dr. vitaly a. shneidman new jersey institute of technology ...vitaly/math111/math111.pdf · lecture...

163
Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of Technology Fall, 2013 1

Upload: others

Post on 04-Jan-2020

11 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Lecture Notes for math111: Calculus I.

Dr. Vitaly A. Shneidman

New Jersey Institute of Technology

Fall, 2013

1

Page 2: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Introduction

y = f(x)

Limits & Continuity

Rates of change and tangents to curves

2

Page 3: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Average rate of change

∆y

∆x=

f (x2)− f (x1)

x2 − x1(1)

Equation for the secant line:

Y =∆y

∆x(x− x1) + f (x1)

Tangent - secant in the limit x2 → x1 (Or, ∆x → 0).Slope of tangent

f ′ (x1) ≡ ∆y

∆x, ∆x → 0 (2)

(notation f ′ is not yet in the book, but will appearlater...). Equation of tangent line:

Y = f ′ (x1) (x− x1) + f (x1)

3

Page 4: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Example (Galileo): t instead of x or x1, h instead of

∆x.

y(t) =1

2at2

where a is a constant (”acceleration”). Secant (finite

h)

∆y = y(t+h)−y(t) =1

2a[

(t+ h)2 − t2]

=1

2a(

2th+ h2)

∆y

∆t=

∆y

h= a(t+ h/2)

Tangent (h → 0):

y′(t) = at

(known as ”instantaneous velocity” or ”instantaneous

4

Page 5: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

rate of change”). Returning to math notations

(

x2)′

= 2x (3)

Page 6: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Example: y(x) = x3

Use a3−b3 = (a−b)(a2+ab+b2) with a = x+h, b = x.

Slope of secant (A.R.C.), finite h ≡ ∆x:

∆y = y(x+h)−y(x) = (x+h)3−x3 = h[

(x+ h)2 + x(x+ h) + x2]

=

= h(3x2 +3xh+ h2)

∆y

∆x=

∆y

h= 3x2 +3xh+ h2

Slope of tangent (I.R.C.) h → 0:

(

x3)′

= 3x2 (4)

5

Page 7: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Example: y(x) =√x

A.R.C. =∆y

∆x=

∆y

h=

√x+ h−√

x

h

=

√x+ h−√

x

h·√x+ h+

√x√

x+ h+√x=

1√x+ h+

√x

Now, no problem h → 0:

I.R.C. = 1/2√x

or

(√x)′

=1

2√x

(5)

6

Page 8: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Continuity and Limits

1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

Continuous (left) and discontinuous (right) functions

Intermediate value Theorem 11, p.99

7

Page 9: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Limit of a functionAssume don’t know f (x0) but know f(x) for any xclose to x0 . Example:

-15 -10 -5 5 10 15

-0.2

0.2

0.4

0.6

0.8

1.0

sinHxL

x

y(0) not defined. Can define y(0) = a, with any a.Why a = 1 is the ”best”?

8

Page 10: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Limit:

limx→x0

f(x) = L

Example:

limx→a

x2 − a2

x− a= lim

x→ax+ a = 2a

Functions with no limit as x → 0:

step-function, 1/x, sin(1/x)

9

Page 11: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Limit Laws - Theorem 1, p.68.

If f , g have limits L & M as x → c. Then,

limx→c

(f ± g) = L±M , limx→c

(f · g) = L ·M , etc. (6)

limx→c

(fn) = Ln , limx→c

(f1/n) = L1/n (7)

”Dull functions” limx→c f(x) = f(c). Example

limx→−2

4x2 − 3 =√13

Example: any polynomial limx→c Pn(x) = Pn(c)

10

Page 12: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Limits of rational functions P (x)/Q(x) as x → c.

If Q(c) 6= 0 - ”dull”, limit R(c)/Q(c). If Q(c) = 0

check P (c): if P (c) 6= 0 - no limit; If P (c) = 0 try to

simplify.

Example:

limx→1

x3 + x− 2

x2 − x= lim

x→1

(x− 1)(x2 + x+2)

x(x− 1)= 4

Other functions with limits of type ”0/0”. Example:

limx→0

x2 + a2 − a

x2= lim

x→0

x2 + a2 − a

x2·

x2 + a2 + a√

x2 + a2 + a=

= limx→0 1/(√

x2 + a2 + a) = 1/2a

11

Page 13: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

”Sandwich theorem” : Let f(x) ≤ g(x) and

limx→c

f(x) = limx→c

g(x) = L .

IF

f(x) ≤ u(x) ≤ g(x)

THEN

limx→c

u(x) = L

12

Page 14: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Limit (sinx)/x as x → 0

OA

BC

6 AOC = x (in radians !)

S△OAC = 12 sinx

SsectorOAC = x2

S△OAB = 12 tanx

Thus,

sinx < x < tanx , 0 < x <π

2(8)

Divide by sinx and take the inverse, changing ”<” to

”>”: 1 > sinxx > cosx. Since cos 0 = 1, from ”S.T.”

limx→0

sinx

x= 1 (9)

13

Page 15: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Examples (discussed in class):

limx→0

tanx

x= 1 (10)

limx→0

sin kx

x= k (11)

limx→0

1− cosx

x= 0 (12)

limx→0

1− cosx

x2=

1

2(13)

limx→0

tanx− sinx

x3=

1

2

14

Page 16: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

One-sided limits (skip definition on p. 87)

-1.5 -1.0 -0.5 0.5 1.0 1.5x

-1.0

-0.5

0.5

1.0

x

 x¤

-1.0 -0.5 0.0 0.5 1.0x

0.2

0.4

0.6

0.8

1.0

1- x2

Functions with 1-sided limits.

limx→0+

x

|x| = 1 , limx→0−

x

|x| = −1 , f(0) =?

limx→−1+

1− x2 = 0 , limx→1−

1− x2 = 0

15

Page 17: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Theorem 6, p.86:

Limit of f(x) for x → c exists if and only if L.H. and

R.H. limits at x → c− , c+ exist and have the same

value (in which case, this also will be the value of the

limit of f) .

16

Page 18: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-0.4 -0.2 0.2 0.4x

-0.2

-0.1

0.1

0.2

x sin1

x

-0.05 0.05 0.10 0.15 0.20x

-0.3

-0.2

-0.1

0.1

0.2

0.3

x sin1

x

Tricky functions with 2- or 1-sided limits.

limx→0

x sin1

x= 0 , lim

x→0+

√x sin

1

x= 0

17

Page 19: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Continuity

at a point x = c (p. 93, or Continuity Test, p. 94):

f(c) = limx→c

f(x)

for an interior point (and similarly for an endpoint with

corresponding one-sided limit).

Right-continuous at a point x = c :

f(c) = limx→c+

f(x)

Left-continuous at a point x = c :

f(c) = limx→c−

f(x)

18

Page 20: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-2 -1 1 2 3 4 5x

-2

-1

1

2

3

4

5

dxt

right-continuous integer ”floor” function

19

Page 21: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Continuous Function (CF)

CF on an interval

CF

Theorem 8, p. 95

f ± g , etc.

Inverse of a CF is a CF: e.g. ex and lnx

Composits of CF are CFs: e.g.√

f(x) , f(x) = 1− x2

Theorems 9, 10 on p. 97

Continuous extension to a point: e.g. F (x) = sinx /x , x 6=1;F (0) = 1

20

Page 22: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Limits involving ∞x → ±∞ (skip p. 104)

-10 -5 5 10x

-6

-4

-2

2

2 x2+ 5 x- 7

x2+ 1

Limits of a rational function with the same power of

denom. and numerator.

Horizontal asymptote(s) - lim(s) of f(x) as x → ±∞21

Page 23: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Non-algebraic functions

x3

|x|3 +1, ex , x sin

1

x, etc.

-4 -2 2 4x

-0.2

0.2

0.4

0.6

0.8

1.0

x sin1

x

Page 24: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Oblique and vertical asymptotes

-4 -2 2 4x

-10

10

20

x2+ x+ 2

x- 1

22

Page 25: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Derivatives

f ′(x) = limh→0

f(x+ h)− f(x)

h= (14)

= limz→x

f(z)− f(x)

z − x(15)

If the limit exists, this is derivative at a point x,

a.k.a:

• slope of the graph at x

• slope of the tangent to the graph at x

23

Page 26: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

• rate of change of f with respect to x

Page 27: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Derivative as a function

x is not ”frozen” anymore; can consider a new func-

tion

g(x) = f ′(x)

Other notations

f ′(x) = y′ =dy

dx=

df

dx=

d

dxf(x) = . . .

g(a) =df

dx

x=a

24

Page 28: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Examples:

d

dx

1

x= lim

z→x

1/z − 1/x

z − x= lim

z→x

x− z

zx(z − x)= − 1

x2

or

d

dx

1

x= − 1

x2(16)

d

dx

1

x2= lim

z→x

1/z2 − 1/x2

z − x= lim

z→x

x2 − z2

z2x2(z − x)= −2

1

x3

d

dx

x

x− 1=

d

dx

(

1+1

x− 1

)

= 0− 1

(x− 1)2

25

Page 29: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

One-sided derivatives

From right:

f ′(x) = limh→0+

f(x+ h)− f(x)

h= lim

z→x+

f(z)− f(x)

z − x

From left:

f ′(x) = limh→0−

f(x+ h)− f(x)

h= lim

z→x−f(z)− f(x)

z − x

Example: |x|′ = 1 for x > 0, = −1 for x < 0 and is

not defined at x = 0 where only r.-h. or l.-h. deriva-

tives exist. (This was a ”corner”; other cases with no

derivative may include ”cusp” as√

|x|, vertical tangentas x1/3 and a discontinuity of the original function as

|x|/x. Graphics in class.)

26

Page 30: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Theorem 3.1. If f(x) has a derivative at x = c it is

continuous at x = c.

Consider identity

f(c+ h) = f(c) +f(c+ h)− f(c)

h· h

and take the limit of both sides as h → 0.

Note: Converse is false, e.g. |x|.

27

Page 31: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Differentiation rules

(af(x) + bg(x))′ = af ′ + bg′ (17)

Proof. Consider

af(z) + bg(z)− af(x)− bg(x)

z − x≡ a[f(z)− f(x)] + b[g(z)− g(x)]

z − x

and take the limit z → x.

(f(ax))′ = adf(z)

dz

z=ax

(18)

Example: (sin(ωx))′ = ω cos(ωx)

28

Page 32: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

[f(x) · g(x)]′ = f ′g + fg′ (19)

Proof. Consider

f(z)g(z)− f(x)g(x)

z − x≡ [f(z)− f(x)]g(z) + f(x)[g(z)− g(x)]

z − x

and take the limit z → x.

Example:

(x · x)′ = 1 · x+ x · 1 = 2x

29

Page 33: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

(

1

f

)′= − f ′

f2(20)

Proof. Consider

1/f(z)− 1/f(x)

z − x≡ f(x)− f(z)

f(z)f(x)(z − x)

and take the limit z → x.

Example: (1/x)′ = −1/x2

(

f

g

)′=

f ′ · g − g′ · fg2

(21)

30

Page 34: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Derivatives of elementary functions

(xn)′ = nxn−1 , any n (22)

(sinx)′ = cosx , (cosx)′ = − sinx (23)

(ex)′ = ex , (ax)′ =(

ex ln a)′

= ax · ln a (24)

(lnx)′ = 1/x (25)

31

Page 35: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Trigonometric functionsEarlier: (sinx)′ = cosx , (cosx)′ = − sinx and

(tanx)′ = 1/ cos2 x (26)

Other basic examples: 1/ cosx , 1/ sinx , cotx , . . .

Simple harmonic motion:

y(t) = A sin(ωt) ,dy

dt= Aω cos(ωt) (27)

d2y

dt2= −Aω2 sin(ωt) ≡ −ω2y(t) (28)

32

Page 36: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Chain rule

(f(g(x)))′ =df

dg· dgdx

≡ (f(g))′ · (g(x))′ (29)

”Proof”. Let u = g(z) , v = g(x)

(f(g(x)))′ = limz→x

f(u)− f(v)

z − x= lim

z→x

f(u)− f(v)

u− v·u− v

z − x=

df

dg·dgdx

Simple example: (f(ax))′ = af ′(ax)

33

Page 37: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

(u(x)n)′ = nun−1du

dx(30)

(sinu(x))′ = [cosu(x)]du

dx(31)

(eu)′ = eudu

dx(32)

(lnu)′ =1

u

du

dx(33)

(√

x2 +1

)′=

1

2√

x2 +1· (2x)

34

Page 38: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Example(

e−x2)′

= −2xe−x2

-3 -2 -1 1 2 3

-0.5

0.5

1.0

expI-x2M

-2 x expI-x2M

35

Page 39: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Example:(

sin(x2))′

= 2x cos(x2)

1 2 3 4 5

-10

-5

5

10

sinIx2M

2 x cosIx2M

36

Page 40: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Example(

e−e−x)′

= e−e−x ·(

e−x)

-2 -1 0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

expH-ã-xL

expH-x - ã-xL

37

Page 41: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Implicit differentiationLet F (x, y) = 0 where F is a simple known function

(e.g. F = x− y2 describing a parabola). Then

F ′x + F ′

ydy

dx= 0 (34)

anddy

dx= −F ′

x/F′y

38

Page 42: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Tangent at (x0 , y0)

Y = y0 +dy

dx

x=x0(x− x0) (35)

Normal:

Y = y0 −(

dy

dx

x=x0

)−1

(x− x0) (36)

39

Page 43: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Parabola:

y2 = x , 2ydy

dx= 1 ,

dy

dx=

1

2y

Tangent and normal:

Y = y0 +1

2y0(x− x0) , Y = y0 − (2y0)(x− x0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

x - y2� 0

40

Page 44: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Ellipse:

(x/a)2+(y/b)2 = 1 , 2x/a2+2y/b2dy

dx= 0 ,

dy

dx= −x

y

b2

a2

Tangent and normal:

Y = y0 − x0y0

b2

a2(x− x0) , Y = y0 +

y0x0

a2

b2(x− x0)

-4 -2 0 2 4-3

-2

-1

0

1

2

3

x2

9+

y2

4� 1

41

Page 45: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Hyperbola:

x2 − y2 = 1 , 2x− 2ydy

dx= 0 ,

dy

dx=

x

y

Tangent and normal:

Y = y0 +x0y0

(x− x0) , Y = y0 − y0x0

(x− x0)

-3 -2 -1 0 1 2 3-3

-2

-1

0

1

2

3

x2- y2

� 1

42

Page 46: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Inverse Functions

Consider y = f(x) and solve for x = F (y) (select only

one branch, if several). Then, swap y and x. Then,

y = F (x) , with (f(F (x))) = x

is the inverse function (F ≡ f−1 in textbook).

Examples: f = x2 , F =√x, f = ex , F = lnx, f =

sinx , F = arcsinx, etc.

Note: range of f becomes the domain of F , but the

domain of f becomes range of F for monotonic f only.

Examples: ex (monotonic) and x2 or sinx (non-monotonic).

43

Page 47: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Note (f(F (x))) = x for all x in the domain of F , while

F (f(x)) = x in the entire domain of f for monotonic

f only. E.g.:

elnx = x for 0 < x < ∞ , and ln (ex) = x for−∞ < x < ∞

sin(arcsinx) = x for − 1 ≤ x ≤ 1 , but

arcsin(sinx) 6= x , for |x| > π/2

44

Page 48: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Primitive example: f = x− 1 , F = x+1

-3 -2 -1 1 2 3

-4

-2

2

4

x - 1

x + 1

45

Page 49: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Primitive example: f = x/2+ 1 , F = 2x− 2

-1 1 2 3

-4

-2

2

4

x

2+ 1

2 x - 2

f(F (x)) = 12 · (2x− 2) + 1 = x

46

Page 50: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Example: f = x2 , F =√x

1 2 3 4

1

2

3

4

x2

x

(f)′ = 2x , (F )′ = 12√x

Consider (x0 = 2 , y0 = 4) ,

(X0 = 4, Y0 = 2):

(f)′ = 4 , (F )′ = 14

47

Page 51: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Example: f = x2 − 2 , F =√x+2

-2 2 4 6

-2

2

4

6

x2- 2

x + 2

(f)′ = 2x , (F )′ = 12√x+2

Consider (x0 = 3 , y0 = 7) ,

(X0 = 7, Y0 = 3):

(f)′ = 6 , (F )′ = 16

48

Page 52: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Example: f = ex , F = lnx

-2 2 4 6

-2

2

4

6

expHxL

logHxL

49

Page 53: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Logarithm

y = lnx

ey = x

ey · y′ = 1

y′ =1

ey=

1

x

50

Page 54: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Example: f = sinx , F = arcsinx

-3 -2 -1 1 2 3

-2

-1

1

2

sinHxL

sin-1HxL

51

Page 55: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

arcsin

y = arcsinx

sin y = x

(cos y) · y′ = 1

y′ =1

cos y=

=1

1− sin2 y=

1√

1− x2

52

Page 56: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Example: f = tanx , F = arctanx

-5 5

-4

-2

2

4

tanHxL

tan-1HxL

53

Page 57: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

arctan

y = arctanx

tan y = x

(1/ cos2 y) · y′ = 1

y′ =1

1/ cos2 y=

= cos2 y =1

tan2 y +1=

1

x2 +1

54

Page 58: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

General

y = F (x)

f(y) = x

df

dy· y′ = 1

y′ ≡ dF

dx=

1dfdy

y=F (x)

55

Page 59: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Logarithmic functions and differentiation

(lnu(x))′ =1

u· (u)′

Examples

(ln bx)′ =b

bx=

1

x

(ln |x|)′ = 1

|x| · (|x|)′ =

1

x, x 6= 0

56

Page 60: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Recall:

ax = ex ln a , loga x =lnx

ln a, a > 0 , a 6= 1 (37)

(ax)′ =(

ex ln a)′

= ax · ln a

(loga x)′ =

1

x ln a

(xn)′ =(

en lnx)′

=n

xen lnx = nxn−1

57

Page 61: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

(xx)′ =(

ex lnx)′

= ex lnx(

lnx+x

x

)

= xx(lnx+1)

Remarkable limit:

limx→0

(1 + x)1/x = e (38)

58

Page 62: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Logarithmic differentiation

Let

y =P (x)Q(x)

R(x)

ln y = lnP + lnQ− lnR

y′/y =(P )′

P+

(Q)′

Q− (R)′

R

y′ =P (x)Q(x)

R(x)·[

(P )′

P+

(Q)′

Q− (R)′

R

]

59

Page 63: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Inverse trigonometric functions

(arcsinx)′ =1

1− x2, |x| < 1 (39)

(arctanx)′ =1

x2 +1, −∞ < x < ∞ (40)

Now, arccosx = π2−arcsinx and cot−1 x = π

2−arctanx.

Thus

(arccosx)′ = − 1√

1− x2, |x| < 1 (41)

(

cot−1 x)′

= − 1

x2 +1, −∞ < x < ∞ (42)

60

Page 64: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

sec−1(x) = arccos1

x, csc−1(x) = arcsin

1

x

(

sec−1(x))′

=

(

arccos1

x

)′= − 1

1− (1/x)2· −1

x2

=1

|x|√

x2 − 1, |x| > 1

(

csc−1(x))′

=

(

arcsin1

x

)′=

1√

1− (1/x)2· −1

x2

= − 1

|x|√

x2 − 1, |x| > 1

61

Page 65: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Related rates

Suggested notations:

V - volume, A - area, L - length/distance, r , R - radii,

y Y, h, H - vertical position, x, X -horizontal position,

v, V velocity, t - time

Sphere:

V =4

3πR3 , A = 4πR2 (43)

Cone:

V =1

3Abase · h (44)

62

Page 66: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Circle:

A = πr2

dA/dt = 2πr · dr/dt:

63

Page 67: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Sphere:

V = 43πr

3

dVdt = 4πr2 · drdt = A · drdt

64

Page 68: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Cone:

V = 13πr

2(h) · h =

= 13π

(

R(H) hH

)2 · h = V0H3 · h3

dVdt = V0

H3 · 3h2dhdt = A(h) · dhdt

65

Page 69: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

”Coffee maker” :

V1 + V2 = const , dV1dt + dV2

dt = 0

dV1dt = πr2(h) · dhdtdV2dt = πR2 · dYdt

dY

dt= − 1

R2r2(h) · dh

dt

66

Page 70: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

An a(t)× b(t) rectangle:

A = ab , P = 2(a+ b) , D =

a2 + b2

dA

dt= a

db

dt+ b

da

dt

dP

dt= 2

(

da

dt+

db

dt

)

dD

dt=

1

2D

d

dt

(

a2 + b2)

=1

D

(

ada

dt+ b

db

dt

)

67

Page 71: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Distance between two moving points:

HX,YL

Hx,yL

LL =

(x−X)2 + (y − Y )2

dL

dt=

1

2L

d

dt

(

(x−X)2 + (y − Y )2)

=

=1

L

[

(x−X)(dx

dt− dX

dt) + (y − Y )(

dy

dt− dY

dt)

]

68

Page 72: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Police car:

X ≡ 0, dY/dt = −V , y ≡ 0, dx/dt = v

dL

dt=

1

2L

d

dt

(

x2 + Y 2)

=

=1

L

[

xdx

dt+ Y

dY

dt

]

=1

L(xv − Y V )

v =1

x(L · dL/dt+ Y V )

69

Page 73: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Angle with horizontal (X, Y = 0, L =√

x2 + y2 =

x/ cos θ):

tan θ = y/x ,1

cos2 θ

dt=

1

x2

(

xdy

dt− y

dx

dt

)

dt=

1

L2

(

xdy

dt− y

dx

dt

)

Balloon: x = const , dy/dt = V .

Aircraft: y = const , dx/dt = −v.

70

Page 74: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

0.5 1.0 1.5 2.0x

-1

1

2

3

4y

x2

1 + 2 Hx - 1L

Tangent line and error (for a parabola):

Y (x) = y(a) + y′(a)(x− a)

y(x)− Y (x) = x2 − a2 − 2a(x− a) = (x− a)2

71

Page 75: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

0.0 0.5 1.0 1.5 2.0x

0.5

1.0

1.5

2.01

x

1 + x-1

2

72

Page 76: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-2 -1 1 2x

-2

-1

1

20

sinHxL

0 + 1 Hx - 0L

HsinHxL - 0 - 1 Hx - 0LL 10

73

Page 77: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Differential:

dx - independent variable

dy = y′(x) dx

74

Page 78: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

dxdy Dy

0.6 0.8 1.0 1.2 1.4 1.6 1.8x

0.5

1.0

1.5

2.0

2.5

3.0

1

75

Page 79: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

f(x+ dx) ≃ f(x) + df = f(x) + f ′(x) · dx

Examples (small x instead of dx; approximation only

near x = 0):

(1 + x)2 ≃ 1+ 2x (45)

1/(1 + x) ≃ 1− x (46)√

1+ x ≃ 1+ x/2 (47)

(1 + x)k ≃ 1+ kx (48)

ex ≃ 1+ x (49)

ln(1 + x) ≃ x (50)

76

Page 80: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

2 4 6 8x

2

4

6

8

y

x - sinH2 xL

1 - 2 cosH2 xL

77

Page 81: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Absolute maximum:

f(c) = M , f(x) ≤ M

for every x in the domain of f .

Theorem. On a closed domain [a, b] any continuous

f(x) will have an absolute maximum.

78

Page 82: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Local maximum:

f(c) = M , f(x) ≤ M

for every x on some open interval containing c.

Theorem. For any differentiable f(x) a local maxi-

mum will have a zero derivative:

f(c) = M , (f(x))′x=c = 0 (51)

(but, the reverse can be false: e.g. x3)

79

Page 83: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Critical and end points:

• endpoint(s)

• zero derivative

• no derivative (e.g |x| or√

|x|)

80

Page 84: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

E.g.: critical point - no extrema:

-1.0 -0.5 0.5 1.0x

-1.0

-0.5

0.5

1.0y

x3

3 x2

81

Page 85: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

E.g.: critical point - no extrema:

-1.0 -0.5 0.5 1.0x

-1.0

-0.5

0.5

1.0y

 x¤3

sgnHxL

sgnHxLAbs¢HxL

3  x¤2�3+  x¤3

sgn¢HxL

82

Page 86: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-1 1 2 3x

-1

1

2

3

4y

1 + 2 x - 3 x2

2+

x3

3

2 - 3 x + x2

83

Page 87: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-1 1 2 3x

-1.0

-0.5

0.5

1.0y

ã-x x

ã-x- ã-x x

84

Page 88: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-1 1 2 3 4 5 6x

-1.0

-0.5

0.5

1.0

1.5

2.0y

ã-x x3

3 ã-x x2- ã-x x3

85

Page 89: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

0.5 1.0 1.5 2.0x

-1.0

-0.5

0.5

1.0y

x logHxL

1 + logHxL

86

Page 90: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

1 2 3 4 5 6x

-6

-4

-2

2

4

6y

4 cosHxL + 3 sinHxL

3 cosHxL - 4 sinHxL

87

Page 91: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Rolle’s Theorem:

-0.5 0.5 1.0x

0.05

0.10

0.15

0.20y

88

Page 92: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Mean Value Theorem:

-0.5 0.5 1.0x

0.05

0.10

0.15

0.20y

89

Page 93: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Corollary: If

(f)′ ≡ 0 , f ≡ const

Corollary: If

(f)′ ≡ (g)′ , f ≡ g + C

E.g.:

a = const , v = at+ V0 , x =1

2at2 + V0t+X0

90

Page 94: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

MONOTONICITY

Corollary:

If (f)′ keeps sign on (a, b), f is monotonic.

-2 -1 1 2x

-1.0

-0.5

0.5

1.0y

x3

-x

x3- x

-1 + 3 x2

91

Page 95: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

1st Derivative Test

• (f)′ changes from ”+” to ”-” - local max.

• (f)′ changes from ”-” to ”+” - local min.

• if (f)′ does not change sign - no local max or min

Note: Often can use 2nd derivative, but the 1st test

does not require the existence of derivatives at x = c,

e.g f = |x|.

92

Page 96: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

5 10 15x

2

4

6

8

10

12y

10 -  -10 + x¤ - sinHx H2 + sgnH-10 + xLLL

93

Page 97: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Concavity:

c. upc. up c. down

-2 -1 1 2 3 4 5x

0.5

1.0

1.5

2.0y

x2

2 - H-3 + xL2

94

Page 98: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Concave up: (f)′ increasingConcave down: (f)′ decreasingChange of concavity: inflection point

-2 -1 1 2x

-1.0

-0.5

0.5

1.0y

x3

-x

x3- x

-1 + 3 x2

95

Page 99: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

2nd Derivative Test for Concavity:

Concave up: f ′′ > 0

Concave down: f ′′ < 0

Change of concavity: inflection point f ′′ = 0 or does

not exist

2nd Derivative Test for Local Extrema:

if f ′ = 0 and f ′′ > 0 - local min (e.g., x2)

if f ′ = 0 and f ′′ < 0 - local max (e.g., −x2)

if f ′ = 0 and f ′′ = 0 - test fails (e.g., x3 or x4)

96

Page 100: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-2 -1 1 2x

-0.2

0.2

0.4

0.6y

x4

-x2

x4- x2

-2 x + 4 x3

-2 + 12 x2

97

Page 101: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-4 -2 2 4x

-6

-4

-2

2

4

6y

1

x

x

1

x+ x

1 - 1

x2

2

x3

98

Page 102: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-4 -2 2 4x

-6

-4

-2

2

4

6y

1

x2

x

1

x2+ x

1 - 2

x3

6

x4

99

Page 103: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-4 -2 2 4x

-2

-1

1

2

y

-x

1+x2

x

-x

1+x2+ x

x2 I3+x2M

I1+x2M2

-2 x I-3+x2M

I1+x2M3

100

Page 104: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-4 -2 0 2 4x

0.2

0.4

0.6

0.8

1.0y

 sinHxL¤

Domain:

f(x) : (−∞, ∞)

f ′(x) : (−∞, ∞) , x 6= nπ

101

Page 105: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-1.0 -0.5 0.5 1.0x

-1.5

-1.0

-0.5

0.5

1.0y

1 - x2

-x

1-x2

-1

I1-x2M3�2

Domain:

f(x) : [−1, 1] , f ′(x) : (−1, 1)

102

Page 106: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-6 -4 -2 2 4 6x

-6

-4

-2

2

4

6

y

x - sinHxL

1 - cosHxL

sinHxL

103

Page 107: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-6 -4 -2 2 4 6x

-6

-4

-2

2

4

6

y

x - sinH2 xL

1 - 2 cosH2 xL

4 sinH2 xL

104

Page 108: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-0.5 0.5 1.0x

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5y

x2- x3

H2 - 3 xL x

2 - 6 x

105

Page 109: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-0.5 0.5 1.0x

-0.10

-0.05

0.05

0.10

y

-x3+ x4

x2 H-3 + 4 xL

6 x H-1 + 2 xL

106

Page 110: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-2 -1 1 2 3x

-2

-1

1

2

3

4

5y

1-x+x2

-1+x

1-4 x+2 x2

H-1+xL2

2

H-1+xL3

x

107

Page 111: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

l’Hopital Rule

If f(c) = 0 AND g(c) = 0 with g′(c) 6= 0, then:

limx→c

f

g=

f ′(c)g′(c)

(52)

Demonstration (not proof):

f(c+ dx) ≃ 0+ f ′(c) · dx

g(c+ dx) ≃ 0+ g′(c) · dx

If f ′(c) = g′(c) = 0, repeat to get f ′′(c)/

g′′(c), etc.

108

Page 112: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Examples ”0/0”:

limx→1

x2 − 1

x− 1=

2x

1

x=1= 2

limx→0

sinx

x=

cosx

1

x=0= 1

limx→0

tanx

x=

1/ cos2 x

1

x=0

= 1

limx→0

√1+ x− 1

x=

1/(2√1+ x)

1

x=0

=1

2

Caution: f(c) = g(c) = 0 is crucial! E.g.

limx→0

sinx− 1

x= −∞ , not

cosx− 0

1

x=0= 1

109

Page 113: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

limx→0

x− sinx

x3=

1− cosx

3x2

x→0=

sinx

6x

x→0=

1

6

limx→0

tanx− x

x3=

1/ cos2 x− 1

3x2

x→0

=2sinx/ cos3 x

6x

x→0

=1

3

limx→0

√1+ x− 1− x/2

x2=

1/(2√1+ x)− 1/2

2x

x→0

=

=−1/4 · (

√1+ x)−3

2

x→0

= −1

8

110

Page 114: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

l’Hopital Rule for ”∞/∞”:

If f(x) → ∞ AND g(x) → ∞ as x → c with g′(x) →const 6= 0, then:

limx→c

f

g=

f ′(x)g′(x)

x→c

(53)

111

Page 115: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

limx→0+

xn lnx = limx→0+

lnx

x−n= lim

x→0+

1/x

−nx−n−1=

= − 1

nxn∣

x→0+= 0 , n > 0

limx→0+

x lnx = 0 (54)

limx→∞x−nex = lim

x→∞ex

xn= lim

x→∞ex

nxn−1= . . .

= limx→∞

ex

n!→ ∞

112

Page 116: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

”∞ · 0 → 0/0”:

limx→∞x sin(1/x) = lim

x→∞sin(1/x)

1/x= lim

x→∞−(1/x2) cos(1/x)

−1/x2= 1

”∞−∞ → 0/0”:

1

sinx− 1

x

x→0=

x− sinx

x sinx

x→0=

1− cosx

x cosx+ sinx

x→0=

=sinx

−x sinx+ cosx+ cosx

x→0= 0

113

Page 117: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

”1∞”:

limx→0+

(1 + zx)1/x = ez

”00”:

limx→0+

xx = 1

(both via logarithm)

114

Page 118: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Applied Optimization”Best rectangle”: P = 2(x+y) -fixed; S = xy = max.

S = x(P/2− x) , dS/dx = P/2− 2x = 0

x = P/4 = y

”Best can”: V = πr2h - fixed; S = 2πrh+2πr2 = min.

h = V/πr2

S = 2π

(

V

πr+ r2

)

,1

2πdS/dx = − V

πr2+2r = 0

r =

(

V

)1/3

, h = 2r

115

Page 119: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Rectangle in a semicircle: S = 2x√

R2 − x2 = max.

Ans.: x = R/√2.

Refraction and reflection from Fermat principle (in

class).

Distance from a parabola (in class).

116

Page 120: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Using linearization for approximate calculations:

Let F (c) be easy to evaluate, then for small dx

F (c+ dx) ≃ F (c) + F ′(c) · dx

E.g. F (x) = x1/3 , F ′(x) = 13x

−2/3. Find 291/3.

Solution: Use c = 27:

(27 + 2)1/3 ≃ 3+1

327−2/3 · 2 = 3

2

27=

83

27

117

Page 121: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Alternatively (1st step of Newtons method): f(x) =

x3 − 29. look for a root in linearized approximation;

starting guess x0 = 3

0 = f(x) ≃ f(x0) + (x− x0) · f ′(x0)

x = x0 − f(x0)

f ′(x0)= 3− (−2)/(3 · 9) = 83/27

same thing.

118

Page 122: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

0.5 1.0 1.5 2.0 2.5 3.0x

-2

2

4

6

y

-2 + x2

119

Page 123: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

2.8 3.0 3.2 3.4x

-4

-2

2

4

y

-29 + x3

120

Page 124: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

General Newton’s method

xn+1 = xn − f(xn)

f ′(xn)(55)

E.g., f = x2 − 2, starting guess x0 = 3/2

xn+1 =xn

2+

1

xn,

{

3

2,17

12,577

408,665857

470832

}

”Errors”:

{0.25, 0.007, 10−6 , 10−12}

121

Page 125: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

f = x3 − 29, starting guess x0 = 3:

xn+1 =29

3x2n+

2xn

3

{

3,83

27,1714381

558009,15116218032546583823

4920136460591269347

}

”Errors”:

(−2. , 0.05 , 10−5 , 10−12)

122

Page 126: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Approximating ln 3 = 1.09861 . . . with Newton

f(x) = ex − 3

xn+1 = xn − f(xn)

f ′(xn)= xn +3e−xn − 1

If start with x0 = 1,

x1 = 1+3

e− 1 =

3

e≃ 1.10364

with error 5 · 10−3. Next, x2 ≃ 1.09862 with error

10−5

123

Page 127: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Antiderivatives and indefinite integrals:

F (x) is A.D. of f(x) if

(F )′ = f

Note: F (x)+C - also an A.D. All together - indefinite

integral,∫

f(x) dx

E.g.

dx = x+ C (56)∫

x dx =1

2x2 + C (57)

dx

x2= −1

x+ C (58)

124

Page 128: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Tables (remember constant!):

xn dx =1

n+1xn+1 , n 6= −1 (59)∫

dx/x = ln |x| (60)∫

sinx dx = − cosx (61)∫

cosx dx = sinx (62)∫

dx/ cos2 x = tanx (63)∫

dx/

1− x2 = arcsinx (64)∫

dx/(x2 +1) = arctanx (65)∫

ex dx = ex (66)

125

Page 129: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Expanding the Tables:

•∫

(af(x) + bg(x)) dx = a∫

f dx+ b∫

g dx+ C

• If F (x) =∫

f(x) dx , then

f(kx) dx =1

kF (kx) + C

E.g.∫

sin(ωt) dt = −1

ωcos(ωt)+C ,

e−2x dx = −1

2e−2x+C , . . .

126

Page 130: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Finding C.

Let F (x) - some A.D. of f(x). We want to construct a

specific A.D. which satisfies F (x0) = A . The general

form is F (x) + C AND

F (x0) + C = A , i.e. C = A− F (x0)

Thus, we solved a differential equation (F )′ = f with

additional ”initial” (or ”boundary”) condition F (x0) =

A.

127

Page 131: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

E.g., dx/dt = 4t3 +4t , x(0) = 7

x(t) =∫

(4t3 +4t) dt = t4 +2t2 + C , C = 7

E.g., free fall with dv/dt = −g = const , v(0) = V0 ,

dy/dt = v , y(0) = Y0 . (2 equations)

v(t) =∫

(−g) dt = −gt+ C , C = V0

y(t) =∫

v(t) dt = −1

2gt2 + V0t+ C1 , C1 = Y0

E.g., 1-d motion with a = 4e2t , v(0) = 7 , x(0) = 3.

v(t) = 2e2t + C , C = 7− 2e0 = 5

x(t) = e2t +5t+ C1 , C1 = 3− e0 − 5 · 0 = 2

128

Page 132: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Small x approximations (from l’Hopital)

(1 + x)k − 1 ≃ kx (67)

ex − 1 ≃ x , ax − 1 ≃ x ln a (68)

ln(1 + x) ≃ x (69)

sinx ≃ tanx ≃ x (70)

x− sinx ≃ x3/6 (71)

tanx− x ≃ x3/3 (72)

1− cosx ≃ x2/2 (73)

129

Page 133: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

More examples on limits

limx→−∞

4x2 − 1

x− π= −2

limx→0

2sinx − 1

x= ln2

limx→0

(1 + 2x)5/x = e10

limx→0

cosπx

sinx= −1

limx→0

(

e2x + ex − 1)2/x

= e6

130

Page 134: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-2 -1 1 2x

-2

-1

1

2y

133

Page 135: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-2 -1 0 1 2x

1

2

3

4y

134

Page 136: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

0.2 0.4 0.6 0.8 1.0t

0.2

0.4

0.6

0.8

1.0v

0.2 0.4 0.6 0.8 1.0t

0.2

0.4

0.6

0.8

1.0v

135

Page 137: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

0.5 1.0 1.5 2.0x

1

2

3

4

y

136

Page 138: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Σ-notations

N∑

k=1

ak = a1 + a2 + . . .+ aN

k - ”dummy” variable:

N∑

k=1

ak =N∑

i=1

ai =N−1∑

m=0

am+1

N∑

k=1

f(ak) = f(a1) + f(a2) + . . . f(aN)

137

Page 139: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

N∑

k=1

k = 1+ 2+ . . .+N =N(N +1)

2(74)

Indeed, consider and add

1+ 2+ . . .+ (N − 1) +N

N + (N − 1) + . . .+ 2+ 1

Also,

N∑

k=1

k2 = 12 +22 + . . .+N2 =N(N +1)(2N +1)

6

138

Page 140: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Area under a straight line

Consider v(t) = t (acceleration = 1 and v(0) = 0) and

look for displacement from t = 0 to arbitrary t (in the

picture, t = 1). Use discrete

tk = k∆t = vk , ∆t =t

N

N−1∑

k=1

vk∆t = (∆t)2N(N − 1)

2=

1

2t2(1− 1

N)

139

Page 141: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Area under a parabola

Consider y = x2 and look for area between a = 0 and

arbitrary b > 0. Use discrete

xk = k∆x , yk = (k∆x)2 , ∆x =b− a

N

N−1∑

k=1

yk∆x = (∆x)3N(N − 1)(2N − 1)

6=

1

3b3(1− 1

N)(1− 1

2N)

140

Page 142: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Riemann SumsPartition

P ={

a = x0 < x1 < x2 < . . . < xN−1 < xN = b}

∆xk = xk − xk−1 , ||P || = max [∆xk]

xk−1 ≤ ck ≤ xk

R.S. :N∑

k=1

f(ck)∆xk (75)

f(ck) = max f(x) , xk−1 ≤ x ≤ xk - upper sum.

f(ck) = min f(x) , xk−1 ≤ x ≤ xk - lower sum.

141

Page 143: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

0.5 1.0 1.5 2.0x

1

2

3

4

y

142

Page 144: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

1 2 3 4 5 6x

-1.0

-0.5

0.5

1.0

y

143

Page 145: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Definite integral:

∫ b

af(x) dx = lim

||P ||→0

N∑

k=1

f(ck)∆xk = (76)

= limN→∞

N∑

k=1

f(ck)∆x , ∆x =b− a

N(77)

area =∫ b

af(x) dx , f(x) ≥ 0 , b > a (78)

144

Page 146: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Mean Value Theorem:

If f(x) is continuous on [a, b] then at some a ≤ c ≤ b

f(c) = f̄ =1

b− a

∫ b

af dx

Proof: From min-max inequality min f ≤ f̄ ≤ max f .

Then use I.V.T.

E.g., if∫ ba f dx = 0, there is a root of f

145

Page 147: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Fundamental Theorem of Calculus. Pt.I

If f(x) is continuous on [a, b] then F (x) =∫ xa f(t) dt is

continuous and diff. on (a, b) with

d

dx

∫ x

af(t) dt = f(x) (79)

Part II (”Evaluation Theorem”):

∫ b

af(x) dx = F (b)− F (a) = F (x)|ba (80)

where F is any A.D. of f .

146

Page 148: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

E.g. (Pt. I):

d

dx

∫ x

at sin t dt = x sinx

(a does not matter!)

d

dx

∫ a

xt sin t dt = −x sinx

d

dx

∫ x2

at sin t dt = (x2 sinx2)

dx2

dx= . . .

147

Page 149: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

E.g. (Pt.II):∫ π

0sinx dx = − cosx|π0 = 2

∫ π/4

0

dx

cos2 x= tanx|π/40 = 1

∫ 1

0

dx

x2 +1= arctanx|10 = π/4

∫ 2

1dx/x = lnx|21 = ln2

∫ b

0eαx dx =

1

αeαx|b0 =

eαb − 1

α

148

Page 150: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

The ”net change theorem”

F (b)− F (a) =∫ b

aF ′(x) dx

s(t2)− s(t1) =∫ t2

t1v(t) dt

149

Page 151: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

area =∫ b

a|f(x)| dx

not convenient since don’t know A.D. for |f |.

∫ 2π

0| sinx| dx = − cosx|π0 + cosx|2ππ = 4

f = x(x+1)(x− 2) , F (x) = x4/4− x3/3− x2

area =∫ 0

−1f dx−

∫ 2

0f dx = F (0)−F (−1)−[F (2)−F (0)] = . . .

150

Page 152: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-8 -6 -4 -2 2x

-8

-6

-4

-2

2

y

-3 x - x2

0

F (x) = −x3/3− 3x2/2 ,

A = −[F (−3)−F (−8)]+F (0)−F (−3)− [F (2)−F (0)]

151

Page 153: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-1.0 -0.5 0.5 1.0 1.5 2.0x

-0.6

-0.4

-0.2

0.2

0.4

0.6y

-x +  x¤5

sgnHxL

0

F (x) =5

6x6/5 − x2/2

area = 2[F (1)− F (0)]− [F (2)− F (1)] = . . .

152

Page 154: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Substitution method

f(u)u′(x) dx =∫

f(u) du (81)

dx =1

kd(kx+ b) (82)

x dx = d(x2/2) (83)

dx/x2 = −d(1/x) (84)

dx/x = d(ln |x|) (85)

sinx dx = −d(cosx) (86)

cosx dx = d(sinx) (87)

dx/ cos2 x = d(tanx) (88)

eax dx =1

ad(eax) (89)

153

Page 155: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

f(kx+b) dx =1

k

f(kx+b) d(kx+b) =1

kF (kx+b)+C

kx+ b dx =1

k

2

3(kx+ b)3/2 + C

sec2(kx+ b) dx =1

ktan(kx+ b) + C

xex2dx =

ex2d(x2/2) =

1

2ex

2+ C

x2ex3dx =

ex3d(x3/3) =

1

3ex

3+ C

154

Page 156: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

I =∫

secx dx =∫

cosx dx

cos2 x=∫

du

1− u2, u = sinx

I =∫

1

2

(

1

1− u+

1

1+ u

)

du =1

2ln

1+ u

1− u

+ C

I =∫

x√

2x+1 dx =∫

u− 1

2

√u d

u

2, u = 2x+1 , x = (u−1)/2

I =1

4(2

5u5/2 − 2

3u3/2) + C = . . .

u = cosx:∫

tanx dx =∫

sinx dx

cosx= −

du

u= − ln |u|+C = ln | secx|+C

155

Page 157: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Substitution method for definite integrals

∫ b

af(u)u′(x) dx =

∫ u(b)

u(a)f(u) du (90)

∫ 1

−1x2√

x3 +1 dx =∫ 1

−1

x3 +1 d(x3 +1)

3=

1

3· 23(x3 +1)3/2

1

−1=

2

923/2

or u = x3 +1 , u(−1) = 0 , u(1) = 2

1

3

∫ 2

0

√u du =

1

3

2

3u3/2

1

0=

2

923/2

156

Page 158: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-1.0 -0.5 0.5 1.0x

0.2

0.4

0.6

0.8

1.0y

x2 1 + x3

0

0.5 1.0 1.5 2.0u

0.2

0.4

0.6

0.8

1.0f HuL

u

3

0

157

Page 159: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

u = cotx:∫ π/2

π/4cotx csc2 x dx = −

∫ cot π2

cot π4

u du = −1

2u2|01 =

1

2

u = cosx:

∫ π/4

−π/4tanx dx =

∫ π/4

−π/4

sinx dx

cosx= −

∫ cos(π/4)

cos(−π/4)

du

u= −

∫ 1/√2

1/√2

. . . = 0

158

Page 160: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

-1.5 -1.0 -0.5 0.5 1.0 1.5x

1

2

3

4y

2 + 5 x2

2- x4

0 -3 -2 -1 1 2 3x

-1.0

-0.5

0.5

1.0y

sinHxL + 1

3sinH3 xL

0

∫ a

−af(x) dx = 2

∫ a

0f dx , (f − even)

∫ a

−af(x) dx = 0 , (f − odd)

159

Page 161: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Proof

I =∫ a

−af(x) dx =

∫ 0

−af(x) dx+

∫ a

0f(x) dx = I1 + I2

I1 =∫ 0

−af(x) dx =

∫ a

0f(−u) du = ±

∫ a

0f(u) du =

= ±I2 , (” + ” for even , ”− ” for odd)

E.g.∫ 1

−1(x4−3x3+4x2+x−2) dx = 2

∫ 1

0(x4+4x2−2) dx = . . .

160

Page 162: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

Area between two curves

A =∫ b

a(f − g) dx , f(x) ≥ g(x)

-1.0 -0.5 0.5 1.0 1.5 2.0x

-3

-2

-1

1

2

3y

2 - x2

-x

161

Page 163: Dr. Vitaly A. Shneidman New Jersey Institute of Technology ...vitaly/MATH111/math111.pdf · Lecture Notes for math111: Calculus I. Dr. Vitaly A. Shneidman New Jersey Institute of

f = 2− x2 , g = −x

Intersection:

f(x) = g(x) , x = −1 and x = 2

A =∫ 2

−1(2− x2 + x) dx = (2x− x3/3+ x2/2)

2

−1=

= 2(2+ 1)− 1

3(23 +1)+

1

2(22 − 1) = . . . > 0

162