_wastes?enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA%3D%3D&el=1_x_3https://www.researchgate.net/publication/274008948_Durability_against_wetting-drying_cycles_of_sustainable_lightweight_cellular_cemented_construction_material_comprising_clay_and_fly_ash_wastes?enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA%3D%3D&el=1_x_2
  • 7/23/2019 Durability Against Wetting-drying Cycles of Sustainable Lightweight Cellular Cemented Construction Material Comprising Clay and Fly Ash Wastes

    2/10

    Durability against wettingdrying cycles of sustainable Lightweight

    Cellular Cemented construction material comprising clay

    and fly ash wastes

    Anek Neramitkornburi a, Suksun Horpibulsuk b,c,, Shui Long Shen d, Avirut Chinkulkijniwat a,Arul Arulrajah e, Mahdi Miri Disfani e

    a School of Civil Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailandb School of Civil Engineering, Center of Excellence in Civil Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailandc Centre for Sustainable Infrastructure, Swinburne University of Technology, Australia

    d Department of Civil Engineering and State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, Chinae Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Australia

    h i g h l i g h t s

    Waste materials: fly ash and in-situ clay.

    A green Lightweight Cellular Cemented (LCC) clay.

    Role of cement, air and FA content on durability.

    Predictive wettingdrying (wd) cycled strength equation.

    a r t i c l e i n f o

    Article history:

    Received 5 June 2014Received in revised form 29 October 2014

    Accepted 14 December 2014

    Available online 31 December 2014

    Keywords:

    Air foam

    Cement

    Durability

    Compressive strength

    Fly ash

    Wetdry cycle

    Lightweight material

    a b s t r a c t

    The viability of using waste materials such as clay and fly ash (FA) for developing a sustainable Light-

    weight Cellular Cemented (LCC) construction material is investigated in this paper. LCC clay has a widerange of applications in infrastructure rehabilitation as well as in the construction of new facilities. The

    durability against wettingdrying (wd) cycles is an important parameter for service life design of LCC

    clay; however, studies on this aspect to date are very limited. The role of cemented soil structure (fabric

    and cementation bond) on wd cycle strength of LCC clay areinvestigated, analyzed and presented in this

    paper. The strength reduction with increasing number of wd is attributed to degradation of the

    cemented structure. The degradation index, qualifying the rate of degradation with number of wd

    cycles, is proposed in term of initial soaked strength (without wd cycle). Using the degradation index,

    the predictive wd cycle strength equation at different number of wd cycles is furthermore proposed.

    The applicability of the proposed equation is validated using a separate test data. This approach of

    predicting wd cycle strength is beneficial from both engineering and economic points of view.

    2014 Elsevier Ltd. All rights reserved.

    1. Introduction

    There is a myriad of problems associated with the engineering

    construction in soft clay deposits, particularly in coastal regions in

    Southeast Asiasuch as Chao Phraya Plain in Thailand, Mekong Delta

    in Vietnam and Cambodia, Central Plains of the Philippines, Coastal

    Plains of Malaysia, Indonesia, Singapore, Hong Kong, Korea, Japan

    and Taiwan. This soft soil, located in marine or estuary environ-

    ments, have low shear strength, lowbearing capacity and high nat-

    ural water content, resulting in high compressibility potential. To

    mitigate future issues with construction on these soft soil deposits,

    thedeep mixingtechniqueis frequently applied[18]. The mechan-

    ical behavior of cement admixed clays have been extensively inves-

    tigated by authors[915].The role of physical properties of soil on

    the strength development is recently investigated by Goodary et al.

    http://dx.doi.org/10.1016/j.conbuildmat.2014.12.025

    0950-0618/ 2014 Elsevier Ltd. All rights reserved.

    Corresponding author at: School of Civil Engineering, Suranaree University of

    Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000,

    Thailand. Tel.: +66 44 22 4322; fax: +66 44 22 4607.

    E-mail addresses: [email protected] (A. Neramitkornburi),[email protected].

    th,[email protected](S. Horpibulsuk),[email protected](S.L. Shen),[email protected].

    th(A. Chinkulkijniwat),[email protected](A. Arulrajah), mmiridisfani@swin.

    edu.au(M.M. Disfani).

    Construction and Building Materials 77 (2015) 4149

    Contents lists available at ScienceDirect

    Construction and Building Materials

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o n b u i l d m a t

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/257099837_Consolidation_behavior_of_soil-cement_column_improved_ground?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/257099837_Consolidation_behavior_of_soil-cement_column_improved_ground?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/229321732_A_critical_state_model_for_overconsolidated_structured_clays?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/229321732_A_critical_state_model_for_overconsolidated_structured_clays?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==http://dx.doi.org/10.1016/j.conbuildmat.2014.12.025mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]://dx.doi.org/10.1016/j.conbuildmat.2014.12.025http://www.sciencedirect.com/science/journal/09500618http://www.elsevier.com/locate/conbuildmathttps://www.researchgate.net/publication/229321732_A_critical_state_model_for_overconsolidated_structured_clays?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/229307773_Behaviour_of_cemented_clay_simulated_via_the_theoretical_framework_of_the_Structured_Cam_Clay_model?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/245294233_Undrained_Shear_Behavior_of_Cement_Admixed_Clay_at_High_Water_Content?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/245411620_Compressibility_of_cement-admixed_clays_at_high_water_content?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/245410800_A_constitutive_model_for_structured_soils?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/275840681_On_the_stress-strain_behaviour_of_lightly_cemented_clay_based_on_an_extended_critical_state_concept?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/257099837_Consolidation_behavior_of_soil-cement_column_improved_ground?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/267386287_Strength_development_in_cement_admixed_bangkok_clay_Laboratory_and_field_investigations?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/228519511_Assessment_of_strength_development_in_blended_cement_admixed_Bangkok_clay?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/275687628_State_of_the_art_in_strength_development_of_soil-cement_columns?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/257270367_A_field_trial_of_horizontal_jet_grouting_using_the_composite-pipe_method_in_the_soft_deposits_of_Shanghai?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/256699940_Jet_grouting_with_a_newly_developed_technology_The_Twin-Jet_method?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/225424225_A_method_for_predicting_consolidation_settlements_of_floating_column_improved_clayey_subsoil?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/226910411_Characteristics_of_Singapore_Marine_Clay_at_Changi?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==http://www.elsevier.com/locate/conbuildmathttp://www.sciencedirect.com/science/journal/09500618http://dx.doi.org/10.1016/j.conbuildmat.2014.12.025mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]://dx.doi.org/10.1016/j.conbuildmat.2014.12.025http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://crossmark.crossref.org/dialog/?doi=10.1016/j.conbuildmat.2014.12.025&domain=pdfhttp://-/?-
  • 7/23/2019 Durability Against Wetting-drying Cycles of Sustainable Lightweight Cellular Cemented Construction Material Comprising Clay and Fly Ash Wastes

    3/10

    [16].They reported that soils with a high specific surface (fine par-

    ticles) needed less amount of cement to provide the same strength

    and durability as those with low specific surface (coarse particles).

    Instead of improving the soft ground (foundation) through the

    costly deep mixing method, the usage of Lightweight Cellular

    Cemented (LCC) construction materialsis an attractive andeconom-

    ical alternativein construction applications such as in embankment,

    pavement pipe bedding and backfilling. LCC material is a mixture of

    aggregate, air foam agent and cementing agent.

    The usage of recycled waste materials such as Construction and

    Demolition (C&D) materials incorporating recycled concrete aggre-

    gate, crushed brick, and reclaimed asphalt pavement [1719]has

    been applied in recent years in a wide range of applications such

    as embankment fills, pipe-bedding and pavement base/subbase.

    The usage of recycled waste materials in sustainable manner in

    the development of LCC materials will further support zero-waste

    directives currently implemented in many developed and develop-

    ing countries. Incorporation of waste materials in the development

    of LCC material will reduce the carbon footprint of our future

    infrastructures.

    A sustainable LCC material made from in-situ and waste clay

    obtained directly fromconstruction sites has been extensively used

    for highway and port constructions in Southeast Asian countries

    such as Japan and Thailand[2026].To reduce the cost of the LCC

    clay from an economical and environmental perspective, the

    replacement of cement by fly ash (FA) is an attractive method. It

    was evident from the flowability test (undertakenusing a flowcone

    with 117 mmin height and 254 mmdiameter at base and 117 mm

    diameter at top) that FA reduces the plasticity and improves the

    flowability of the LCC clay mixture before hardening [27,28]. At

    the same water content and cement content, the LCC clay with

    higher FA replacement ratio exhibits higher strength than that with

    lower FA replacement ratio. The use of FA as a supplementary

    cementitious material in concrete is also well recognized for

    improving durability of concrete [29,30]. The incorporation of FA

    results in considerable pore refinement[31], which leads to a low

    porosity and discontinuous pore structure. Consequently, the per-meability of the concrete reduces and the durability of the concrete

    increases[32].

    The in-situ LCC clay as a stabilized engineering fills and pave-

    ment materials generally encounters with wd cycles from the

    change of weather during wet (rainy) and dry (summer) seasons.

    This is particular relevant for tropical countries such as Thailand,

    as well as parts of Australia and China. The wd cycles result in

    tension and surface cracks, which can damage the stabilized pave-

    ment structure [3336].Even though there is available research on

    the strength development in LCC clay, the investigation of durabil-

    ity against the wettingdrying cycles (wd cycles), a critical aspect

    for infrastructure design such as in engineering fills and pave-

    ments, is very limited and is the prime focus of this research. The

    investigation of the service life of the LCC clay via wetting and dry-ing test is significant and is another focus of this research. The

    strength of LCC clay is dependent upon the cemented soil structure

    (fabric and cementation bond) [37]. As such, tests with a wide

    range of water contents, air contents, FA contents and cement con-

    tents of the LCC clay are undertaken to understand the role of both

    fabric and cementation bond on the wd cycle strengths. Based on

    the analysis of the test results, a rational empirical relationship

    between wd cycle strengths and initial soaked strength (without

    wd cycles) is proposed. This equation can facilitate the determi-

    nation of a suitable mix proportion of LCC materials to meet the

    strength requirement at a target service life. This research will

    enable waste excavated soft clay traditionally destined for landfill

    to be used in a sustainable manner as an aggregate in LCC materi-

    als, which is significant in term of engineering, economical andenvironmental perspectives.

    2. Theoretical background

    For a LCC clay at a water content between 1.5 and 3.0 times the

    liquid limit, the strength is determined exclusively by the water-

    void to cement, wV/C[38]. This parameter is defined as the product

    of initial clay water content (before mixing with cement and air

    foam) timesV/C, where the water content is expressed in fraction.

    The parameterV/Cis defined as the ratio of volume of voids to thevolume of cement in the mix. Strength is independent of water

    content, air content and cement content in the mix. Based on

    extensive test results, Horpibulsuk et al. [38]have proposed a pre-

    dictive strength equation in term of curing time, and wV=Cfor the

    LCC Bangkok clay as follows:

    q wV=C Dq wV=C 28

    ( )

    wV=C 28

    wV=C D

    1:270:027 0:300 lnD 1

    whereq wV=C D is the strength of LCC clay to be estimated at water-

    void/cement ratio of (wV=C) after D days of curing and q wV=C 28 is

    the strength of LCC clay at water-void/cement ratio of (wV=C) after

    28 days of curing. The unit weight (in kN/m3) is determined in term

    of water content, cement content and V/Cby using Eq.(2)[27,39]:

    c

    GcGsc2w1 w

    C Gccw

    GccwC

    1

    V=C Gscw1 wGccwC

    1

    0B@

    1CA 2

    where w is water content (in fraction), Gc andGs are the specific

    gravities of cement and soil, respectively,cwis unit weight of water

    (kN/m3) and Cis cement content (kg/m3). Eq. (2)was developed

    based on the assumption that all air bubbles (air foam) enter into

    the pore space when mixed with cement and clay. With the varia-

    tion in water content and cement content, the air content required

    to attain the required V=Cis determined:

    Ac V=C C

    Gccw1 wGs wGs 3

    3. Materials and methods

    3.1. Materials

    3.1.1. Soil sample

    Bangkok clay was collected from Bangkok Noi district, Bangkok, Thailand at a

    3 m depth. The clay was composed of 2% sand, 39% silt and 55% clay as shown in

    Fig. 1. The natural water content was 80% and the specific gravity was 2.64. The

    liquid and plastic limits were 73% and 31%, respectively. Based on the Unified Soil

    Classification System (USCS), the clay was classified as inorganic clay of high plas-

    ticity (CH). Groundwater was encountered at a depth of approximately 1 m below

    the surface. The clay was classified as low swelling type with free swell ratio (FSR)

    of 1.1. The FSR is defined as the ratio of equilibrium sediment volume of 10 g of

    oven-dried soil passing a 425 mm sieve in distilled water (Vd) to that in kerosene

    (Vk) [40]. This method was adopted since it is simpleand predicts thedominant clay

    mineralogy of soil satisfactorily [41]. Table 1 summarizes the chemical composition

    of Bangkok clay using X-ray fluorescence (XRF). Even though Bangkok clay is clas-

    sified as low swelling types, moderately high clay content of up to 55% may cause

    swelling and shrinkage on the LCC clay during wd cycles. This effect will be exam-

    ined in this paper.

    3.1.2. Cement and air foam agent

    Type I Portland cement (PC) and air foam agent, Darex AE4, provided by the

    Grace Construction Products Ltd., were used in this study. The grain size distribu-

    tion curve, obtained from the laser particle size analysis, and chemical composition

    of PC are also shown inFig. 1andTable 1, respectively. The specific gravity is 3.15

    andthe D50is 0.01 mm(10 micron), whichis larger than that of the tested clay. The

    air foam agent is a blend of anionic surfactants andfoam stabilizers. It is a liquidair

    entraining agent used in various types of mortar, concrete and cementitiousmaterial.

    42 A. Neramitkornburi et al. / Construction and Building Materials 77 (2015) 4149

    https://www.researchgate.net/publication/251621258_Investigation_of_the_Strength_Development_in_Cement-Stabilised_Soils_of_Volcanic_Origin?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/251621258_Investigation_of_the_Strength_Development_in_Cement-Stabilised_Soils_of_Volcanic_Origin?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/260398834_Resilient_Modulus_and_Permanent_Deformation_Responses_of_Geogrid-Reinforced_Construction_and_Demolition_Materials?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/274763652_The_effect_of_air_foam_inclusion_on_the_permeability_and_absorption_properties_of_light_weight_soil?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/274763652_The_effect_of_air_foam_inclusion_on_the_permeability_and_absorption_properties_of_light_weight_soil?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/266794517_Factors_influencing_unit_weight_and_strength_of_lightweight_cemented_clay?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/222921040_Characterisation_of_Turkish_fly_ashes?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/222921040_Characterisation_of_Turkish_fly_ashes?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==http://-/?-https://www.researchgate.net/publication/251514214_Potential_for_Reduced_Greenhouse_Gas_Emissions_in_Texas_Through_the_Use_of_High_Volume_Fly_Ash_Concrete?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/251514214_Potential_for_Reduced_Greenhouse_Gas_Emissions_in_Texas_Through_the_Use_of_High_Volume_Fly_Ash_Concrete?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/245308515_Long-Term_Stability_Characteristics_of_a_Lime-Treated_Plastic_Soil?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/245308515_Long-Term_Stability_Characteristics_of_a_Lime-Treated_Plastic_Soil?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==http://-/?-https://www.researchgate.net/publication/270843814_Water-Void_to_Cement_Ratio_Identity_of_Lightweight_Cellular-Cemented_Material?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/270843814_Water-Void_to_Cement_Ratio_Identity_of_Lightweight_Cellular-Cemented_Material?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/270843814_Water-Void_to_Cement_Ratio_Identity_of_Lightweight_Cellular-Cemented_Material?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==http://-/?-https://www.researchgate.net/publication/257026418_Strength_and_compressibility_of_lightweight_cemented_clays?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/257026418_Strength_and_compressibility_of_lightweight_cemented_clays?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==http://-/?-http://-/?-https://www.researchgate.net/publication/245403715_Free_Swell_Ratio_and_Clay_Mineralogy_of_Fine-Grained_Soils?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/245403715_Free_Swell_Ratio_and_Clay_Mineralogy_of_Fine-Grained_Soils?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/233488264_Assessment_of_engineering_properties_of_Bangkok_clay?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/233488264_Assessment_of_engineering_properties_of_Bangkok_clay?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/233488264_Assessment_of_engineering_properties_of_Bangkok_clay?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/245403715_Free_Swell_Ratio_and_Clay_Mineralogy_of_Fine-Grained_Soils?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/257026418_Strength_and_compressibility_of_lightweight_cemented_clays?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/270843814_Water-Void_to_Cement_Ratio_Identity_of_Lightweight_Cellular-Cemented_Material?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/270843814_Water-Void_to_Cement_Ratio_Identity_of_Lightweight_Cellular-Cemented_Material?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/245308515_Long-Term_Stability_Characteristics_of_a_Lime-Treated_Plastic_Soil?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/239409314_Expansive_Soils_under_Cyclic_Drying_and_Wetting?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/251514214_Potential_for_Reduced_Greenhouse_Gas_Emissions_in_Texas_Through_the_Use_of_High_Volume_Fly_Ash_Concrete?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/222921040_Characterisation_of_Turkish_fly_ashes?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/266794517_Factors_influencing_unit_weight_and_strength_of_lightweight_cemented_clay?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/273836483_Engineering_properties_of_lightweight_cellular_cemented_clay-fly_ash_material?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/273836483_Engineering_properties_of_lightweight_cellular_cemented_clay-fly_ash_material?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/274763652_The_effect_of_air_foam_inclusion_on_the_permeability_and_absorption_properties_of_light_weight_soil?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/269141325_Durability_of_Cement_Treated_Clay_with_Air_Foam_Used_in_Water_Front_Structures?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/266038073_Application_of_Air_Foam_Stabilized_Soil_for_Bridge-Embankment_Transition_Zone_in_Thailand?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/250073124_Mechanical_properties_of_air-cement-treated_soils?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/235322888_Field_placing_test_of_lightweight_treated_soil_under_seawater_in_Kumamoto_Port?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/245308066_Development_of_a_Geomaterial_from_Dredged_Bay_Mud?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/260398834_Resilient_Modulus_and_Permanent_Deformation_Responses_of_Geogrid-Reinforced_Construction_and_Demolition_Materials?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/273625900_Physical_properties_and_shear_strength_responses_of_recycled_construction_and_demolition_materials_in_unbound_pavement_basesubbase_applications?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/273619493_Geotechnical_and_Geoenvironmental_Properties_of_Recycled_Construction_and_Demolition_Materials_in_Pavement_Subbase_Applications?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==https://www.researchgate.net/publication/251621258_Investigation_of_the_Strength_Development_in_Cement-Stabilised_Soils_of_Volcanic_Origin?el=1_x_8&enrichId=rgreq-33a38535-9211-40ce-bc53-59343db013d2&enrichSource=Y292ZXJQYWdlOzI3NDAwODk0ODtBUzoyMTA4MTAzNjMyMjQwNzNAMTQyNzI3MjUxNTU3NA==http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/23/2019 Durability Against Wetting-drying Cycles of Sustainable Lightweight Cellular Cemented Construction Material Comprising Clay and Fly Ash Wastes

    4/10

    3.1.3. Fly ash

    Fly ash (FA) was obtained from the Mae Moh power plant in the north of

    Thailand. Table 1summarizes the chemical composition of FA showing that total

    amount of the major components SiO2, Al2O3and Fe2O3in FA are 79.4% and classi-

    fied as class F according to ASTM C 618. The grain size distribution curve of FA is

    also shown inFig. 1.

    3.2. Methodology

    The clay paste was passed through a 2-mm sieve for removal of shell pieces and

    other larger size particles, if present. The clay paste was next replaced by FA at

    replacement ratios of 0%, 20%, 60% and 80% dry weight of clay. Index tests on the

    mixed soil were subsequently performed. The index properties of the tested clay

    at different FA replacement ratios are given in Table 2. The water content of the

    mixed soil was adjusted to 1.53 times liquid limit (wL) for the wd cycle strength

    tests. The saturated clay was carefully transferred into a mixer and then tamped to

    minimize air bubbles before mixing with cement and air foam. The lower water

    content possesses high viscosity and resists the air bubble entry into the pore space

    [3942]. The claywaterFA mixture was mixed with air foam. The air content (Ac)

    values varied between0% and50% by volume of thesaturated mixedsoil (Vi). The Vivalue is the sum of volume of dry soil (Vs) and volume of water (Vw). TheVs value

    was determined from the dry weight of mixed soil ( Ws) and specific gravity values

    of mixed soil and water. The claywaterairFA mixture was then thoroughly

    mixed with cement for 10 min. The cement content (C) was varied from 10% to

    40% by weight of drysoil.The uniformpaste was next transferred to cylindrical con-

    tainers of 50 mmdiameter and100 mmheight for wd strengthtest. After 24 h, the

    cylindrical samples were dismantled. The cylindrical samples were wrapped in

    vinyl bags and stored in a humidity-controlled room of constant temperature

    (23 2 C) until 28 days of curing.

    The method of cyclic wetting and drying test as per ASTM D 559 was adopted

    for sample preparations. The samples were submerged in deionized water at room

    temperature for 5 h. They were then dried in the oven at a temperature of 70 C for

    48h and air-dried at roomtemperature for atleast 3 h.This process is referred toas1 wd cycle. After attaining the target wd cycles, the samples were immersed in

    deionized water for 2 h at the constant temperature of 25 2 C. Unconfined Com-

    pression (UC) tests were then undertaken with a rate of vertical displacement of

    1 mm/min. The 1, 3 and 6 wd cycles were considered in this study.

    Based on a critical analysis of the strength data, a rational predictive wd cycle

    strength equation is proposed, which facilitates the mix design to attain the

    strength requirement at a specified service life for civil engineering practitioners.

    In addition to the abovementioned laboratory tests, theresults of the strength tests

    on separate LCC samples at FA replacement ratios of 40% (w = 198% and 132%, and

    A= 0%, 25% and 50%) were taken to verify the proposed predictive equation.

    4. Results

    Fig. 2 shows the typical role of FA on wd cycle strengths of LCC

    clay at different number of wd cycles. All the samples were pre-

    pared at different water contents but at the same w/wL of 2.0,C= 10% and A = 25% to have the same flowability of the LCC mix-

    ture, where w is water content and wL is liquid limit. It has been

    proved that at the same w/wL, the LCC mixtures have the same

    flowability [27].Fig. 2shows that FA improves wd cycle strength,

    qu(wd), where significant improvement is clearly observed when

    FA replacement ratio is greater than 40%.

    Fig. 3shows the role of cement content and air content on wd

    cycle strength for FA replacement of 20% and 80%. The unit weight

    decreases with increasing air content and decreasing cement con-

    tent. Although the air foam helps reduce the unit weight of the LCC

    clay, it causes strength reduction at a specific cement content. It is

    evident that the initial soaked (without wd cycle) strengths (qu0)

    and wd cycle strengths (qu(wd)) decrease with decreasing cement

    content and increasing air content. At a particular air content, thestrength increases significantly with increasing cement content

    even with a slight increase in unit weight. The unit weight of LCC

    clay can be approximated from Eqs. (1) and (2) as previously

    undertaken by Horpibulsuk et al. [28]. The qu(wd)andN relation-

    ship of LCC clay is divided into three different cycles according to

    its slope. The strength reduction is minimal for the first 01 cycle

    while the dramatic reduction is noted in the 13 cycles. The

    Fig. 1. Grain size distribution of clay, PC and FA.

    Table 1

    Chemical composition of Bangkok clay, PC and FA.

    Chemical composition (%) Bangkok clay PC FA

    SiO2 62.8 20.9 44.7

    Al2O3 21.3 4.8 23.7

    Fe2O3 8.4 3.4 11.0

    CaO 0.9 65.4 12.7

    MgO 1.5 1.2 2.6

    SO3 1.2 2.7 1.3

    Na2O 0.3 0.2 0.1

    K2O 2.5 0.3 2.9

    LOI 0.8 1.1 1.0

    Table 2

    Water contents and liquid limits for mixed clay samples.

    Soil:FA Liquid limit (%) Plastic limit (%) Plasticity index (%)

    100:0 77.1 32.4 44.7

    80:20 72.8 31.2 41.6

    60:40 66.1 27.3 38.8

    40:60 50.2 24.8 25.4

    20:80 32.1 19.8 12.3Fig. 2. Influence of FA on wd cycle strength.

    A. Neramitkornburi et al. / Construction and Building Materials 77 (2015) 4149 43

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/23/2019 Durability Against Wetting-drying Cycles of Sustainable Lightweight Cellular Cemented Construction Material Comprising Clay and Fly Ash Wastes

    5/10

    strength reduction in 36 cycles is much larger than the 01 cycle

    but is lower than that of 13 cycles. For a particular water content,

    thequ0andqu(wd)values are controlled by cement content and air

    content.

    It is evident from Fig. 3that both fabric (water content, air con-

    tent) and cementation bond (cement content) affect the qu(wd)of

    LCC clay. The lower water content and air content and the higher

    cement content result in the higher qu(wd). It is therefore pertinent

    to examine the combination effect of both fabric and cementation

    bond onqu(wd)using the structural parameter wV/C.Fig. 4shows

    the stressstrain relationship of LCC clay with the same wV/Cof 29

    but different Cand A values at FA replacement ratio of 20. Fig. 5shows the relationships between qu(wd)and wV/Cfor the LCC sam-

    ples with different CandA values. It is evident that the stressstrain

    relationships and wd cycle strengths at the three number of cycles

    tested are essentially similar as long aswV/Cis the same although

    the cement content and air content vary over a wide range. In other

    words, the durability against wetting and drying is dependent upon

    qu0 because the wV/Ccontrols qu0 values of LCC clay. qu0 will be then

    usedas an engineering indicator,indicatingthe structure strength of

    LCC clay, to analyze qu(wd) in the next section.

    5. Analysis and discussion

    Besides unit weight and strength of the LCC material, theflowability of the mixture (before hardening) is also a required

    parameter for field construction. The higher flowability results in

    the lower pump capacity and construction cost. The previous

    works [27,28] have shown the flowability of the LCC mixture iscontrolled by w/wL. Since the FA reduces wLof the clayFA mixture

    Fig. 3. Influence of cement content and air content on qu(wd) for (a) soil:FA = 20:80 and (b) soil:FA= 80:20.

    Fig. 4. Stressstrain relationship for samples with the same wV/Cof 29.

    44 A. Neramitkornburi et al. / Construction and Building Materials 77 (2015) 4149

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/23/2019 Durability Against Wetting-drying Cycles of Sustainable Lightweight Cellular Cemented Construction Material Comprising Clay and Fly Ash Wastes

    6/10

    (Table 2), the water content, w of the mixture to attain the same

    w/wL is reduced after adding FA. At the same w/wL (Fig. 2), the

    LCC mixture with higher FA replacement ratio exhibits higher qu0and qu(wd) due to the pozzolanic reaction between cement and

    FA and the reduction in water to cement ratio. Consequently, FA

    improves not only the flowability of the LCC mixture but also the

    durability of LCC material.

    The strength reduction with number of wd cycles is due to

    cracking effect. The wetting causes the swelling of the clay parti-

    cles due to the expansionof diffusion double layer while the drying

    causes the shrinkage of the clay particles due to the loss of water

    [43]. Thus, the swelling and shrinkage for each wd cycle leads

    to the tension cracks on the LCC sample. The cracking effect can

    be depicted by the increase in water content after the end of each

    wd cycle (Fig. 6). Due to the cracks, the pore space in the samplesincreases and carries more water content.

    It is evident from the test results (Figs. 4 and 5) that thequ(wd)values at different Nis dependent upon qu0 value. As such, qu0 is

    used as a variable in analyzing the relationships between qu(wd)versusNas shown inFig. 7. The relationships are for samples with

    various air contents and cement contents but with the same qu0(same wV/Cvalues) at FA replacement ratios of 80 and 60. For a

    particular FA replacement ratio, the qu(wd) versus N relationship

    of LCC clay are of similar pattern as long as the qu0 value is the

    same, even though the air content and cement content are varied

    over a wide range. Thequ(wd)versusNrelationships can be repre-

    sented by two functions: linear and logarithm. The linear and log-

    arithmic functions fit very well for 01 cycle and 16 cycles,

    respectively.

    To understand the fundamental role ofqu0 on qu(wd), the nor-

    malized strengthqu(wd)

    /qu0

    is plotted versusN

    as shown inFig. 8

    as previously undertaken by Kampala et al. [43]for Calcium Car-

    bide Residue (CCR) stabilized clay. The qu(wd)/qu0 for CCRstabilized

    clay at a particularNis essentially the same for different CCR con-

    tents and FA contents. Subsequently, the unique relationship

    between qu(wd)/qu0 and N was proposed and is useful for mix

    design purposes. The same is not true for LCC clay, which possesses

    very high air contents. For 1 wd cycle, the qu(1 wd)/qu0is indepen-

    dent of qu0; i.e., qu(1 wd)/qu0 is constant for all mix properties,

    wherequ(1 wd) is the 1 wd cycle strength. Beyond 1 wd cycle,

    thequ(wd)/qu0 is dependent upon the qu0 value. The lower qu0 is

    associated with the larger qu(wd)/qu0. This implies that the durabil-

    ity is controlled byqu0; i.e., the samples with the same qu0 exhibit

    the samequ(wd)even though they were prepared at different mix

    proportions of water content, cement content and air content. The

    samples with higherqu0 exhibit higherqu(wd). This further estab-

    lishes the fact that durability is lower (strength reduction with

    increasing Nis larger) for a lower structure strength.

    Based on the results shown in Figs. 7 and 8, the relationship

    between qu(wd) andN for different FA replacement ratios, water

    contents, cement contents and air contents can be represented

    by a logarithmic function as follows:

    quwd qu1 wd b lnN 4

    whereb is the degradation index, quantifying the rate of degrada-

    tion of structure strength due to wd cycles. As seen inFig. 8, the

    qu(1 wd) is slightly lower than qu0 and essentially the same for all

    mix proportions. The qu(1 wd) and qu0 relationship can then be

    developed based on a linear regression analysis of the strength data

    (Fig. 9):qu1 wd 0:95qu0 5

    with a high degree of correlation of 0.997.

    The bvalue can be approximated in term ofqu0in a power func-

    tion (Fig. 10):

    b 0:65 qu0 5=6 6

    with a high degree of correlation of 0.950.

    Fig. 5. Relationship betweenqu(wd) andwV/C.

    Fig. 6. Relationship between w andN for (a) soil:FA= 20:80 and (b) soil:FA = 80:20.

    A. Neramitkornburi et al. / Construction and Building Materials 77 (2015) 4149 45

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/23/2019 Durability Against Wetting-drying Cycles of Sustainable Lightweight Cellular Cemented Construction Material Comprising Clay and Fly Ash Wastes

    7/10

    By combining Eqs. (4)(6), a predictive wd cycle strengthequation in term ofqu0 is shown as follows:

    quwd 0:95qu0 0:65 qu0 5=6

    lnN for 150 kPa

  • 7/23/2019 Durability Against Wetting-drying Cycles of Sustainable Lightweight Cellular Cemented Construction Material Comprising Clay and Fly Ash Wastes

    8/10

    Table 3shows a prediction ofqu(wd)of the separate LCC sam-

    ples with FA replacement ratio of 40% (w = 198% and 132% and

    A= 050%). Thequ0 was obtained from the UC test after 28 days

    of curing. Thequ(wd)for various water contents, cement contents,

    and air contents were predicted by Eq.(7). It is found that the pre-

    dicted and measured qu(wd)values are in a good agreement with asmall absolute percent error of 6.3. This reinforces the application

    of the proposed equation. Even though Eq.(7)was developed from

    a specific soil, the formulation of the proposed equation is on

    sound principles and can be used as fundamental for other soils.

    The empirical equation can be further refined with the analysis

    of more data.

    Eqs.(1)(3) and (7)can be used for mix design purpose to meet

    both unit weight and strength requirement at a target service life.

    The strength requirement for stabilized pavement material at the

    target service life is different for different countries. For instance,

    the strength requirement is 2068 kPa, 1471 kPa, and 2403 kPa for

    the U.S. Army Corps of Engineers, the Department of Rural Road of

    Thailand andthe Departmentof Highways of Thailand, respectively.

    Last but not least, low quality FA that may marginally passASTM C-618 standards, or even not even pass, is of interest for

    future sustainable research. This FA is available in abundance

    and has a little market value. The main stumbling block in con-

    struction uses has been the variability in FA. FA coming out ofpower plants varies significantly according to the source of coal,

    method of burning, and other factors. FA produced by a given

    power plant can even considerably change for a number of reasons,

    such as a change in coal source. In recent years, many power plants

    have modified their operation to create less pollution and as a

    result, produce FA with carbon content greater than 4% and a high

    level of dead burn CaO, which will interfere with hydration pro-

    cess. As such, strength and durability test results of the construc-

    tion and building materials with different FA from variety of

    sources needs to be investigated and analyzed based on the chem-

    ical composition of the fly ashes. Moreover, in North America and

    other temperate countries, the durability against freeze and thaw

    testing in accordance with ASTM C-666 standards is also signifi-

    cant. The compressive and flexural strength testing after every 50freezethaw cycles is recommended.

    Fig. 9. Relationship betweenqu(1 wd)andqu0for different soil:FA.

    Fig. 10. Relationship betweenb andqu0for different soil:FA.

    Fig. 11. Relationship betweenE50andqu(wd) for (a) 1, (b) 3 and (c) 6 wd cycles.

    A. Neramitkornburi et al. / Construction and Building Materials 77 (2015) 4149 47

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/23/2019 Durability Against Wetting-drying Cycles of Sustainable Lightweight Cellular Cemented Construction Material Comprising Clay and Fly Ash Wastes

    9/10

    6. Conclusions

    This research investigates the viability of using waste materials

    (clay and FA) for developing sustainable construction LCC materi-

    als. Results of this study suggest that the initial soaked strength

    is critical for analysis of wetdry cycle strength of LCC clay. The fol-

    lowing conclusions can be drawn from this research study.

    (1) FA improves flowability of LCC mixture (before hardening)

    and durability of LCC material. For the same flowability,

    the initial soaked strength and wd cycle strength increase

    with increasing FA. Significant improvement is found when

    FA replacement ratio is greater than 40%.(2) The strength reduction with number of wd cycles is caused

    by the swelling and shrinkage of clay particles, which in turn

    leads to crack development (degradation of cemented struc-

    ture). Due to the cracks, the pore space in the samples

    increases and carries more water content.

    (3) The degradation of cemented soil structure is controlled by

    the initial structure strength. The degradation index (b) is

    proposed to qualify the strength reduction with number of

    wd cycles.

    (4) The wd cycle strength and number of wd cycle relation-

    ship is represented by linear function for 01 cycle and log-

    arithmic function for 16 cycles. Based on the proposed

    functions and the degradation index, the predictive wd

    strength equation is proposed and verified. This equationfacilitates mix design to attain the required strength at a tar-

    get service life, which is very useful for civil engineering

    practitioners since the durability test is time-consuming.

    The formulation of the proposed equation is based on sound

    engineering principles and can be used for a fundamental

    understanding of soft soils. The empirical equation can be

    further refined with the analysis of more data.

    (5) Because the cemented soil structure controls the engineering

    properties at different wd cycles, it is logical to relate E50in

    term ofqu(wd). The E50and qu(wd)relationship is found to be

    essentially independent of cement content, water content,

    air content, FA replacement ratio and number of wd cycle.

    The relationship is similar to that of LCC clay without wd

    cycle. Using the proposed equation,E50at any number of wd cycle can be estimated once qu(wd)is predicted.

    Acknowledgements

    This work was financially supported by the Thailand Research

    Fund under the TRF Senior Research Scholar program Grant No.

    RTA5680002, the Ph.D. Royal Jubilee program, Suranaree Univer-

    sity of Technology and the Office of Higher Education Commission

    under NRU project of Thailand. The authors acknowledge the

    reviewer for a valuable suggestion on future sustainable research.

    References

    [1] Arulrajah A, Bo MW. Characteristics of Singapore marine clay at Changi.

    Geotech Geol Eng 2008;26(4):43141.

    [2]Chai JC, Pongsivasathit S. A method for predicting consolidation settlements of

    floating column improved clayey subsoil. Front Archit Civ Eng

    2010;4(2):24151.

    [3] Shen SL, Wang ZF, Horpibulsuk S, KimYH. Jet grouting with a newly developed

    technology: the twin-jet method. Eng Geol 2013;152(1):8795.

    [4]Shen SL, Wang ZF, Sun WJ, Wang LB, Horpibulsuk S. A field trial of horizontal

    jet grouting using the composite-pipe method in soft deposit of Shanghai.

    Tunn Undergr Space Technol 2013;35:14251.

    [5]Horpibulsuk S, Rachan R, Suddeepong A. State of art in strength development

    of soilcement columns. Ground Improv 2012;165(4):20115.

    [6]Horpibulsuk S, Rachan R, Suddeepong A. Assessment of strength development

    in blended cement admixed Bangkok clay. Constr Build Mater

    2011;25(4):152131.

    [7] Horpibulsuk S, Rachan R, Suddeepong A, Chinkulkijniwat A. Strength

    development in cement admixed Bangkok clay: laboratory and field

    investigations. Soils Found 2011;51(2):23951.

    [8] Horpibulsuk S, Chinkulkijniwat A, Cholphatsorn A, Suebsuk J, Liu MD.Consolidation behavior of soil cement column improved ground. Comput

    Geotech 2012;43:3750.

    [9] Kasama K, Ochiai H, Yasufuku N. On the stressstrain behaviour of lightly

    cemented clay based on an extended critical state concept. Soils Found

    2000;40(5):3747.

    [10] Kavvadas M, Amorosi A. A constitutive model for structured soils.

    Gotechnique 2000;50(3):26373.

    [11] Horpibulsuk S, Bergado DT, Lorenzo GA. Compressibility of cement admixed

    clays at high water content. Geotechnique 2004;54(2):1514.

    [12] Horpibulsuk S, Miura N, Bergado DT. Undrained shear behavior of cement

    admixed clay at high water content. J Geotech Geoenviron Eng ASCE

    2004;130(10):1096105.

    [13] Horpibulsuk S, Liu MD, Liyanapathirana DS, Suebsuk J. Behavior of cemented

    clay simulated via the theoretical framework of the structured cam clay

    model. Comput Geotech 2010;37:19.

    [14] Suebsuk J, Horpibulsuk S, Liu MD. Modified structured cam clay: a constitutive

    model for destructured, naturally structured and artificially structured clays.

    Comput Geotech 2010;37:95668.

    [15] Suebsuk J, Horpibulsuk S, Liu MD. A critical state model for overconsolidatedstructured clays. Comput Geotech 2011;38:64858.

    Table 3

    Predicted qu(wd) for Soil:FA = 60:40.

    w(%) A(%) C(%) N quo (kPa) qu(1 wd) (kPa) Eq.(5) b(kPa) (Eq.(6)) Predictedqu(wd)P (kPa) (Eq.(7)) Measuredqu(wd)M (kPa) jquwdM quwdPj

    quwdM 100%

    198 0 50.2 1 1012.0 961.4 207.6 961.4 998.6 3.7

    25 34.5 604.0 573.8 135.0 573.8 590.3 2.8

    50 21.3 112.0 106.4 33.2 106.4 104.2 2.1

    0 50.2 3 1012.0 961.4 207.6 733.3 722.1 1.6

    25 34.5 604.0 573.8 135.0 425.4 385.8 10.3

    50 21.3 112.0 106.4 33.2 70.0 88.4 20.8

    0 50.2 6 1012.0 961.4 207.6 589.4 665.3 11.4

    25 34.5 604.0 573.8 135.0 331.9 281.8 17.8

    50 21.3 112.0 106.4 33.2 47.0 38.0 23.7

    132 0 39.0 1 1467.4 1394.0 282.9 1394.0 1442.7 3.4

    25 27.0 842.7 800.6 178.2 800.6 831.4 3.7

    50 16.8 327.5 311.1 81.1 311.1 298.7 4.2

    0 39.0 3 1467.4 1394.0 282.9 1083.2 1126.4 3.8

    25 27.0 842.7 800.6 178.2 604.8 627.1 3.6

    50 16.8 327.5 311.1 81.1 222.0 267.4 17.0

    0 39.0 6 1467.4 1394.0 282.9 887.1 907.3 2.2

    25 27.0 842.7 800.6 178.2 481.2 462.8 4.0

    50 16.8 327.5 311.1 81.1 165.8 197.2 15.9

    Mean Absolute Percent Error, MAPEMAPE 1

    n

    Pni1

    jquwdM quwdPj

    quwdM 100

    ! 6.3

    48 A. Neramitkornburi et al. / Construction and Building Materials 77 (2015) 4149

    http://refhub.elsevier.com/S0950-0618(14)01327-0/h0005http://refhub.elsevier.com/S0950-0618(14)01327-0/h0005http://refhub.elsevier.com/S0950-0618(14)01327-0/h0010http://refhub.elsevier.com/S0950-0618(14)01327-0/h0010http://refhub.elsevier.com/S0950-0618(14)01327-0/h0010http://refhub.elsevier.com/S0950-0618(14)01327-0/h0015http://refhub.elsevier.com/S0950-0618(14)01327-0/h0015http://refhub.elsevier.com/S0950-0618(14)01327-0/h0020http://refhub.elsevier.com/S0950-0618(14)01327-0/h0020http://refhub.elsevier.com/S0950-0618(14)01327-0/h0020http://refhub.elsevier.com/S0950-0618(14)01327-0/h0025http://refhub.elsevier.com/S0950-0618(14)01327-0/h0025http://refhub.elsevier.com/S0950-0618(14)01327-0/h0030http://refhub.elsevier.com/S0950-0618(14)01327-0/h0030http://refhub.elsevier.com/S0950-0618(14)01327-0/h0030http://refhub.elsevier.com/S0950-0618(14)01327-0/h0035http://refhub.elsevier.com/S0950-0618(14)01327-0/h0035http://refhub.elsevier.com/S0950-0618(14)01327-0/h0035http://refhub.elsevier.com/S0950-0618(14)01327-0/h0040http://refhub.elsevier.com/S0950-0618(14)01327-0/h0040http://refhub.elsevier.com/S0950-0618(14)01327-0/h0040http://refhub.elsevier.com/S0950-0618(14)01327-0/h0045http://refhub.elsevier.com/S0950-0618(14)01327-0/h0045http://refhub.elsevier.com/S0950-0618(14)01327-0/h0045http://refhub.elsevier.com/S0950-0618(14)01327-0/h0050http://refhub.elsevier.com/S0950-0618(14)01327-0/h0050http://refhub.elsevier.com/S0950-0618(14)01327-0/h0055http://refhub.elsevier.com/S0950-0618(14)01327-0/h0055http://refhub.elsevier.com/S0950-0618(14)01327-0/h0060http://refhub.elsevier.com/S0950-0618(14)01327-0/h0060http://refhub.elsevier.com/S0950-0618(14)01327-0/h0060http://refhub.elsevier.com/S0950-0618(14)01327-0/h0065http://refhub.elsevier.com/S0950-0618(14)01327-0/h0065http://refhub.elsevier.com/S0950-0618(14)01327-0/h0065http://refhub.elsevier.com/S0950-0618(14)01327-0/h0070http://refhub.elsevier.com/S0950-0618(14)01327-0/h0070http://refhub.elsevier.com/S0950-0618(14)01327-0/h0070http://refhub.elsevier.com/S0950-0618(14)01327-0/h0075http://refhub.elsevier.com/S0950-0618(14)01327-0/h0075http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://refhub.elsevier.com/S0950-0618(14)01327-0/h0075http://refhub.elsevier.com/S0950-0618(14)01327-0/h0075http://refhub.elsevier.com/S0950-0618(14)01327-0/h0070http://refhub.elsevier.com/S0950-0618(14)01327-0/h0070http://refhub.elsevier.com/S0950-0618(14)01327-0/h0070http://refhub.elsevier.com/S0950-0618(14)01327-0/h0065http://refhub.elsevier.com/S0950-0618(14)01327-0/h0065http://refhub.elsevier.com/S0950-0618(14)01327-0/h0065http://refhub.elsevier.com/S0950-0618(14)01327-0/h0060http://refhub.elsevier.com/S0950-0618(14)01327-0/h0060http://refhub.elsevier.com/S0950-0618(14)01327-0/h0060http://refhub.elsevier.com/S0950-0618(14)01327-0/h0055http://refhub.elsevier.com/S0950-0618(14)01327-0/h0055http://refhub.elsevier.com/S0950-0618(14)01327-0/h0050http://refhub.elsevier.com/S0950-0618(14)01327-0/h0050http://refhub.elsevier.com/S0950-0618(14)01327-0/h0045http://refhub.elsevier.com/S0950-0618(14)01327-0/h0045http://refhub.elsevier.com/S0950-0618(14)01327-0/h0045http://refhub.elsevier.com/S0950-0618(14)01327-0/h0040http://refhub.elsevier.com/S0950-0618(14)01327-0/h0040http://refhub.elsevier.com/S0950-0618(14)01327-0/h0040http://refhub.elsevier.com/S0950-0618(14)01327-0/h0035http://refhub.elsevier.com/S0950-0618(14)01327-0/h0035http://refhub.elsevier.com/S0950-0618(14)01327-0/h0035http://refhub.elsevier.com/S0950-0618(14)01327-0/h0030http://refhub.elsevier.com/S0950-0618(14)01327-0/h0030http://refhub.elsevier.com/S0950-0618(14)01327-0/h0030http://refhub.elsevier.com/S0950-0618(14)01327-0/h0025http://refhub.elsevier.com/S0950-0618(14)01327-0/h0025http://refhub.elsevier.com/S0950-0618(14)01327-0/h0020http://refhub.elsevier.com/S0950-0618(14)01327-0/h0020http://refhub.elsevier.com/S0950-0618(14)01327-0/h0020http://refhub.elsevier.com/S0950-0618(14)01327-0/h0015http://refhub.elsevier.com/S0950-0618(14)01327-0/h0015http://refhub.elsevier.com/S0950-0618(14)01327-0/h0010http://refhub.elsevier.com/S0950-0618(14)01327-0/h0010http://refhub.elsevier.com/S0950-0618(14)01327-0/h0010http://refhub.elsevier.com/S0950-0618(14)01327-0/h0005http://refhub.elsevier.com/S0950-0618(14)01327-0/h0005
  • 7/23/2019 Durability Against Wetting-drying Cycles of Sustainable Lightweight Cellular Cemented Construction Material Comprising Clay and Fly Ash Wastes

    10/10

    [16] Goodary R, Lecomte-Nana GL, Petit C, Smith DS. Investigation of the strength

    development in cement-stabilised soils of volcanic origin. Constr Build Mater

    2012:5928.

    [17] Arulrajah A, Piratheepan J, Disfani MM, Bo MW. Geotechnical and

    geoenvironmental properties of recycled construction and demolition

    materials in pavement subbase applications. J Mater Civ Eng 2009;25(8):

    107788.

    [18] Arulrajah A, Disfani MM, Horpibulsuk S, Suksiripattanapong C, Prongmanee N.

    Physical properties and shear strength response of recycled construction and

    demolition materials in unbound pavement base/subbase pavement. Constr

    Build Mater 2014;58:24557.[19] Rahman MA, ArulrajahA, Piratheepan J, Bo MW, Imteaz MA. Resilientmodulus

    and permanent deformation responses of geogrid-reinforced construction and

    demolition materials. J Mater Civ Eng 2009;26(3):5129.

    [20] Tsuchida T, Porbaha A, Yamane N. Development of a geomaterial from dredge

    bay mud. J Mater Civ Eng ASCE 2001;13(2):15260.

    [21] Satoh T, TsuchidaT, Mitsukuri K, Hong Z.Field placing testof lightweighttreated

    soil under seawater in Kumamoto port. Soils Found 2001;41(4):14554.

    [22] Hayashi Y, Suzuki A, Matsuo A. Mechanical properties of air-cement-treated

    soils. Ground Improv 2002;6(1):6978.

    [23] Otani J, Mukunoki T, Kikuchi Y. Visualization for engineering property of in-

    situ lightweight soils with air foams. Soils Found 2002;42(3):93105.

    [24] Jamnongpipatkul P, Dechasakulsom M, Sukolrat J. Application of air-foam

    stabilized soil for bridge-embankment transition zone in Thailand. In:

    GeoHuman international conference. Geotechnical Special Publication

    No.190. 2009. p. 181193.

    [25] Kikuchi Y, Nagatome T. Durability of cementtreated clay with air foam used in

    water front structures. In: Proceedings of Geo-Shanghai 2010, ASCE Special

    Publication No.207, June 25, 2010, China, 2011. p. 130.

    [26] Kikuchi Y, Nagatome T, Mizutani T, Yoshio H. The effect of air foam inclusion

    on the permeability and absorption of light weight soil. Soils Found

    2011;51(1):15165.

    [27] Neramitkornburi A, Horpibulsuk S, Suksiripattanapong C, Arulrajah A, Disfani

    MM. Engineering properties of lightweight cellular cemented clay. Soils Found

    2015;55(2) (accepted for publication on December 12, 2014) .

    [28] Horpibulsuk S, Wijitchot A, Neramitkornburee A, Shen SL. Factors influencing

    unit weight andstrengthof lightweight cemented clay. Q J Eng Geol Hydrogeol

    2014;47:1018.

    [29] Concrete Institute of Australia. Fly ash and its use in concrete, current practice

    note No. 25, ISBN 0 909375 61 5, November 2003, 8p.

    [30] Bayat O. Characterization of Turkish fly ashes. Fuel 1998;77(9/10):105966.

    [31] Joshi RC, Lohtia RP. Fly ash in concrete production, properties and uses.

    Advances in concrete technology, vol. 2. Gordon and Breach Science

    Publishers; 1997.

    [32] Estakhri CK, SaylakD. Potential for reduced greenhouse gas emissions in Texas

    through the use of high volume fly ash concrete. Transp Res Board 2004 .

    [33] Dif AE, Bluemel WF. Expansive soil under cyclic drying and wetting. Geotech

    Test J 1991;14:96102.

    [34] Khattab SAA, Al-Mukhtar M, Fleureau JM. Long-termstabilitycharacteristics ofa lime-treated plastic soil. J Mater Civil Eng ASCE 2007;19(4):35866.

    [35] Rao SM, Reddy BVV, Muttharam M. The impact of cyclic wetting and drying on

    the swelling behavior of stabilized expansive soil. Eng Geol 2001;60:22333.

    [36] Sazzad BS, Rahman K, Mustafa Y, Ireen A. The long-term performance of two

    fly ash stabilized find-grained soil subbase. Resour Conserv Recycl

    2010;54:66672.

    [37] Mitchell JK. Fundamentals of soil behavior. New York: John Wiley & Sons, Inc.;

    1993.

    [38] Horpibulsuk S, Suddeepong A, Suksiripattanapong C, Chinkulkijniwat A,

    Arulrajah A, Disfani MM. Water-void/cement ratio identity of lightweight

    cellular cemented material. J Mater Civil Eng ASCE 2014;26(10). 06014021(1

    10).

    [39] Horpibulsuk S, Suddeepong A, Chinkulkijniwat A, Liu MD. Strength and

    compressibility of lightweight cemented clays. Appl Clay Sci 2014;69:1121.

    [40] Prakash K, Sridharan A. Free swell ratio and clay mineralogy of fine-grained

    soils. Geotech Test J ASTM 2004;27(2):2205.

    [41] Horpibulsuk S, Shibuya S, Fuenkajorn K, Katkan W. Assessment of engineering

    properties of Bangkok clay. Can Geotech J 2007;44(2):17387.

    [42] Horpibulsuk S, Rachan R, Suddeepong A, Liu MD, Du YJ. Compressibility of

    lightweight cemented clays. Eng Geol 2013;159:5966.

    [43] Kampala A, Horpibulsuk S, Prongmanee N, Chinkulkijniwat A. Influence of

    wetdry cycles on compressive strength of calcium carbide residue-fly ash

    stabilized clay. J Mater Civ Eng ASCE 2014;24(1):63343.

    A. Neramitkornburi et al. / Construction and Building Materials 77 (2015) 4149 49

    http://refhub.elsevier.com/S0950-0618(14)01327-0/h0080http://refhub.elsevier.com/S0950-0618(14)01327-0/h0080http://refhub.elsevier.com/S0950-0618(14)01327-0/h0080http://refhub.elsevier.com/S0950-0618(14)01327-0/h0085http://refhub.elsevier.com/S0950-0618(14)01327-0/h0085http://refhub.elsevier.com/S0950-0618(14)01327-0/h0085http://refhub.elsevier.com/S0950-0618(14)01327-0/h0085http://refhub.elsevier.com/S0950-0618(14)01327-0/h0090http://refhub.elsevier.com/S0950-0618(14)01327-0/h0090http://refhub.elsevier.com/S0950-0618(14)01327-0/h0090http://refhub.elsevier.com/S0950-0618(14)01327-0/h0090http://refhub.elsevier.com/S0950-0618(14)01327-0/h0095http://refhub.elsevier.com/S0950-0618(14)01327-0/h0095http://refhub.elsevier.com/S0950-0618(14)01327-0/h0095http://refhub.elsevier.com/S0950-0618(14)01327-0/h0100http://refhub.elsevier.com/S0950-0618(14)01327-0/h0100http://refhub.elsevier.com/S0950-0618(14)01327-0/h0105http://refhub.elsevier.com/S0950-0618(14)01327-0/h0105http://refhub.elsevier.com/S0950-0618(14)01327-0/h0105http://refhub.elsevier.com/S0950-0618(14)01327-0/h0110http://refhub.elsevier.com/S0950-0618(14)01327-0/h0110http://refhub.elsevier.com/S0950-0618(14)01327-0/h0115http://refhub.elsevier.com/S0950-0618(14)01327-0/h0115http://refhub.elsevier.com/S0950-0618(14)01327-0/h0130http://refhub.elsevier.com/S0950-0618(14)01327-0/h0130http://refhub.elsevier.com/S0950-0618(14)01327-0/h0130http://refhub.elsevier.com/S0950-0618(14)01327-0/h0130http://refhub.elsevier.com/S0950-0618(14)01327-0/h0135http://refhub.elsevier.com/S0950-0618(14)01327-0/h0135http://refhub.elsevier.com/S0950-0618(14)01327-0/h0135http://refhub.elsevier.com/S0950-0618(14)01327-0/h0140http://refhub.elsevier.com/S0950-0618(14)01327-0/h0140http://refhub.elsevier.com/S0950-0618(14)01327-0/h0140http://refhub.elsevier.com/S0950-0618(14)01327-0/h0150http://refhub.elsevier.com/S0950-0618(14)01327-0/h0155http://refhub.elsevier.com/S0950-0618(14)01327-0/h0155http://refhub.elsevier.com/S0950-0618(14)01327-0/h0155http://refhub.elsevier.com/S0950-0618(14)01327-0/h0155http://refhub.elsevier.com/S0950-0618(14)01327-0/h0160http://refhub.elsevier.com/S0950-0618(14)01327-0/h0160http://refhub.elsevier.com/S0950-0618(14)01327-0/h0165http://refhub.elsevier.com/S0950-0618(14)01327-0/h0165http://refhub.elsevier.com/S0950-0618(14)01327-0/h0170http://refhub.elsevier.com/S0950-0618(14)01327-0/h0170http://refhub.elsevier.com/S0950-0618(14)01327-0/h0175http://refhub.elsevier.com/S0950-0618(14)01327-0/h0175http://refhub.elsevier.com/S0950-0618(14)01327-0/h0180http://refhub.elsevier.com/S0950-0618(14)01327-0/h0180http://refhub.elsevier.com/S0950-0618(14)01327-0/h0180http://refhub.elsevier.com/S0950-0618(14)01327-0/h0185http://refhub.elsevier.com/S0950-0618(14)01327-0/h0185http://refhub.elsevier.com/S0950-0618(14)01327-0/h0190http://refhub.elsevier.com/S0950-0618(14)01327-0/h0190http://refhub.elsevier.com/S0950-0618(14)01327-0/h0190http://refhub.elsevier.com/S0950-0618(14)01327-0/h0190http://refhub.elsevier.com/S0950-0618(14)01327-0/h0190http://refhub.elsevier.com/S0950-0618(14)01327-0/h0195http://refhub.elsevier.com/S0950-0618(14)01327-0/h0195http://refhub.elsevier.com/S0950-0618(14)01327-0/h0200http://refhub.elsevier.com/S0950-0618(14)01327-0/h0200http://refhub.elsevier.com/S0950-0618(14)01327-0/h0205http://refhub.elsevier.com/S0950-0618(14)01327-0/h0205http://refhub.elsevier.com/S0950-0618(14)01327-0/h0210http://refhub.elsevier.com/S0950-0618(14)01327-0/h0210http://refhub.elsevier.com/S0950-0618(14)01327-0/h0210http://refhub.elsevier.com/S0950-0618(14)01327-0/h0215http://refhub.elsevier.com/S0950-0618(14)01327-0/h0215http://refhub.elsevier.com/S0950-0618(14)01327-0/h0215http://refhub.elsevier.com/S0950-0618(14)01327-0/h0215http://refhub.elsevier.com/S0950-0618(14)01327-0/h0215http://refhub.elsevier.com/S0950-0618(14)01327-0/h0215http://refhub.elsevier.com/S0950-0618(14)01327-0/h0210http://refhub.elsevier.com/S0950-0618(14)01327-0/h0210http://refhub.elsevier.com/S0950-0618(14)01327-0/h0205http://refhub.elsevier.com/S0950-0618(14)01327-0/h0205http://refhub.elsevier.com/S0950-0618(14)01327-0/h0200http://refhub.elsevier.com/S0950-0618(14)01327-0/h0200http://refhub.elsevier.com/S0950-0618(14)01327-0/h0195http://refhub.elsevier.com/S0950-0618(14)01327-0/h0195http://refhub.elsevier.com/S0950-0618(14)01327-0/h0190http://refhub.elsevier.com/S0950-0618(14)01327-0/h0190http://refhub.elsevier.com/S0950-0618(14)01327-0/h0190http://refhub.elsevier.com/S0950-0618(14)01327-0/h0190http://refhub.elsevier.com/S0950-0618(14)01327-0/h0185http://refhub.elsevier.com/S0950-0618(14)01327-0/h0185http://refhub.elsevier.com/S0950-0618(14)01327-0/h0180http://refhub.elsevier.com/S0950-0618(14)01327-0/h0180http://refhub.elsevier.com/S0950-0618(14)01327-0/h0180http://refhub.elsevier.com/S0950-0618(14)01327-0/h0175http://refhub.elsevier.com/S0950-0618(14)01327-0/h0175http://refhub.elsevier.com/S0950-0618(14)01327-0/h0170http://refhub.elsevier.com/S0950-0618(14)01327-0/h0170http://refhub.elsevier.com/S0950-0618(14)01327-0/h0165http://refhub.elsevier.com/S0950-0618(14)01327-0/h0165http://refhub.elsevier.com/S0950-0618(14)01327-0/h0160http://refhub.elsevier.com/S0950-0618(14)01327-0/h0160http://refhub.elsevier.com/S0950-0618(14)01327-0/h0155http://refhub.elsevier.com/S0950-0618(14)01327-0/h0155http://refhub.elsevier.com/S0950-0618(14)01327-0/h0155http://refhub.elsevier.com/S0950-0618(14)01327-0/h0150http://refhub.elsevier.com/S0950-0618(14)01327-0/h0140http://refhub.elsevier.com/S0950-0618(14)01327-0/h0140http://refhub.elsevier.com/S0950-0618(14)01327-0/h0140http://-/?-http://refhub.elsevier.com/S0950-0618(14)01327-0/h0135http://refhub.elsevier.com/S0950-0618(14)01327-0/h0135http://refhub.elsevier.com/S0950-0618(14)01327-0/h0135http://-/?-http://refhub.elsevier.com/S0950-0618(14)01327-0/h0130http://refhub.elsevier.com/S0950-0618(14)01327-0/h0130http://refhub.elsevier.com/S0950-0618(14)01327-0/h0130http://-/?-http://-/?-http://-/?-http://refhub.elsevier.com/S0950-0618(14)01327-0/h0115http://refhub.elsevier.com/S0950-0618(14)01327-0/h0115http://-/?-http://refhub.elsevier.com/S0950-0618(14)01327-0/h0110http://refhub.elsevier.com/S0950-0618(14)01327-0/h0110http://-/?-http://refhub.elsevier.com/S0950-0618(14)01327-0/h0105http://refhub.elsevier.com/S0950-0618(14)01327-0/h0105http://-/?-http://refhub.elsevier.com/S0950-0618(14)01327-0/h0100http://refhub.elsevier.com/S0950-0618(14)01327-0/h0100http://-/?-http://refhub.elsevier.com/S0950-0618(14)01327-0/h0095http://refhub.elsevier.com/S0950-0618(14)01327-0/h0095http://refhub.elsevier.com/S0950-0618(14)01327-0/h0095http://-/?-http://refhub.elsevier.com/S0950-0618(14)01327-0/h0090http://refhub.elsevier.com/S0950-0618(14)01327-0/h0090http://refhub.elsevier.com/S0950-0618(14)01327-0/h0090http://refhub.elsevier.com/S0950-0618(14)01327-0/h0090http://-/?-http://refhub.elsevier.com/S0950-0618(14)01327-0/h0085http://refhub.elsevier.com/S0950-0618(14)01327-0/h0085http://refhub.elsevier.com/S0950-0618(14)01327-0/h0085http://refhub.elsevier.com/S0950-0618(14)01327-0/h0085http://-/?-http://refhub.elsevier.com/S0950-0618(14)01327-0/h0080http://refhub.elsevier.com/S0950-0618(14)01327-0/h0080http://refhub.elsevier.com/S0950-0618(14)01327-0/h0080http://-/?-