drive and layout requirements for fast switching high

34
Drive and Layout Requirements for Fast Switching High Voltage MOSFETs

Upload: others

Post on 16-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Drive and Layout Requirements

for Fast Switching High Voltage MOSFETs

2

• Introduction

• Super-Junction Technologies

• Influence of Circuit Parameters on Switching Characteristics

– Gate Resistance

– Clamp diodes

– Ferrite Bead

– Drive IC

– External Cgd

– Source Inductance

• Practical Layout Requirements

• Summary

Contents

3

E-Field Distribution of SJ TechnologySJ Technology Allows Twice BV for Same Doping

A

B

E-F

ield

AB

BV

• Planar MOSFET • Super-Junction MOSFET

A

B

E-F

ield

AB

BV

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

++

++

++

++

++

++

++

++

+

++

++

++

+

• Si limitation : On resistance and BV is trade-off • On resistance is in linear relation on BV

Area is proportional to BV Area is twice so BV is twice for

same doping thanks to charge balance

--

--

--

--

--

--

--

--

--

4

Silicon Limit of HV MOSFETs ?

A

B

E-F

ield

AB

BV

• Planar MOSFET

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + `+ +

Area is proportional to BV

• Super-Junction MOSFET

A

B

E-F

ield

AB

BV

++++++

++++++

++++

+

++++++

+

Area is twice so BV is twice for

same doping thanks to charge balance

------

------

------

-5

0

5

10

15

20

25

30

35

40

45

50

55

60

0 100 200 300 400 500 600 700

Breakdown Voltage (V)

Sp

ec

ific

Rd

so

n [

mo

hm

-cm

2]

5.29106, BVspRon

• A near linear relation between

Rds(on) and Breakdown Voltage

• A significant reduction of

conduction and switching losses

• High power density for high-end

application. Results in 10times

lower Rds(on) at 600V

Rds(on)is linear relation on BV

5

Non-linear Coss in SJ MOSFET

• Coss curve of super-junction MOSFET is highly non-linear

Extremely fast dv/dt and di/dt and voltage and current oscillation

d

AC ro

a b c

0.1 1 10 100

100

1000

10000

SJ MOSFET

Planar MOSFET

Cos

s [p

F]

Vds [V]

Vds:100V/div

Vgs : 5V/div

Id:2A/div

50ns/div

SJ MOSFET @ Ron=120Ω, Roff=30Ω vs Planar MOFET @ Ron=22Ω, Roff=10Ω(Ref.)

a b c

6

SuperFET3 vs SuperFET2

DUTsSuperFET 3 SuperFET 2

FCH040N65S3 FCH041N60E

BVDSS @ TJ=25 650 V 600 V

ID@ TC=25 68.0A 77.0 A

RDS(ON) max. ID=34A 40mΩ 41mΩ

VGS(th) 2.5V ~ 4.5V 2.5V ~ 3.5V

VGSS @ DC ±30V ±20V

*Qg @ Vdd=400V,

ID=34A, Vgs=10V* 158 nC * 330 nC

*Rg @ f = 1 MHz * 0.7 Ω 1.2 Ω

*EOSS @ 400VDS * 13.7 uJ * 25.7 uJ

*QOSS @ 400VDS * 521 nC * 596 nC

Peak diode recovery

dv/dt20V/ns 20V/ns

MOSFET dv/dt 100V/ns 100V/ns

-52%

-47%

-13%

7

Gate Charge CharacteristicSuperFET3 - Low Gate Charge and Input Capacitance

0.1 1 10 1005000

10000

15000

20000

25000

30000

※ Notes :

1. VGS

= 0 V

2. f = 1 MHz

Ciss

= Cgs

+ Cgd

(Cds

= shorted)

Cis

s [p

F]

VDS

, Drain-Source Voltage [V]

SuperFET 3

SuperFET 2

DUTs FCH040N65S3 FCH041N60E

Qgs 39.8 57.1

Qgd 63.8 121.0

Qg 157.9 330.2

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350

Vg

s [

V]

Gate Charge [nC]

FCH040N65S3 FCH041N60E

SuperFET3 SuperFET2

8

Clamped Inductive Switching Circuit

& Waveforms and Loss Definition

• Test Circuit which is used for the following measurements.

9

Effects of Gate Resistance at Turn On Transient

-100 -80 -60 -40 -20 0 20 40

-10

0

10

20

30

Gat

e-S

ourc

e V

olta

ge [V

]

Time [ns]

Rg=3.3ohm

Rg=6.8ohm

Rg=10ohm

Rg=27ohm

Rg=47ohm

-100 -80 -60 -40 -20 0 20 40-2000

0

2000

4000

6000

8000

10000

12000

Pon

[W]

Time [ns]

Rg=3.3ohm

Rg=6.8ohm

Rg=10ohm

Rg=27ohm

Rg=47ohm

-100 -80 -60 -40 -20 0 20

0

10

20

30

40

Dra

in C

urre

nt [A

]

Time [ns]

Rg=3.3ohm

Rg=6.8ohm

Rg=10ohm

Rg=27ohm

Rg=47ohm

-100 -80 -60 -40 -20 0 20 40-100

0

100

200

300

400

Dra

in-S

ourc

e V

olta

ge [V

]

Time [ns]

Rg=3.3ohm

Rg=6.8ohm

Rg=10ohm

Rg=27ohm

Rg=47ohm

10

Effects of Gate Resistance at Turn Off Transient

-100 -80 -60 -40 -20 0 20 40 60-1000

0

1000

2000

3000

4000

5000

6000

Pof

f [W

]

Time [ns]

Rg=3.3ohm

Rg=6.8ohm

Rg=10ohm

Rg=27ohm

Rg=47ohm

-100 -80 -60 -40 -20 0 20 40 600

100

200

300

400

500

600

Dra

in-S

ourc

e V

olta

ge [V

]

Time [ns]

Rg=3.3ohm

Rg=6.8ohm

Rg=10ohm

Rg=27ohm

Rg=47ohm

-100 -80 -60 -40 -20 0 20 40 60-10

0

10

20

Gat

e-S

ourc

e V

olta

ge [V

]

Time [ns]

Rg=3.3ohm

Rg=6.8ohm

Rg=10ohm

Rg=27ohm

Rg=47ohm

-100 -80 -60 -40 -20 0 20 40 60-4

-2

0

2

4

6

8

10

12

14

16

18

20

Dra

in C

urre

nt [A

]

Time [ns]

Rg=3.3ohm

Rg=6.8ohm

Rg=10ohm

Rg=27ohm

Rg=47ohm

11

Effects of Gate Resistance

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

90

100

110

120Eon& Eoff @ Id=9A, Vds=380V

Eon

[uJ]

Rg, Gate Resistor [ohm]

Eon

Eoff

• Critical control parameter in gate-drive design is external series gate resistor (Rg).

• From an application standpoint, selecting the optimized Rg is very important.

- Efficiency vs dv/dt or voltage spikes.

12

Reverse Recovery Effect Si Diode vs SiC Schottky Diode

-80.0n -60.0n -40.0n -20.0n 0.0 20.0n 40.0n 60.0n 80.0n 100.0n-6

-4

-2

0

2

4

6

8

10

Cur

rent

[A]

Time[s]

6A SiC Schottky diode

8A Si diode

13

Effect of Clamp Diodes at Turn On Si Diode vs SiC Schottky Diode

Id : 2A/div.

IF : 2A/div.

Vds : 100V/div.

Time : 20ns/div.Vr: 100V/div.

Eon=50.72uJ

Eon=90.33uJ

Diode & MOSFET waveforms @ Turn-on with SiC Schottky diode

Diode & MOSFET waveforms @ Turn-on with Si diode

14

Effect of Clamp Diodes at Turn OffSi Diode vs SiC Schottky Diode

6A SiC diode

8A Si Diode

Turn off @ Id=1A, Rg=4.7 Ω with 6A SiC SBD (Ref : 8A Si Diode)

Vgs : 5V/div.

Id : 0.5A/div.

Vds : 100V/div.

Time : 100ns/div.

6A SiC SBD

8A Si Diode

Eoff

15

Effect of Clamp DiodesSi Diode vs SiC Schottky Diode

0 10 20 30 40 50 60 70

10

20

30

40

50

60

70

80

MOSFET Eon @ Id=9A, Vdd=380V

Eon

[uJ]

Rg, Gate Resistor [ohm]

With Si Diode

With SiC Schottky

• SiC Schottky diode is optimized device for extremely fast switching MOSFET.

0 10 20 30 40 50 60 70

20

40

60

80

100

dv/d

t [V

/ns]

Rg [ohm]

With Si Diode

With SiC Schottky Diode

16

Effects of Ferrite Bead

Vgs without ferrite bead

Vgs with ferrite bead

Vgs : 10V/div.

Vgs without ferrite bead

Vgs with ferrite bead

Time :10ns/div.

Vgs : 10V/div.

(a) Vgs at Turn-on Transient (b) Vgs at Turn-off Transient

17

Equivalent Circuit of Ferrite Bead

X

Z

R

Z R jX

Cpara

Lbead

Rpara

Rbead

Gate Ferrite Bead

18

Effects of Current Capability of Driver IC

DEVICE CONDITION IPK_SINK IPK_SOURCE

FAN3122T CLOAD=1.0uF,f=1kHz,Vdd=12V 11.4[A] -10.6[A]

FAN3224T CLOAD=1.0uF,f=1kHz,Vdd=12V 5.0[A] -5.0[A]

FAN3111C CLOAD=1.0uF,f=1kHz,Vdd=12V 1.4[A] -1.4[A]

TABLE I. Comparisons of Critical Specification of Gate Drivers

0 2 4 6 8 10

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0 Eoff @ Rg=2.2ohm

Eof

f[uJ]

Drain Current [A]

FAN3122T

FAN3224T

FAN3111C

0 2 4 6 8 10

6

9

12

15

18

21

24

27

30

33

36 Eon @ Rg=20ohm

Eon

[uJ]

Drain Current [A]

FAN3122T

FAN3224T

FAN3111C

* DUT : FCP16N60N with 6A SiC SBD

19

Effects of Gate Drive Circuit

• PNP Tr turn-off can reduce gate ringing.

• It’s possible to reduce parasitic components in PCB.

• Keep loop area as small as possible to avoid worse EMI and switching behavior.* Ron=10hom, Roff=4.7ohm

Vcc

OUT

GNDRoffDoff

RonDon Vcc

OUT

GND

RonDon

Roff

Qoff

20

Measurement Technique

Oscilloscope

Probe

Ground LeadR

R

CC

L

L

R1

RL

CP RP

LG

8pF 10M

Ringing

Probes are circuits composed of distributed R,L, and C

for AC signals. A total probe impedance varies

with switching frequency. Standard gate probing

The probe ground lead adds inductance to the circuit.

21

Keep the Loop Probe Small!• Measurement with standard setup

GDS

GDS

• Measurement with Probe Tip

-100 -80 -60 -40 -20 0 20 40 60 80 100

-15

-10

-5

0

5

10

15

Vgs

[V]

Time [ns]

Measuremet with standard setup

Measuremet with Probe tip

Vgspk-pk=11.2V

Vgspk-pk=26V

22

Package and Layout Parasitics

Layout parasitics

Package parasitics

A lot of layout parasitic has to be considered!

1cm / 0.25mm trace (L/W) ≈ 6-10nH

L=10nH, di/dt=500A/μs Vind=5V

L=10nH, di/dt=1,000A/μs Vind=10V

23

MOSFET Oscillation Circuit

Cgd_int.

Cds

Cgs

Lg1

LD

LS

LG

Ls1

Ld1

RG-ext.=5.1O Rg_int.

Dboost

L

CO

RLOAD

Cgd_ext.

Resonant circuit

Osc illation circuit

given by external

couple capacitance

Rg

LS

LS1

LG1

LD1

LG

MOSFET

LD

-

CGS

Cgd_ext.

CGD

CDS

Resonant circuit

given by external

coupling

capacitance

MOSFET

A lot of layout parasitic has to be considered!

24

Layout Capacitance

Example with High External CGD

Capacity between trace pitches

External CGD too high!!

x

d

y

d

AC r

0

yxA

Drain

External CGD

Gate

External CGD

(a) Single layer PCB (b) Double layer PCB

Drain

External CGD

External CGD

Gate

25

Layout Capacitance

Examples with Reduced External CGD

(b) multi layer PCB

External CGD

Drain

Gate

Gnd-plane or Shield-

plane reduces CGD

Minimized external CGD

Both solutions allow use of SJ Devices(a) double layer PCB

Drain

Gate

Minimized external CGD

External CGD

26

Layout Example Large External CGD

Vgs Shows Higher Spikes During Turn OffPCB example with large external CGD

VDS

VGSDVGS ~ 18V

Coupling areaGate

Drain

27

Layout Example Small External CGD

Vgs Shows Lower Spikes During Turn Off

PCB example with small external CGD

VDS

VGS

DVGS ~ 4V

Coupling area

Gate

Dra

in

28

Turn-off Gate Oscillation Mechanism

0.1 1 10 100

100

1000

10000

SJ MOSFET

Co

ss [p

F]

Vds [V]

During T2

RG

LD

LS

LGLG_int

LS_int

dt

dILV D

SLS

+

-

VGS_int -

VGS_int+VGS+

VGS- VDS-

VDS+

Discharging

Id

Id

t

Negative di/dt

VGS : 5V/div

ID : 2AVDS : 100V/div

• Keep the commutation loop as small as possible!

• Minimize the source inductance and sensing

resistor inductance

29

Effects of Source Inductance

LS=1n and 10nH

(a) Vgs waveform for low LS (b) Vgs waveform for High LS

(c) Vds and Id waveform

* Topology : 500W Interleaved CRM PFC

* MOSFET : FCPF13N60N

* Diode : FFPF20UP60DN

* Gate Resistor : Ron=51ohm, Roff=10ohm

Vgs Vgs

Id

Vds

30

Gate oscillation vs Package

Through hole vs SMD vs Kelvin source SMD

ID=8A 600V/199mΩ, Power88 600V/199mΩ, D2PAK 600V/199mΩ, TO220

Kelvin Source SMD SMD Through hole

Turn-off

Transient

Gate Oscillation Gate Oscillation

31

Design Tips - Practical Layout Example

– Boost PFC

Driver and gate resistor far away

from gate pin of MOSFET

Long gate path

Roff

Ron

Increased external

G-D capacitance

G D S G D S

Ron

Don Roff

Driver & Rg as close as

possible to the gate pin of

MOSFET

Connect the driver-stage Gnd

directly to the source pin to

achieve best performance

Qoff

Separate Power GND

and gate driver GND

Bad Layout: Good Layout:

32

Minimized Cgd:

Gate and Drain trace at 90° angle

Minimized source inductance to reference

point for gate drive minimizedTwo independent totem

pole drivers very close to

MOSFET gate

Design Tips - Practical Layout Example

- Paralleling MOSFETs

33

SummaryHow to Use Super-Junction MOSFET in Practical Layouts

• To achieve the best performance of Super-Junction MOSFETs, optimized

layout is required

• Gate driver and Rg must be placed as close as possible to the MOSFET gate pin

• Separate POWER GND and GATE Driver GND

• Minimize parasitic Cgd capacitance and source inductance on PCB

• For paralleling Super-Junction MOSFETs, symmetrical layout is mandatory

• Slow down dv/dt, di/dt by increasing Rg or using ferrite bead

34