dr. wolf's chm 201 & 202 5-1 5.14 dehydrohalogenation of alkyl halides

31
Dr. Wolf's CHM 201 & 202 5-1 5.14 Dehydrohalogenation of Alkyl Halides

Upload: clarence-empson

Post on 14-Dec-2015

241 views

Category:

Documents


1 download

TRANSCRIPT

Dr. Wolf's CHM 201 & 202 5-1

5.14 Dehydrohalogenation of

Alkyl Halides

Dr. Wolf's CHM 201 & 202 5-2

HH YY

•dehydrogenation of alkanes: H; Y = H

•dehydration of alcohols: H; Y = OH

•dehydrohalogenation of alkyl halides: H; Y = Br, etc.

-Elimination Reactions Overview-Elimination Reactions Overview-Elimination Reactions Overview-Elimination Reactions Overview

CC CCCC CC ++ HH YY

Dr. Wolf's CHM 201 & 202 5-3

HH YY

•dehydrogenation of alkanes:industrial process; not regioselective

•dehydration of alcohols:acid-catalyzed

•dehydrohalogenation of alkyl halides:consumes base

-Elimination Reactions Overview-Elimination Reactions Overview-Elimination Reactions Overview-Elimination Reactions Overview

CC CCCC CC ++ HH YY

Dr. Wolf's CHM 201 & 202 5-4

DehydrohalogenationDehydrohalogenationDehydrohalogenationDehydrohalogenation

A useful method for the preparation of alkenes

ClCl

(100 %)(100 %)

likewise, NaOCHlikewise, NaOCH33 in methanol, or KOH in ethanol in methanol, or KOH in ethanol

NaOCHNaOCH22CHCH33

ethanol, 55°Cethanol, 55°C

Dr. Wolf's CHM 201 & 202 5-5

CHCH33(CH(CH22))1515CHCH22CHCH22ClCl

When the alkyl halide is primary, potassiumtert-butoxide in dimethyl sulfoxide is the base/solvent system that is normally used.

KOC(CHKOC(CH33))33

dimethyl sulfoxidedimethyl sulfoxide

(86%)(86%)

DehydrohalogenationDehydrohalogenationDehydrohalogenationDehydrohalogenation

CHCH22CHCH33(CH(CH22))1515CHCH

Dr. Wolf's CHM 201 & 202 5-6

BrBr

29 %29 % 71 %71 %

++

RegioselectivityRegioselectivity

follows Zaitsev's rule:

more highly substituted double bond predominates

KOCHKOCH22CHCH33

ethanol, 70°Cethanol, 70°C

Dr. Wolf's CHM 201 & 202 5-7

•more stable configurationof double bond predominates

StereoselectivityStereoselectivity KOCHKOCH22CHCH33

ethanolethanol

BrBr

++

(23%)(23%)(77%)(77%)

Dr. Wolf's CHM 201 & 202 5-8

•more stable configurationof double bond predominates

StereoselectivityStereoselectivity

KOCHKOCH22CHCH33

ethanolethanol

++

(85%)(85%) (15%)(15%)

BrBr

Dr. Wolf's CHM 201 & 202 5-9

5.155.15Mechanism of the Mechanism of the

Dehydrohalogenation of Alkyl Halides: Dehydrohalogenation of Alkyl Halides: The E2 MechanismThe E2 Mechanism

Dr. Wolf's CHM 201 & 202 5-10

FactsFacts

• (1) Dehydrohalogenation of alkyl halides exhibits second-order kinetics

first order in alkyl halidefirst order in baserate = k[alkyl halide][base]

implies that rate-determining step involves both base and alkyl halide; i.e., it is bimolecular (second-order)

Dr. Wolf's CHM 201 & 202 5-11

FactsFacts

• (2) Rate of elimination depends on halogen

weaker C—X bond; faster raterate: RI > RBr > RCl > RF

implies that carbon-halogen bond breaks in the rate-determining step

Dr. Wolf's CHM 201 & 202 5-12

The E2 MechanismThe E2 MechanismThe E2 MechanismThe E2 Mechanism

•concerted (one-step) bimolecular process

•single transition state

C—H bond breaks

component of double bond forms

C—X bond breaks

Dr. Wolf's CHM 201 & 202 5-13

The E2 MechanismThe E2 MechanismThe E2 MechanismThe E2 Mechanism

––

OORR..

....::

CC CC

HH

XX....::::

ReactantsReactants

Dr. Wolf's CHM 201 & 202 5-14

The E2 MechanismThe E2 MechanismThe E2 MechanismThe E2 Mechanism

––

OORR..

....::

CC CC

HH

XX....::::

ReactantsReactants

Dr. Wolf's CHM 201 & 202 5-15

CC CC

The E2 MechanismThe E2 MechanismThe E2 MechanismThe E2 Mechanism

––

OORR..

.... HH

XX....::::––

Transition stateTransition state

Dr. Wolf's CHM 201 & 202 5-16

The E2 MechanismThe E2 MechanismThe E2 MechanismThe E2 Mechanism

OORR....

.... HH

CC CC

––XX....

::::....

ProductsProducts

Dr. Wolf's CHM 201 & 202 5-17

5.16 & 5.175.16 & 5.17Anti Elimination in E2 Anti Elimination in E2

ReactionsReactions

Stereoelectronic Effects

Isotope Effects

Dr. Wolf's CHM 201 & 202 5-18

(CH(CH33))33CC

(CH(CH33))33CC

BrBr

KOC(CHKOC(CH33))33

(CH(CH33))33COHCOH

ciscis-1-Bromo-4--1-Bromo-4-tert-tert- butylcyclohexanebutylcyclohexane

Stereoelectronic effectStereoelectronic effect

Dr. Wolf's CHM 201 & 202 5-19

(CH(CH33))33CC

(CH(CH33))33CCBrBr KOC(CHKOC(CH33))33

(CH(CH33))33COHCOH

transtrans-1-Bromo-4--1-Bromo-4-tert-tert- butylcyclohexanebutylcyclohexane

Stereoelectronic effectStereoelectronic effect

Dr. Wolf's CHM 201 & 202 5-20

(CH(CH33))33CC

(CH(CH33))33CC

BrBr

(CH(CH33))33CC

BrBr

KOC(CHKOC(CH33))33

(CH(CH33))33COHCOH

KOC(CHKOC(CH33))33

(CH(CH33))33COHCOH

ciscis

transtrans

Rate constant for dehydrohalogenation of cis is 500 times greater than that of trans

Stereoelectronic effectStereoelectronic effect

Dr. Wolf's CHM 201 & 202 5-21

(CH(CH33))33CC

(CH(CH33))33CC

BrBr

KOC(CHKOC(CH33))33

(CH(CH33))33COHCOH

ciscis

H that is removed by base must be anti periplanar to Br

Two anti periplanar H atoms in cis stereoisomer

HHHH

Stereoelectronic effectStereoelectronic effect

Dr. Wolf's CHM 201 & 202 5-22

(CH(CH33))33CC

KOC(CHKOC(CH33))33

(CH(CH33))33COHCOH

transtrans

H that is removed by base must be anti periplanar to Br

No anti periplanar H atoms in trans stereoisomer; all vicinal H atoms are gauche to Br

HHHH

(CH(CH33))33CC

BrBrHH

HH

Stereoelectronic effectStereoelectronic effect

Dr. Wolf's CHM 201 & 202 5-23

ciscis

more reactivemore reactive

transtrans

less reactiveless reactive

Stereoelectronic effectStereoelectronic effect

Dr. Wolf's CHM 201 & 202 5-24

Stereoelectronic effectStereoelectronic effect

An effect on reactivity that has its origin in the spatial arrangement of orbitals or bonds is called a stereoelectronic effect.

The preference for an anti periplanar arrangement of H and Br in the transition state for E2 dehydrohalogenation is an example of a stereoelectronic effect.

Dr. Wolf's CHM 201 & 202 5-25

Isotope effectIsotope effectDeuterium,D, is a heavy isotope of

hydrogen but will undergo the same reactions. But the C-D bond is stronger so a reaction where the rate involves breaking a C-H (C-D) bond, the deuterated sample will have a reaction rate 3-8 times slower.

In other words comparing the two rates, i.e. kH/kD = 3-8 WHEN the rate determining step involves breaking the C-H bond.

Dr. Wolf's CHM 201 & 202 5-26

5.185.18A Different Mechanism for A Different Mechanism for

Alkyl Halide Elimination:Alkyl Halide Elimination:The E1 MechanismThe E1 Mechanism

Dr. Wolf's CHM 201 & 202 5-27

ExampleExampleExampleExample

CHCH33 CHCH22CHCH33

BrBr

CHCH33

Ethanol, heatEthanol, heat

++

(25%)(25%) (75%)(75%)

CC

HH33CC

CHCH33

CC CC

HH33CC

HH

CHCH22CHCH33

CHCH33

CCHH22CC

Dr. Wolf's CHM 201 & 202 5-28

1. Alkyl halides can undergo elimination in absence of base.

2. Carbocation is intermediate

3. Rate-determining step is unimolecular ionization of alkyl halide.

4. Generally with tertiary halide, base is weak and at low concentration.

The E1 MechanismThe E1 Mechanism

Dr. Wolf's CHM 201 & 202 5-29

Step 1Step 1Step 1Step 1

slow, unimolecularslow, unimolecular

CCCHCH22CHCH33CHCH33

CHCH33

++

CHCH33 CHCH22CHCH33

BrBr

CHCH33

CC

::....::

::....:: BrBr.... ––

Dr. Wolf's CHM 201 & 202 5-30

Step 2Step 2Step 2Step 2

CCCHCH22CHCH33CHCH33

CHCH33

++

CCCHCH22CHCH33CHCH33

CHCH22

++ CCCHCHCHCH33CHCH33

CHCH33

– – HH++

Dr. Wolf's CHM 201 & 202 5-31

End of Chapter 5